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Abstract. Substitute lecture for Richard Melrose while he’s away.

Read Friedlander [1, §2.5] for more about convolutions, [1, §6.1] for a derivation of the forward fundamental
solution, and [2] for alternative ways to solve the wave equation.

• Forward Fundamental Solution to the Wave Equation
• One-dimensional problem
• Uniqueness
• Review of Homogeneous Distributions
• General Existence
• Representation Formula and the Cauchy Problem
• Finite Speed of Propagation and the Strong Huygens Principle

0. Forward Fundmental Solution to the Wave Equation

Consider on Rn+1 the wave operator
� = ∂2t −∆x

(observe that other authors, such as Melrose, define � and ∆ with the opposite sign convention, i.e.

� = D2
t −∆x).

A foward fundamental solution is the unique distribution E+ ∈ S ′(Rn+1) with suppE+ ⊆ {t ≥ |x|} =: C
satisfying

�E+ = δ(t = 0)δ(x = 0).

1. One-dimensional problem

We will first do the case n = 1 to warm up. Set u = t−x
2 and v = t+x

2 . Then

�E+ = ∂u∂vE+ =
1

2
δ(u = 0)δ(v = 0).

We make the ansatz u, v E+(u, v) = F (u)G(v). Then we should have F = a1H + c1, G = a2H + c2, where
a1, a2, c1, c2 ∈ C, a1a2 = 1

2 and H is the Heaviside function

H(s) =

{
1, s ≥ 0

0, s < 0.

Changing coordinates back, we see that

�E+ =
1

2
(H(t− x) + c1)(H(t+ x) + c2).

Since we want E+ to be supported in t ≥ |x|, we set c1 = c2 = 0, and so

�E+ =
1

2
H(t− x)H(t+ x).

This is of course the usual statement that solutions to the wave equation are the superposition of two
travelling waves: one travelling to the right, and one travelling to the left.

1



2. Uniquness

We now treat the general case of uniqueness.
If F is any other foward fundamental solution, then

F = F ∗ δ = F ∗�E+ = �F ∗ E = δ ∗ E = F.

In order to define the covolution, we used the following lemma

Lemma 2.1. Suppose u, v ∈ C−∞(Ω), and the map

suppu× supp v 3 (x, y) 7→ x+ y

is proper in the sense that the preimage of any compact set is compact. Then u ∗ v ∈ C−∞ is well-defined
and satisfies the obvious properties.

Remark 2.2. Being proper is equivalent to the condition that for all c, |x+ y| ≤ c implies there is some d so
that |x|, |y| ≤ d.

Proof. If ϕ ∈ C∞c (Ω), then we choose a compactly supported cutoff χ(x)η(y) such that χ(x)η(y) = 1 if
x+ y ∈ suppϕ Then set

u ∗ v = (χu) ∗ (ηv),

where the which is well-defined since both distributions are compactly supported. In other words,

〈u ∗ v, ϕ〉 = 〈u(x), 〈v(y), χ(x)η(y)ϕ(x+ y)〉〉.

It is easy to check that this definition does not depend on χ, η and that it satisfies all the desired properties.
�

3. Review of Homogeneous Distributions

Recall homogeneous distributions. We say that u ∈ S ′(Rm) is homogeneous of degree d on Rm if

〈u, fλ〉 = λm+d〈u, f〉.

This is motivated by changing variables if u is a homogeneous function. Observe that the δ function is
homogeneous of degree −m, and taking a deriative of a homogeneous distribution decreases the degree of
homogeneity by 1.

There are special homogeneous distributions on R of degee z supported in {x ≥ 0}. These are defined for
Re(z) large enough by

xz+ =

{
xz+, x ≥ 0,

0, x < 0.
.

We will be using modified distributions

χz+(x) =
xz+

Γ(z + 1)
,

where Γ(z) the Gamma function defined by

Γ(z) =

∫ ∞
0

tz−1e−t dt

for Re(z) large and anaytically continued to a meromorphic function using the identity

Γ(z + 1) = zΓ(z).

The advantage of using the Γ function is that
d

dx
χz+ = χz−1+ ,

which allows us to define χz+ via analytic continuation (really, we have just built the regularization into the
definition).
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In particular, we find that

χ−k−1+ =
d

dx

k+1

χ0
+ =

d

dx
H(x) = δ(k)(x).

In fact, repeated integration by parts shows that if m is large enough,

〈χz+(x), ϕ〉 =
1

Γ(z + 1)

(∫ 1

0

xz

(
ϕ(t)−

m−1∑
k=0

ϕ(k)(0)
xk

k!

)
dx

)

+

(
m−1∑
k=0

ϕ(k)(0)

Γ(k + z + 2)
+

∫ ∞
1

xzϕ(z) dz

)
.

We also have the following identity for Re(z) large, and hence for all z by analytic continuation:

xχz+(x) = (z + 1)χz+1
+ (x).

4. General Existence

We will try the naive thing and hope it works. Namely, we will look for E+ to be homogeneous of order
−n+ 1 and supported in C. The obvious thing to try is

(4.1) E+ = χ
−n+1

2
+ (t2 − |x|2),

forgetting for the moment that this is not well-defined. Applying � and using the chain rule gives that

∂tE+ = 2tχ
(−n−1)/2
+ (t2 − |x|2)

∂xiE+ = 2xiχ
(−n−1)/2
+ (t2 − |x|2)

∂2tE+ = 4t2χ
(−n−3)/2
+ (t2 − |x|2) + 2χ

(−n−1)/2
+ (t2 − |x|2)

∂2xi
E+ = 4x2iχ

(−n−3)/2
+ (t2 − |x|2)− 2χ

(−n−1)/2
+ (t2 − |x|2).

So,

�E+ = 2(n+ 1)χ
(−n−1)/2
+ (t2 − |z|2) + 4(t2 − |x|2)χ

(−n−3)/2
+ (t2 − |x|2)

= 2(n+ 1)χ
(−n−1)/2
+ (t2 − |z|2) + 4

−n− 1

2
χ
(−n−1)/2
+ (t2 − |x|2) = 0.

This isn’t quite what we want. Observe though that the differential of t2 − |x|2 fails to be surjective at 0,
and so E+ has a singularity there, and we can’t differentiate. This suggests that should we be able to define
(4.1), the above formal computation should be valid outside of 0, and so �E+ is homogeneous of degree
−n− 1 and supported at 0, so must be a multiple of δ(t)δ(x), which is what we want.

To get around this, we take a slightly different approach. Define for Re(z) large enough

G(z)(t, x) = A(z)1C(t, x)(t2 − |x|2)z,

where A(z) is some meromorphic function given by

A(z)−1 = πn/2−1/222z+nΓ(z + (n+ 1)/2)Γ(z + 1).

The Γ normalization will be important for regularization. Then G(z) is certainly a tempered distribution.
Observe that G(z) is homogeneous of degree 2z.

The π factors are chosen so that ∫
G(z)e−t dtdx = 1.

To see this, one simply integrates in polar coordinates and uses the duplication formula

Γ(2z) = Γ(z)Γ(z + 1/2)22z−1π−1/2,

the formula for the Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 =
Γ(x)Γ(y)

Γ(x+ y)
,
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and the surface are of Sn−1

ωn−1 =
2πn/2

Γ(n/2)
.

Indeed, one finds that∫
(t2−|x|2)zet dtdx = ωn−1

∫ ∞
0

∫ t

0

e−t(t2−r2)zrn−1 drdt =
1

2
ωn−1

(∫ ∞
0

e−tt2z+n dt

)(∫ 1

0

(1− s)zsn/2−1 ds
)
.

A computation similar to the formal one above shows that

�G(z) = G(z − 1).

We use this to analytically continue G(z) as a tempered distribution. Since G(z) is homogeneous of degree
2z for Re(z) large, G(z) extends to be homogeneous of order 2z for all z ∈ C.

We next determine another way to write G(z) which will be more convinient for computations, but which
will only work as a distribution on C∞c (Rn+1 \ {0}). The idea is to integrate over level sets of t2 − |x|2. For
Re(z) sufficiently large

〈G(z), ϕ〉 = A(z)

∫ ∞
0

∫ t

0

∫
Sn−1

(t2 − r2)zϕ(t, r, θ)rn−1 dθdrdt

=
A(z)

2

∫ ∞
0

∫ ∞
0

∫
Sn−1

szϕ((s+ r2)1/2, r, θ))(r2 + s)1/2 dθdrdt

=
A(z)

2

∫ ∞
0

szϕ̃(s) ds.

So, formally at least,
〈G(z), ϕ〉 = A′(z)〈χz+, ϕ̃〉,

where
A′(z)−1 = π1/2n−1/2Γ(z + (n+ 1)/2)22z+n.

Unfortunately ϕ̃ is not necessarily smooth. However it is smooth if ϕ ∈ C∞c (Rn+1 \ {0}). Thus by analytic
continuation,

〈G(z), ϕ〉 = A′(z)〈χz+, ϕ̃〉.
We remark that this makes sense for all z since Γ has no zeroes; ultimately we will only use this for values
of Γ(z + (n+ 1)/2) which we already know.

Now, observe that A′((−n − 1)/2) = 0 since Γ has a pole at −1. Thus, suppG((−n − 1)/2) ⊆ {0} as a
tempered. It follows that G((−n− 1)/2) = Aδ(t = 0)δ(x = 0) by homogeneity. By analytic continuation,

�G((−n+ 1)/2) = G((−n− 1)/2) = Aδ(t = 0)δ(x = 0),

so E+ = A−1G((−n + 1)/2) is the forward fundamental solution. We may compuate A by testing against
e−t, which is valid since we may multiply by a cutoff of C:

〈G(z), e−t〉 = 1

for Re(z) large, so by analytic continuation.

A = 〈G((−n+ 1)/2), e−t〉 = 1.

5. Representation Formula and the Cauchy Problem

The Cauchy problem asks, given functions u0, u1 on Rn and f ∈ C∞([0,∞)×Rn) with reasonable support
in t ≥ 0 for a distribution, for u ∈ C∞([0,∞)×Rn) such that �u = f and (u, ∂tu)|t=0 = (u0, u1). We will
also show that such a solution is unique.

First, uniqueness. This will follow from the so-called “representation” or “jumps” formula. Extend u, f to
be smooth for t < 0 (by using Borel’s lemma, for instance). We start with the formal computation

u = (uH(t)) ∗ (δ(t)δ(x)) = (H(t)u) ∗�E+

= �(H(t)u) ∗ E+ = (H(t)f) ∗ E+ + 2(δ(t)∂tu) ∗ E+ + δ′(t)u ∗ E+

= f ∗ E+ + (δ(t)∂tu) ∗ E+ + ∂t(δ(t)u) ∗ E+
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= f ∗ E+ + (δ(t)∂tu) ∗ E+ + (δ(t)u) ∗ ∂tE+.

All computations are valid by considering the supports. Observe that δ(t)∂tu = δ(t)u1 and δ(t)u = δ(t)u0,
where u0, u1 are arbitrary smooth extensions into t 6= 0. We therefore obtain the representation formula

(5.1) u = f ∗ E+ + (δ(t)u1) ∗ E+ + (δ(t)u0) ∗ ∂tE+,

from which uniqueness follows.
It is possible to prove exstience from this as well, but this would require interpreting E+(t) ∈ S ′(Rn) for

each t ∈ R, which we will not do. Instead we use Borel’s lemma. First we will solve the Cauchy Problem in
formal power series. Write our propsective solution

u(x, t) =

∞∑
k=0

uk(x)tk,

and

f(x, t) =

∞∑
k=0

fk(x)tk

as formal power series. We wish to solve for uk. We are given u0, u1 and fk, and also that

(∂2t −∆)u = f,

i.e. for k ≥ 0

(k + 2)(k + 1)uk+2(x) = ∆uk + fk.

This lets us solve for smooth functions uk+2(x) inductively. Now, using Borel’s lemma, we can find v ∈
C∞(Rn+1), compactly supported in time, such that ∂kt v(0, x) = k!uk(x). Set g = �v − f . Then g vanishes
to all orders at t = 0, since v solves the formal Cauchy problem. Extend g by 0 to t ≤ 0 (this is smooth).
Now define

u := v − g ∗ E+.

Then
�u = �v − δ(t)δ(x) ∗�g = f.

To show that u solves the Cauchy problem, we just need to show that (∂kt g) ∗E+(t)→ 0 as t→ 0. We start
with a formal computation

(g ∗ E+)(0, x) =

∫ ∞
0

∫
Rn

g(x− y,−s)E+(s, y) dyds =

∫ ∞
0

∫
Rn

(0)E+(s, y) dyds = 0,

and similarly with all derivatives. There are many ways to make this formal computation rigorous; for
instance we can mollify E+ to obtain approximations ηm and notice that g ∗ ηm → g ∗E+ locally uniformly.

6. Finite Speed of Propagation and the Strong Huygens Principle

We now derive some useful properties of the representation formula above. The first is the famous finite speed
of propagation property. Informally, it states that features of the solution to the wave equation propagate
outwards with speed 1. Put another way, the behaviour of a solution u to the wave equation at a point (t, x)
depends only the behaviour of u0, u1 in a ball of radius t centred at x and the behaviour of f in a cone with
vertex at (t, x) and with base on {0} ×Rn. Formally, we have

Proposition 6.1 (Finite Speed of Propagation). Suppose u solves the wave equation

�u = f

with initial data
(u, ∂tu)|t=0 = (u0, u1).

Suppose futhermore that f vanishes on the cone C(x,t) := {(y, s) : |x − y| ≤ t − s} and u0, u1 vanish on
{|y − x| ≤ t}. Then u vanishes on the cone {(y, s) : |x− y| ≤ t− s}.
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Proof. This follows from the representation formula (5.1), and the fact that supp(u ∗ E+) ⊆ supp(u) + C,
where C is the forward cone. Indeed, if (y, s) 6∈ C(x,t) and (z, r) ∈ C, then (y+ z, r+s) 6∈ C(x,t), either, since

|y + z| ≥ |y| − |z| ≥ |y| − r ≥ t− (s+ r).

�

If n ≥ 3 is odd then we have a much stronger version of finite speed of propagation. Not only does u at
(x, t) not depend on u0, u1 outside the ball {|y − x| ≤ t}, but u only depends on the values of u0, u1 on the
boundary of the ball. This is the Strong Huygens Principle.

Proposition 6.2 (Strong Huygens Principle). Suppose n is odd and u solves the wave equation

�u = f

with initial data
(u, ∂tu)|t=0 = (u0, u1).

Suppose futhermore that f vanishes on the cone C(x,t) := {(y, s) : |x − y| ≤ t − s} and u0, u1 vanish on
{|y − x| = t}. Then u vanishes on the cone {(y, s) : |x− y| ≤ t− s}.

Proof. This will follow from (5.1) if we can show that E+ is supported only on the boundary of the cone C,
i.e. suppE+ ⊆ {(y, s) : |y| = s}. For this we return to examining the representations we had for the forwards
fundamental solution. Recall that

E+ = G((−n+ 1)/2) = A′((−n+ 1)/2)〈χ(−n+1)/2
+ , ϕ̃〉.

Observe that ((−n + 1)/2) is an integer, so χ(−n+1)/2
+ = δ(k)(0) for some k. Thus, at least when acting on

C∞c (Rn+1 \ {0}), supp(E+) ⊆ {|y| = s}. If ϕ ∈ C∞c (Rn+1) is supported away from {(y, s) : |y| = s}, then
ϕ ∈ C∞c (Rn+1 \ {0}), and so this proves that 〈E+, ϕ〉 = 0, and we have the desired support condition.

Formally we write

E+ =
1

2π(n−1)/2 δ
(n−3)/2(t2 − |x|2).

�
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