Was due in 2-251, by Noon, Tuesday November 19 Rudin:
(1) Chapter 6, Problem 5

Solution. 1. No, it is not true that a bounded function, f on $[a, b]$ with $f^{2} \in \mathcal{R}(\alpha)$ is necessarily in $\mathcal{R}(\alpha)$ itself. We need a counterexample to see this. Take the function $f=1$ at rational points and $f=-1$ at irrational points. This is not integrable by the preceeding question (the difference between upper and lower sums is always $2(b-a)$). On the other hand $f^{2}=1$,
2. If f is real-valued and bounded and $f^{3} \in \mathcal{R}(\alpha)$ then $f \in \mathcal{R}(\alpha)$ as follows from Theorem 6.11 with $\phi(t)=t^{1 / 3}$ the unique real cube root.
(2) Chapter 6, Problem 7

Solution. (a) If $f \in \mathcal{R}$ on $[0,1]$ then

$$
\int_{c}^{1} f(x) d x=\int_{0}^{1} f(x) d x-\int_{0}^{c} f(x) d x
$$

and if $|f| \leq M$ then $\left|\int_{0}^{c} f(x) d x\right| \leq 2 M c$ so $\int_{c}^{1} f(x) d x \longrightarrow \int_{0}^{1} f(x) d x$ as $c \downarrow 0$. [It is enough to say that $\int_{c}^{1} f(x) d x$ depends continuously on c by Theorem 6.20.
(b) Consider $g(x)=x^{-3 / 2}, x>0$ and $g(0)=0$. This is definitely not integrable since it is not bounded. Moverover the integral over $[c, 1]$ does not converge since

$$
\int_{c}^{1} x^{-3 / 2} d x=-2\left(1-c^{-\frac{1}{2}}\right) \longrightarrow \infty
$$

as $c \downarrow 0$. Now consider the function

$$
f(x)=\left\{\begin{array}{ll}
x^{-3 / 2} & \frac{1}{2 k} \leq x<\frac{1}{2 k-1} \\
-x^{-3 / 2} & \frac{1}{2 k+1} \leq x<\frac{1}{2 k}
\end{array}, 1 \leq k .\right.
$$

For any $c>0$ this function is integrable on $[c, 1]$ since it is bounded and has only a finite number of points of discontinuity. The integral over any of the intervals $\left[\frac{1}{2 k}, \frac{1}{2 k-1}\right]$ is $-2\left((2 k-1)^{\frac{1}{2}}-(2 k)^{\frac{1}{2}}\right.$ and over $\left[\frac{2 k+1}{,} \frac{1}{2 k}\right]$ is $2\left((2 k)^{\frac{1}{2}}-(2 k+1)^{\frac{1}{2}}\right)$. Both of these are bounded in absolute value by $C k^{-\frac{1}{2}}$. Combining the two integrals shows that the integral over $\left[\frac{2 k+1}{,} \frac{1}{2 k-1}\right]$ is $2\left(2(2 k)^{\frac{1}{2}}-(2 k+1)^{\frac{1}{2}}-(2 k-1)^{\frac{1}{2}}\right) \leq C k^{-3 / 2}$ (by Taylor's theorem applied to $x=0$ for $2-(1+x)^{\frac{1}{2}}-(1-x)^{\frac{1}{2}}$ with $x=1 / 2 k$. Thus if N is the largest integer such that $2 N \leq c$ then

$$
\left|\int_{c}^{1} f d x-\int_{\frac{1}{2 N+1}}^{1} f d x\right| \leq C N^{-\frac{1}{2}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

and

$$
\int_{\frac{1}{2 N+1}}^{1} f d x=\sum_{k=1}^{N} \int_{\frac{1}{2 N+1}}^{\frac{1}{2 k-1}} f d x
$$

converges by comparison to $\sum_{k=1}^{\infty} k^{-3 / 2}<\infty$. This shows that $\int_{c}^{1} f d x$ converges as $c \rightarrow 0$.

Note that if f is bounded and integrable on $[c, 1]$ for every $c>0$ then it is integrable on $[0,1]$, so you cannot do this with a bounded function.
(3) Chapter 6, Problem 10, (a),(b) and (c).

Proof. (a) If $u=0$ or $v=0$ this is obvious so we can assume that both are positive. Since p and q are both positive and $p=\frac{q}{q-1}$ both of them must lie in the interval $1<p<\infty$. Now divide through the inequality we want by v^{q} and set $a=u^{p} / v^{q}$. It follows that $u v^{1-q}=a^{1 / p}$ since $q / p=q-1$. Thus we only need to show that

$$
a^{1 / p} \leq \frac{1}{p} a+\frac{1}{q}, 0<a<\infty
$$

The continuous function $\frac{1}{p} a+\frac{1}{q}-a^{1 / p}$ is positive at 0 and tends to ∞ as $a \rightarrow \infty$. Thus if it has an interior minimum in $(0, \infty)$ it will have to be at a point where the derivative vanishes, namely $\frac{1}{p}=\frac{1}{p} a^{1 / p-1}$ which is to say $a=1$. Since it takes the value 0 there it is in fact non-negative, meaning (1) holds. This proves the inequality

$$
u v \leq \frac{u^{p}}{p}+\frac{v^{q}}{q}
$$

with equality only where $a=1$, which is $u^{p}=v^{q}$ (including the case where both are zero).
(b) If $0 \leq f \in \mathcal{R}(\alpha)$ and $0 \leq g \in \mathcal{R}(\alpha)$ then f^{p} and $g^{q} \in \mathcal{R}(\alpha)$ by Theorem 6.11. It also follows that $f g \in \mathcal{R}(\alpha)$ and, using (\dagger)

$$
\int_{a}^{b} f g d \alpha \leq \frac{1}{p} \int_{a}^{b} f^{p} d \alpha+\frac{1}{q} \int_{a}^{b} g^{q} d \alpha=1
$$

(c) If f and g are complex-valued in $\mathcal{R}(\alpha)$ then $|f|$ and $|g|$ are nonnegative elements of $\mathcal{R}(\alpha)$ and $f g \in \mathcal{R}(\alpha)$. Moverover

$$
\left|\int_{a}^{b} f g d \alpha\right| \leq \int_{a}^{b}|f||g| d \alpha
$$

If $I=\int_{a}^{b}|f|^{p} \neq 0$ and $J=\int_{a}^{b}|g|^{q} \neq 0$ then apply the conclusion of the previous part to $|f| / c$ and $|g| / d$ where $c^{p}=I$ and $d^{q}=J$. This gives the desired result

$$
\left|\int_{a}^{b} f g d \alpha\right| \leq c d=\left(\left.\left|\int_{a}^{b}\right| f\right|^{p} d \alpha \mid\right)^{1 / p}\left(\left.\left|\int_{a}^{b}\right| g\right|^{q} d \alpha \mid\right)^{1 / q}
$$

On the other hand if one of these intgrals vanishes, say the first since we can always reverse the roles of p and q, then

$$
\int_{a}^{b}|f|(c|g|) d \alpha \leq c^{q} \frac{1}{q} \int_{a}^{b}|g|^{q} d \alpha
$$

for any $c>0$ and sending $c \rightarrow 0$ shows that $\int_{a}^{b}|f||g| d \alpha=0$ so the inequality still holds.
(4) Chapter 6, Problem 11

Setting $p=q=2$ in the previous problem we see that

$$
\left(\int_{a}^{b}|u v| d \alpha\right)^{2} \leq \int_{a}^{b}|u|^{2} d \alpha \int_{a}^{b}|v|^{2} d \alpha
$$

Now multiply out

$$
\begin{aligned}
\int_{a}^{b}|u+v|^{2} d \alpha=\int_{a}^{b}|u|^{2} d \alpha & +\int_{a}^{b}(\bar{u} v+u \bar{v}) d \alpha \\
& +\int_{a}^{b}|v|^{2} d \alpha \leq\left(\left(\int_{a}^{b}|u|^{2} d \alpha\right)^{\frac{1}{2}}+\left(\int_{a}^{b}|v|^{2} d \alpha\right)^{\frac{1}{2}}\right)^{2}
\end{aligned}
$$

This means $\|u+v\|_{2} \leq\|u\|_{2}+\|v\|_{2}$. Now setting $u=f-g$ and $v=h-g$ gives the general case.

