Proof.
[Solution] Let
![$ i=1,\dots,N$](img45.png)
be a finite collection of compact
sets in a metric space
![$ X$](img46.png)
and let
![$ K=\bigcup_i K_i$](img47.png)
be their union. An
open cover
![$ a\in A$](img49.png)
of
![$ K$](img50.png)
covers each of the
![$ K_i.$](img51.png)
By the
assumed compactness there is a finite subcover
![$ U_{a_{i,j}}$](img52.png)
such that
![$ K_i\subset \bigcup_{j=1}^{N(i)}U_{a_{i,j}}$](img53.png)
for each
![$ i.$](img54.png)
All these sets
taken together give a finite subcover of
![$ K$](img50.png)
which is therefore compact.