
18.100B, Fall 2002, Homework 8 solutions

Was due in 2-251, by Noon, Tuesday November 19 Rudin:
(1) Chapter 6, Problem 5

Solution. 1. No, it is not true that a bounded function, f on [a, b] with
f2 ∈ R(α) is necessarily in R(α) itself. We need a counterexample to see
this. Take the function f = 1 at rational points and f = −1 at irrational
points. This is not integrable by the preceeding question (the difference
between upper and lower sums is always 2(b − a)). On the other hand
f2 = 1,

2. If f is real-valued and bounded and f3 ∈ R(α) then f ∈ R(α) as
follows from Theorem 6.11 with φ(t) = t1/3 the unique real cube root. �

(2) Chapter 6, Problem 7

Solution. (a) If f ∈ R on [0, 1] then∫ 1

c

f(x)dx =
∫ 1

0

f(x)dx−
∫ c

0

f(x)dx

and if |f | ≤ M then |
∫ c

0
f(x)dx| ≤ 2Mc so

∫ 1

c
f(x)dx −→

∫ 1

0
f(x)dx as

c ↓ 0. [It is enough to say that
∫ 1

c
f(x)dx depends continuously on c by

Theorem 6.20.
(b) Consider g(x) = x−3/2, x > 0 and g(0) = 0. This is definitely not

integrable since it is not bounded. Moverover the integral over [c, 1] does
not converge since∫ 1

c

x−3/2dx = −2(1− c−
1
2 ) −→∞

as c ↓ 0. Now consider the function

f(x) =

{
x−3/2 1

2k ≤ x < 1
2k−1

−x−3/2 1
2k+1 ≤ x < 1

2k

, 1 ≤ k.

For any c > 0 this function is integrable on [c, 1] since it is bounded and
has only a finite number of points of discontinuity. The integral over any
of the intervals [ 1

2k , 1
2k−1 ] is −2((2k − 1)

1
2 − (2k)

1
2 and over [ 2k+1

,
1
2k ] is

2((2k)
1
2 −(2k+1)

1
2 ). Both of these are bounded in absolute value by Ck−

1
2 .

Combining the two integrals shows that the integral over [ 2k+1
,

1
2k−1 ] is

2(2(2k)
1
2 − (2k + 1)

1
2 − (2k − 1)

1
2 ) ≤ Ck−3/2 (by Taylor’s theorem applied

to x = 0 for 2− (1+x)
1
2 − (1−x)

1
2 with x = 1/2k. Thus if N is the largest

integer such that 2N ≤ c then

|
∫ 1

c

fdx−
∫ 1

1
2N+1

fdx| ≤ CN−
1
2 → 0 as N →∞

and ∫ 1

1
2N+1

fdx =
N∑

k=1

∫ 1
2k−1

1
2N+1

fdx

1



2

converges by comparison to
∞∑

k=1

k−3/2 < ∞. This shows that
∫ 1

c
fdx con-

verges as c → 0.
Note that if f is bounded and integrable on [c, 1] for every c > 0 then it

is integrable on [0, 1], so you cannot do this with a bounded function. �

(3) Chapter 6, Problem 10, (a),(b) and (c).

Proof. (a) If u = 0 or v = 0 this is obvious so we can assume that both are
positive. Since p and q are both positive and p = q

q−1 both of them must
lie in the interval 1 < p < ∞. Now divide through the inequality we want
by vq and set a = up/vq. It follows that uv1−q = a1/p since q/p = q − 1.
Thus we only need to show that

(1) a1/p ≤ 1
p
a +

1
q
, 0 < a < ∞.

The continuous function 1
pa + 1

q − a1/p is positive at 0 and tends to ∞ as
a → ∞. Thus if it has an interior minimum in (0,∞) it will have to be at
a point where the derivative vanishes, namely 1

p = 1
pa1/p−1 which is to say

a = 1. Since it takes the value 0 there it is in fact non-negative, meaning
(1) holds. This proves the inequality

uv ≤ up

p
+

vq

q

with equality only where a = 1, which is up = vq (including the case where
both are zero).

(b) If 0 ≤ f ∈ R(α) and 0 ≤ g ∈ R(α) then fp and gq ∈ R(α) by
Theorem 6.11. It also follows that fg ∈ R(α) and, using (†)∫ b

a

fgdα ≤ 1
p

∫ b

a

fpdα +
1
q

∫ b

a

gqdα = 1.

(c) If f and g are complex-valued in R(α) then |f | and |g| are non-
negative elements of R(α) and fg ∈ R(α). Moverover

|
∫ b

a

fgdα| ≤
∫ b

a

|f ||g|dα.

If I =
∫ b

a
|f |p 6= 0 and J =

∫ b

a
|g|q 6= 0 then apply the conclusion of the

previous part to |f |/c and |g|/d where cp = I and dq = J. This gives the
desired result

|
∫ b

a

fgdα| ≤ cd =

(
|
∫ b

a

|f |pdα|

)1/p(
|
∫ b

a

|g|qdα|

)1/q

.

On the other hand if one of these intgrals vanishes, say the first since we
can always reverse the roles of p and q, then∫ b

a

|f |(c|g|)dα ≤ cq 1
q

∫ b

a

|g|qdα

for any c > 0 and sending c → 0 shows that
∫ b

a
|f ||g|dα = 0 so the inequality

still holds. �
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(4) Chapter 6, Problem 11
Setting p = q = 2 in the previous problem we see that

(
∫ b

a

|uv|dα)2 ≤
∫ b

a

|u|2dα

∫ b

a

|v|2dα.

Now multiply out∫ b

a

|u + v|2dα =
∫ b

a

|u|2dα +
∫ b

a

(ūv + uv̄)dα

+
∫ b

a

|v|2dα ≤ (

(∫ b

a

|u|2dα

) 1
2

+

(∫ b

a

|v|2dα

) 1
2

)2.

This means ‖u + v‖2 ≤ ‖u‖2 + ‖v‖2. Now setting u = f − g and v = h− g
gives the general case.
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