
18.155 LECTURE 1, 8 SEPTEMBER 2016

RICHARD MELROSE

Abstract. Notes before and and then after lecture – if you have questions,
ask!

Read: Notes Chapter 3, Sections 1 and 2.

1. Questions for you

• What do you hope to learn from this course?
• Do you know about L2(Rn) and Riesz’ Representation Theorem? [I do

really plan to assume you know this.]
• Do you know about for instance C0(Bn) – continuous functions on the closed

unit ball in Rn – as a Banach space and its dual as a space of measures,
i.e. the ‘other’ Riesz’ Representation Theorem. [I will not really use this.]
• Do you know the basic properties of smooth manifolds? [This is for the

second half of the course.]

2. Intended lecture content

• Main aim today: Schwartz space of test functions.
• Continuous functions on open subsets of Rn.
• Differentiable functions.
• Higer partial derivatives, symmetry, multli-index notation.
• Infinitely differentiable functions.
• The Gaussian.
• Schwartz’ space, differential operators with polynomial coefficients.
• Norms and seminorms.
• Fréchet spaces, metrics.
• Tempered distributions defined.
• Continuous linear maps and functionals.
• Fourier transform – described only (and only maybe).

3. My notes

What I plan to cover.

(1) Functions and distributions, including Fourier transform, Sobolev spaces,
conormal distributions, kernels.

(2) Operators on Hilbert space, spectral theorem; Fredholm, compact, unitary,
trace class.

(3) Differential operators with constant coefficients. Fundamental solutions,
elliptic regularity, hyperbolic operators.

Question: What do you know about?
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Here is an outline of what I think you should understand at the beginning of
this course. Note that if you are missing any of this the best idea, assuming you
want to continue with the course, is to come and speak with me about how to ‘pick
it up’. The nice thing about measure and integration for instance is that you can
fake it quite effectively!

(1) Metric spaces, continuity.
(2) Linear spaces, norms, completeness (Banach spaces), duals. Hilbert space,

Riesz’ representation theorem
(3) Continuous functions on metric spaces, including Rn, supremum norm,

measures as functionals – we do not really need this.
(4) Lebesgue integrability, measurable sets, completeness of L2, local integra-

bility.

Where I will start: Test functions, weak definitions and duality.
What to make sure you take away from today.

Schwartz space S(Rn), the space of rapidly decreasing test functions
on Rn, is a Fréchet (and a Montel) space, so a complete metric
space, with countably many norms; its dual S ′(Rn) is the space of
tempered (also temperate, Schwartz) distributions on Rn consisting
of the linear function(al)s continuous with respect to one of the
norms.

Are there questions at this stage?
To work:

(1) The basic notion of a k times continuous differentiable function on an open
subset Ω ⊂ Rn.

So the notion of a k times continuously differentiable function is de-
fined iteratively starting from a continuous function f : Ω −→ C. This is
continuously differentiable if all the difference quotients at all points exist
so for each j = 1, . . . n, and all x ∈ Ω,

(1) lim
h→0

f(x+ hej)− f(x)

h
= ∂jf(x)

exists, so defining the right side, which is also required to be define a con-
tinuous function ∂jf : Ω −→ C. Then a function is k times continuously
differentiable for k > 1 if it is continuously differentiable and its partial
derivatives are all k − 1 times continously differentiable.

Perhaps you should remind yourself of the proof that if f is twice
continuously differentiable then ∂i(∂jf)(x) = ∂j(∂if)(x) for all x ∈ Ω. This
can be seen by applying the 1-d mean value theorem (carefully) to double
difference quotient

(2) D(s, t, x) =
1

st
[F (x+ sei)− F (x)] =

1

st
[G(x+ tej)− F (x)] ,

F (x) = f(x+ tej)− f(x), G(x) = f(x+ sei)− f(x).

to prove that it has a limit as s, t→ 0.
(2) Then a function is inifinitely differentiable if it is k times continuously

differentiable for all k.
(3) We want to make sure there are some, other than polynomials. Check that

(3) f(x) = p(x) exp(−|x|2)
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is ininitely diffferentiable for any polynomial p. We want to really prove
things. Here a direct way is to prove by induction that f(x) is continuously
differentiable and that

(4) ∂i
(
p(x) exp(−|x|2)

)
= (∂ip− 2xip) exp(−|x|2)

is of the same form.
(4) Schwartz’ space S(Rn) consists of all the infinitely differentiable functions

f : Rn −→ C such that

(5) sup
Rn

|q(x)∂αf(x)| <∞

for all polynomials q – the space of infinitely differentiable functions all of
whose derivatives decary rapidly at infinity.

(5) We need topology so we consider all the seminorms

(6) sup
Rn

|xβ∂αf(x)| or better still the norms ‖f‖(k) =
∑

|α|≤k,|β|≤k

sup
Rn

|xβ∂αf(x)|.

(6) The topology on S(Rn) is the weakest topology with respect to which all
these seminorms are continuous. This is actually a metric topology

(7) d(f, g) =

∞∑
k=0

2−k
‖f − g‖(k)

1 + ‖f − g‖(k)

with respect to which S(Rn) is complete.
(7) A tempered distribution is a continuous linear functional

(8) u : S(Rn) −→ C.

(8) The topology is such that a linear map (8) is continous iff there exists a k
and a constant such that

(9) |u(f)| ≤ C‖f‖(k) ∀ f ∈ S(Rn).

The linear space of all such tempered distributions is denoted S ′(Rn).
(9) Now, we just have to understand why and what it does for us. The impor-

tant idea is an extension of duality for L2(Rn), which is why I brought this
up earlier. Namely, let’s consider the space of locally integrable ‘functions’
of polynomial growth in the sense that

(10) {v ∈ L1
loc(Rn) and ∃ C, k s.t.

∫
|z|<R

|v| ≤ C(1 +R)k}.

For such a function the product

(11) v(x)f(x) ∈ L1(Rn) if f ∈ S(Rn) =⇒ Uv(f) =

∫
Rn

vf defines Uv ∈ S ′(Rn).

See if you can prove this.
(10) In particular we have a map

(12) S(Rn) −→ S ′(Rn), φ 7−→ Uφ, uφ(ψ) =

∫
Rn

φψ, ∀ ψ ∈ S(Rn).

This is an injection because it is linear and Uφ = 0 means
∫
φψ = 0 for all

ψ ∈ S(Rn) so taking ψ = φ it follows that
∫
|φ|2 = 0 which implies φ ≡ 0

(since it is continuous).
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(11) This is how we define operations on distributions. We first define them
on S(Rn) and then transfer them to S ′(Rn). The most important of these
operations is differentiation

(13) ∂j : S(Rn) −→ S(Rn), φ ∈ S(Rn) =⇒ U∂jφ(ψ) =

∫
∂φ

∂xj
ψ = −

∫
φ
∂ψ

∂xj

where we have used integration by parts (and there are no boundary terms
since everything is rapidly decaying at infinity. The last version here makes
sense for any tempered distribution so we define

(14) ∂j : S ′(Rn) −→ S ′(Rn), (∂ju)(ψ) = −u(∂jψ) ∀ ψ ∈ S(Rn).

This is then consistent with the standard meaning of differentiation on
S(Rn) – write a little commutative diagram!

4. After lecture

I really only covered as far as the metric on a Fréchet space but did not really
do completeness.

To make sure that you understand the topology of Schwartz space S(Rn) it would
be a good idea for you to flesh-out the following abbreviated proof of the estimate
(which I stated but did not prove in class) that for some k,

(1) F : S(Rn) −→ C, |F (u)| ≤ C‖u‖k

is equivalent to continuity for a linear map from Schwartz space to the complex
numbers. In words, a linear map is continuous if and only if it is bounded with
respect to one of the norms.

Continuity of a map on a metric space is equivalent to the inverse image of each
open set being open. For a linear map this reduces to

F−1({|z| < 1, z ∈ C}) ⊃ {u ∈ S(Rn); d(u, 0) < ε} for some ε > 0.

That is, there is an open ball around the origin in S(Rn) with image contained in
the unit open ball in C. This follows from the translation-invariance of the metric
and the homogeneity of a linear map. So, for a continuous linear map there is such
a ball of radius ε > 0. Choose k so large that 2−k < ε/2. Recall that the distance
from the origin is

d(u, 0) =

∞∑
j=0

2−j
‖u‖j

1 + ‖u‖j
=

∞∑
j≤k

2−j
‖u‖j

1 + ‖u‖j
+

∞∑
j>k

2−j
‖u‖j

1 + ‖u‖j
≤ 2‖u‖k + ε/2.

Here I have used the fact that the norms increase as j increases. It follows that if
‖u‖k < ε/4 then |F (u)| < 1 from which the desired estimate follows by homogeneity
with C determined by ε.

The converse follows from the continuity of the norms which I did do in class.
Now, you might want to do the more general case (you can do it for arbitrary

Fréchet spaces if you want) that a linear map L : S(Rn) −→ S(Rm) is continuouse
if and only if for each l ∈ N0 there exists C and k (depending on l) such that

(2) ‖Lφ‖(l) ≤ C‖φ‖(k).
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Note that this is really an ‘asymptotic’ statement in the sense that once you know it
for one l is automatically true for smaller l. Still, there are infinitely many estimates
here.
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