
18.155 LECTURE 11

18 OCTOBER, 2016

RICHARD MELROSE

Abstract. Notes before and after lecture – if you have questions, ask!

Read: Notes Chapter 2.
Unfortunately my proof of the Closed Graph Theorem in lecture was bogus. So

as penance I have written out (still fairly brief but now correct I think) proofs of
the ‘Three Theorems’ below.

Before lecture

Hilbert spaces are separable and infinite dimensional unless otherwise stated!

• Theorems: Uniform boundedness, Closed graph, Open mapping.
I do not plan to prove these, standard proofs rely on Baire’s Theorem

and can be found in the notes or below.
• Spectrum of an operator. Neumman series.
• Group of invertibles, unitary operators, Kuiper’s theorem.

Again no proof of Kuiper’s theorem since we will not use it; see below.
• Finite rank and compact ideals. Calkin algebra.
• Hilbert-Schmidt and trace class ideals. Trace functional.
• Fredholm and semi-Fredholm operators. Density.
• Functional calculus for self-adjoint/normal operators.
• Spectral theorem for compact self-adjoint operators.
• Polar decomposition.

After lecture

• Contrary to the statements above I did go quickly through the proofs of
Baire’s theorem, the Uniform boundedness principle and the Open Mapping
Theorem. I may managed to write a quick outline but not yet.
• I did not talk about unitary operators (yet) nor did I go into Kuiper’s

Theorem in any detail.
• I showed that GL(H) ⊂ B(H) is open (Neumann series).
• I discussed finite rank operators as a 2-sided ∗ ideal in B(H).
• The subspace K(H) ⊂ B(H) of compact operators consists of those opera-

tors K ∈ B(H) such that K(B(0, 1)) ⊂M ⊂ H where M is compact.

Proposition 1. K is a closed 2-sided ∗-ideal which is the closure of R(H),
the ideal of finite rank operators.

Proof. First we show (I did this in class) that R ⊂ K. Suppose R 3 Rn −→
K in norm. By definition the range of Rn is finite dimensional so give ε > 0
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there exists Wn = Rn(H) such that

(1) ‖Ku−Rnu‖ < ε/2 ∀ u ∈ B(0, 1).

ThusK(B(0, 1)) is a ε/2 close to a finite-dimensional subspace, it is bounded
and its closure is both bounded and ε close to a finite dimensional subspace.
Thus K is compact.

Conversely suppose K ∈ K(H). By definition of compactness, applied to

K(B(0, 1)), given ε > 0 there is a finite dimensional subspace W such that
for each u ∈ K(B(0, 1)) there exists w ∈W such that ‖Ku−w‖ < ε. Let ΠW

be the orthogonal projection onto W then Ku = ΠWKu + (Id − ΠW )Ku
is the orthogonal decomposition of Ku and ΠWKu ∈ W is the element
closest to u, that is

(2) ‖(Id−ΠW )Ku‖ < ε ∀ u ∈ B(0, 1) =⇒ ‖K −ΠWK‖ < ε.

This shows that K ∈ R.
By the continuity of products and adjoints it follows that K(H) is also

an ideal and ∗-closed. �

• I mentioned but did not prove that K(H), {0} and B(H) are the only
norm-closed ideals. In fact any other ideal must be contained in K.
• I did not mention explicitly (but will do on Thursday) that

(3) K ∈ K =⇒ Id−K has finite dimensional null space and closed range.

An element in the null space of Id−K satisfies u = Ku, so the unit ball in
the null space is its own image under K. It follows that the unit ball of the
null space is contained in a compact set and hence is compact. From the
homework this week it is therefore finite dimensional.

To see that the range is closed, suppose fn = (Id−K)un −→ f. We must
find u ∈ H such that (Id−K)u = f. Taking the orthogonal decomposition
un = wn + vn with respect to Nul(Id−K) (which is closded) with vn ∈
Nul(Id−K) it follows that fn = (Id−K)wn. We proceed to show that
wn → u from which it follows that (Id−K)u = f as claimed. Suppose
‖wm‖ was not bounded, then passing to a subsequence we can arrange that
‖wn‖ → ∞. Then setting w′n = wn/‖wn‖

(4) w′n −Kw′n =
fm
‖wn‖

→ 0.

Since w′n is bounded, Kw′n lies in a compact set so has a convergent subse-
quence and from (4) it follows that, again passing to a subsequence, w′n →
w′ ∈ Nul(Id−K)⊥. Passing to the limit in (4) however (Id−Kw) = 0, so
w = 0 which contradicts the fact that ‖w‖ = 1. Thus in fact the sequence
wn must be bounded.

Applying the same argument but not to wn ∈ Nul(Id−K)⊥ it follows
that

(5) wn = Kwn + fn.

Again Kwn must have a convergent subsequence so wn must have a con-
vergent subsequence with limit u which satisfies (Id−K)u = f and we see
that the range of Id−K is closed.
• Thus Id−K, K ∈ K(H) is an example of a Fredholm operator.
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Definition 1. An element P ∈ B(H) is Fredholm if it has finite dimensional
null space, closed range and P ∗ has finite dimensional null space.

Recall that for any bounded operator Nul(P ∗) is the orthocomplement
of Ran(P ) whether the latter is closed or not. Certainly P ∗w = 0 implies
that

(6) (Pu,w) = (u, P ∗w) = 0 =⇒ Nul(P ∗) ⊥ Ran(P ).

The same argument can be reversed, that is if (Pu,w) = 0 for all u ∈ H
then P ∗w = 0 which shows that Nul(P ∗) = (Ran(P ))⊥. Note that Nul(P ∗)
is closed but the corresponding orthogonal decomposition is

(7) H = Nul(P ∗)⊕ Ran(P )

since Ran(P ) need not be closed in general. In particular one cannot drop
the explicit statement that Ran(P ) is closed in the definition of a Fred-
holm operator – you can say Ran(P ) = (Nul(P ∗)⊥ where Nul(P ∗) is finite
dimensional.
•

Proposition 2. An operator is Fredholm if and only if there is a Q ∈ B(H)
satisfying any one of the following conditions
(1)

QP = Id−K1, PQ = Id−K2, K1,K2 ∈ K(H).

(2)

QP = Id−R1, PQ = Id−R2, R1, R2 ∈ R(H).

(3)

(8) QP = Id−ΠNul(P ), PQ = Id−ΠNul(P∗), ΠNul(P ), ΠNul(P∗) ∈ R.

Proof. The last form, (8) implies the preceding one, which in turn implies
the first. Moreover the first form implies that P is Fredholm since from the
first identity Nul(P ) ⊂ Nul(QP ) ⊂ Nul(Id−K1) is finite-dimensional from
the discussion above. From the second identity Ran(P ) ⊃ Ran(PQ) =
Ran(Id−K2) is, again from the discussion above, closed and of finite codi-
mension – from which it follows that Ran(P ) is closed of finite codimension.
So P is Fredholm.

So it suffices to show that if P is Fredholm then there is a bounded
operator Q satisfying the (8) (it is in fact unique). We can restrict P to be
an operator

(9) P̃ : Nul(P )⊥ 3 u 7−→ Pu ∈ Ran(P )

where both domain and range now are Hilbert spaces. Clearly P̃ is a
bijection and so by the Open Mapping Theorem has a continuous inverse,

(10) Q̃ : Ran(P ) −→ Nul(P )⊥, Q̃P̃ = P̃ Q̃ = Id .

Then define Q : H −→ H to be Q̃(Id−ΠNul(P∗)) which is bounded and
satisfies (8). �

Notice that any operator Q satisfying one of these conditions is also Fred-
holm.
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Here is a brief discussion of the three results on operators arising from complete-
ness, so all based on

Theorem 1 (Baire). If a non-empty complete metric is written as a countable
union of closed subsets

(11) M =
⋃
n

Cn

then one of the Cn (at least) must have an interior point.

Proof. We find a contradiction to the assumption that none of the Cn has an interior
point. Start with C1 6= M since otherwise it has an interior point so we can find

x1 ∈M \ C, ε1 > 0 s.t. B(x1, ε1) ∩ C1 = ∅
where we use the assumption that C1 is closed, so its complement is open. Next,
B(x1,

1
3ε1) cannot be contained in C2 so there must exist

(12) x2 ∈ B(x1,
1

3
ε1), ε2 > 0, ε2 <

1

3
ε1, B(x2, ε2) ∩ C2 = ∅.

The conditions ensure that B(x2, ε2) ⊂ B(x1,
2
3ε1) so the smaller ball is disjoint

from C1 as well. Now proceed by induction and so construct a sequence where for
all j ≥ 2,

xj ∈ B(xj−1,
1

3
εj−1), εj > 0, εj <

1

3
εj−1, B(xj , εj) ∩ Cj = ∅.

It follows that εj < 31−jε1 so is summable and hence {xj} is Cauchy so converges

by the assumed completeness. The limit x ∈ B(xn, εn) for all n, since the sequence
is eventually in the open ball. The conditions above show that x /∈ Cn for all n
which is the contradiction. �

Now with this we can prove

Theorem 2 (Uniform Boundedness=Banach-Steinhaus). Suppose B and N are
respectively a Banach and a normed space and L ⊂ B(B,N) is a subset of the
bounded operators which is ‘pointwise bounded’ in the sense that

(13) for each u ∈ B, {Lu;L ∈ L} ⊂ N is bounded

then L is bounded (in norm).

The fact that N need not be complete is rather bogus since we can always replace
it by its completion and nothing changes.

Proof. For each n set

(14) Cn = {u ∈ B; ‖u‖ ≤ 1, ‖Lu‖ ≤ n ∀ L ∈ L}.
The assumption (13) shows that

{u ∈ B; ‖u‖ ≤ 1} =
⋃
n

Cn

and each Cn is closed by the assumtion that each L ∈ L is bounded, i.e. continuous.
So Baire’s Theorem applies and this means there exists ε > 0 and u such that

(15) v ∈ B, ‖v‖ < ε =⇒ ‖L(u+ v)‖ ≤ n =⇒ ‖Lv‖ ≤ n+ ‖Lu‖ ≤ 2n, ∀ L ∈ L
So in fact ‖L‖ ≤ 2n/ε for all L ∈ L. �
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Next in order now is

Theorem 3 (Open Mapping). If L : B1 −→ B2 is a bounded surjective map
between Banach spaces then it is open

(16) L(O) ⊂ B2 is open for each open set O ⊂ B1.

Proof. Start with the most important case that L is actually a bijection. Then we
try to show that the inverse image of the ball of radius one in B2 has an interior
point in B1 by setting

(17) EN = L({u ∈ B1; ‖u‖ < N, ‖Lu‖ < 1}) ⊂ {f ∈ B2; ‖f‖ < 1} =
⋃
EN

by surjectivity. The problem is that we do not know that the EN are closed (this is
the same problem that dooms the proof of the Closed Graph Theorem that I tried
to give in class, that can presumably be corrected in the same way). So, just let
CN be the closure of EN and Baire’s Theorem does apply. So for some N there is a
ball of positive radius contained in the closure of the image of {u ∈ B1; ‖u‖ < N}
under L. By surjectivity the centre is the image of some point so subtracting that
and scaling using the linearity of L what we conclude is that for some p

(18) f ∈ B2, ‖f‖ ≤ 1 =⇒ ∃ un ∈ B1, ‖un‖ ≤ p, Lun → f.

The problem of course is that we do not immediately know that un → u.
To see this back off a little from (18) and just use the fact that we can get

arbitrarily close with the sequence, then scale again to to see that

(19) f ∈ B2 =⇒ ∃ v ∈ B1, ‖v‖ ≤ p‖f‖ s.t. ‖f − Lv‖ ≤ 1

2
‖f‖.

Choose such a v = v1 and then iteratively choose a sequence fn ∈ B2 vn ∈ B1,
where f0 = f and

fn = fn−1 − Lvn−1, ‖fn − Lvn‖ ≤
1

2
‖fn‖, ‖v‖n ≤ p‖fn‖

=⇒ ‖fn+1‖ ≤
1

2
‖fn‖, n ≥ 1.

So in fact ‖fn‖ ≤ 2−n‖f‖ and hence ‖vn‖ ≤ 2−np‖f‖ so the series vn is summable
(Cauchy in a complete space) and

(20) u =
∑
n

vn satisfies Lu =
∑
n

Lvn =
∑
n

(fn−1 − fn) = f, ‖u‖ ≤ 2p‖f‖.

Since L is bijective this solution is the unique one and this proves that the inverse
is bounded and hence the map is open.

For the general case of a surjective linear map in the case of Hilbert spaces as
domain apply this special result to L̃ : Nul(L)⊥ −→ B2 which is therefore open
and check by hand that the projection map Π : H −→ Nul(L)⊥ is open. For the
general case of a Banach space as domain use quotients instead. �

Theorem 4 (Closed Graph). A linear map between Banach spaces L : B1 −→ B2

is bounded if and only if its graph

(21) Gr(L) = {(u, Lu);u ∈ B1} ⊂ B1 ×B2

is closed.
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Proof. If L is bounded, i.e. continuous, then (un, Lun)→ (u, f) in B1×B2 implies
un → u and hence Lun → Lu = f so the limit is in Gr(L) which is therefore closed.

Conversely suppose the graph is closed, it is then a Banach space with the norm
‖u‖B1

+ ‖Lu‖B2
. The projection operators π1 and π2 from B1 × B2 (which is a

Banach space) to B1 and B2 are both continuous. By definition of a map the
restriction

(22) π′1 : Gr(L) −→ B1

is a bijection and bounded. So when Gr(L) is closed we can use the Open Mapping
Theorem to see that (π′1)−1 : B1 −→ Gr(L) is also bounded. However L = π2 ◦
(π′1)−1 so it is also bounded. �
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