18.155 LECTURE 1325 OCTOBER 2016

RICHARD MELROSE

ABSTRACT. Notes before then and after lecture.

Read: Notes Chapter 2, section 2.

1. Before lecture

- Spectrum and resolvent set of a bounded operator.
- Resolvent set is open and the resolvent is holomorphic.
- Spectrum of a compact operator
- Self-adjoint operators have real spectrum
- If $A^* = A$ then $||A|| = \sup_{||u||=1} |\langle Au, u \rangle|$.
- If $A^* = A$ then

 $\{\alpha\} \cup \{\beta\} \subset \operatorname{Spec}(A) \subset [\alpha, \beta]$

$$\alpha = \inf_{\|u\|=1} \langle Au, u \rangle, \ \beta = \sup_{\|u\|=1} \langle Au, u \rangle.$$

Proof: Replace A by $A - \frac{1}{2}(\alpha + \beta)$ which is self-adjoint and has $\beta = -\alpha = ||A||$. There is a sequence u_n , $||u_n|| = 1$, $\langle Au_n, u_n \rangle \to -||A||$. Then

$$||(A + ||A|| \operatorname{Id}))u_n|| = ||Au_n||^2 + 2||A||(Au_n, u_n) + ||A||^2||u_n|| \to 0$$

which implies that $(A + ||A||)^{-1}$ cannot exist and similarly for A - ||A||.

- Functional calculus via Stone-Weierstrass
- Polar decomposition
- I got to about here
- Spectral projection and measure. Riemann-Stieltjes
- Spectral decomposition for a compact self-adjoint operator
- Hilbert-Schmidt and trace class operators.

2. After lecture

I think I skipped a bit of the proof of the polar decomposition of a general bounded operator $B \in \mathcal{B}(H)$ which says

(1)
$$B = UA, \ A = A^* \ge 0, \ U^*U = \operatorname{Id} - \Pi_{(\operatorname{Ran} B)^{\perp}}, \ UU^* = \Pi_{(\operatorname{Ran} A)^{\perp}}$$

so U is a 'partial isometry', which is to say an inner-product preserving linear map in this case between $\overline{\operatorname{Ran}(A)}$ and $\overline{\operatorname{Ran}(B)}$ which is zero on $\operatorname{Ran}(A)^{\perp}$.

The main step is to define $A = (B^*B)^{\frac{1}{2}}$ using the fact that $\operatorname{Spec}(B^*B) \subset [0, \infty)$ on which $z^{\frac{1}{2}}$ is a continuous function. Then define $U : \operatorname{Ran}(A) \longrightarrow \operatorname{Ran}(B)$ by

(2)
$$Ug = Bf \text{ if } g = Af$$

We first need to check that this makes sense, of course if $g \in \text{Ran}(A)$ then f exists but the problem is that it may not be unique. However if f' is another choice then

$$A(f'-f) = 0 \Longrightarrow (B^*B)^{\frac{1}{2}}(f'-f) = 0$$
$$\implies (B^*B)(f'-f) = 0 \Longrightarrow ||B(f'-f)|| = 0 \Longrightarrow Bf' = Bf$$

so U is well-defined. Also for $g \in \operatorname{Ran}(A)$,

$$\|Ug\|^2 = \langle Bf, Bf \rangle = \langle B^*Bf, f \rangle = \|Af\|^2$$

so U is norm-preserving from $\operatorname{Ran}(A)$ to $\operatorname{Ran}(B)$. It can then be extended by continuity to $\overline{\operatorname{Ran}(A)}$ and defined to be zero on $\operatorname{Ran}(A)^{\perp}$. It follows that U is a partial isometry and that B = UA.

If $B \in GL(H)$ is invertible then B^*B has spectrum in $(0, \infty)$ and the same is true of A which is therefore invertible and U is actually unitary since $\operatorname{Ran}(A) =$ $\operatorname{Ran}(B) = H$. This allows one to show that $\operatorname{GL}(H)$ is connected to $\operatorname{U}(H)$ by the curve

(3)
$$B_t = U(t(B^*B)^{\frac{1}{2}} + (1-t) \operatorname{Id}), \ t \in [0,1], \ B_1 = B, \ B_0 = U$$

lying in GL(H). In fact this gives a retraction $GL(H) \ni B \longrightarrow U = B(B^*B)^{-\frac{1}{2}}$ continuous in the norm topology. To see this we need to show that $B \longmapsto (B^*B)^{\frac{1}{2}}$ is continuous in the norm topology. That is most easily done using the holomorphic functional calculus which I will mention next time.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail \ address: rbm@math.mit.edu$