Was due in 2-251, by Noon, Tuesday November 19 Rudin:

(1) Chapter 6, Problem 5

Solution. 1. No, it is not true that a bounded function, f on [a,b] with $f^2 \in \mathcal{R}(\alpha)$ is necessarily in $\mathcal{R}(\alpha)$ itself. We need a counterexample to see this. Take the function f=1 at rational points and f=-1 at irrational points. This is not integrable by the preceding question (the difference between upper and lower sums is always 2(b-a)). On the other hand $f^2=1$,

2. If f is real-valued and bounded and $f^3 \in \mathcal{R}(\alpha)$ then $f \in \mathcal{R}(\alpha)$ as follows from Theorem 6.11 with $\phi(t) = t^{1/3}$ the unique real cube root. \square

(2) Chapter 6, Problem 7

Solution. (a) If $f \in \mathcal{R}$ on [0,1] then

$$\int_{c}^{1} f(x)dx = \int_{0}^{1} f(x)dx - \int_{0}^{c} f(x)dx$$

and if $|f| \leq M$ then $|\int_0^c f(x)dx| \leq 2Mc$ so $\int_c^1 f(x)dx \longrightarrow \int_0^1 f(x)dx$ as $c \downarrow 0$. [It is enough to say that $\int_c^1 f(x)dx$ depends continuously on c by Theorem 6.20.

(b) Consider $g(x) = x^{-3/2}$, x > 0 and g(0) = 0. This is definitely not integrable since it is not bounded. Moverover the integral over [c, 1] does not converge since

$$\int_{c}^{1} x^{-3/2} dx = -2(1 - c^{-\frac{1}{2}}) \longrightarrow \infty$$

as $c \downarrow 0$. Now consider the function

$$f(x) = \begin{cases} x^{-3/2} & \frac{1}{2k} \le x < \frac{1}{2k-1} \\ -x^{-3/2} & \frac{1}{2k+1} \le x < \frac{1}{2k} \end{cases}, \ 1 \le k.$$

For any c>0 this function is integrable on [c,1] since it is bounded and has only a finite number of points of discontinuity. The integral over any of the intervals $[\frac{1}{2k},\frac{1}{2k-1}]$ is $-2((2k-1)^{\frac{1}{2}}-(2k)^{\frac{1}{2}})$ and over $[\frac{2k+1}{2k}]$ is $2((2k)^{\frac{1}{2}}-(2k+1)^{\frac{1}{2}})$. Both of these are bounded in absolute value by $Ck^{-\frac{1}{2}}$. Combining the two integrals shows that the integral over $[\frac{2k+1}{2k-1}]$ is $2(2(2k)^{\frac{1}{2}}-(2k+1)^{\frac{1}{2}}-(2k-1)^{\frac{1}{2}}) \leq Ck^{-3/2}$ (by Taylor's theorem applied to x=0 for $2-(1+x)^{\frac{1}{2}}-(1-x)^{\frac{1}{2}}$ with x=1/2k. Thus if N is the largest integer such that $2N\leq c$ then

$$\left| \int_{c}^{1} f dx - \int_{\frac{1}{2N+1}}^{1} f dx \right| \le CN^{-\frac{1}{2}} \to 0 \text{ as } N \to \infty$$

and

$$\int_{\frac{1}{2N+1}}^{1} f dx = \sum_{k=1}^{N} \int_{\frac{1}{2N+1}}^{\frac{1}{2k-1}} f dx$$

converges by comparison to $\sum_{k=1}^{\infty} k^{-3/2} < \infty$. This shows that $\int_{c}^{1} f dx$ converges as $c \to 0$.

Note that if f is bounded and integrable on [c, 1] for every c > 0 then it is integrable on [0, 1], so you cannot do this with a bounded function. \square

(3) Chapter 6, Problem 10, (a),(b) and (c).

Proof. (a) If u=0 or v=0 this is obvious so we can assume that both are positive. Since p and q are both positive and $p=\frac{q}{q-1}$ both of them must lie in the interval $1< p<\infty$. Now divide through the inequality we want by v^q and set $a=u^p/v^q$. It follows that $uv^{1-q}=a^{1/p}$ since q/p=q-1. Thus we only need to show that

(1)
$$a^{1/p} \le \frac{1}{p}a + \frac{1}{q}, \ 0 < a < \infty.$$

The continuous function $\frac{1}{p}a + \frac{1}{q} - a^{1/p}$ is positive at 0 and tends to ∞ as $a \to \infty$. Thus if it has an interior minimum in $(0,\infty)$ it will have to be at a point where the derivative vanishes, namely $\frac{1}{p} = \frac{1}{p}a^{1/p-1}$ which is to say a = 1. Since it takes the value 0 there it is in fact non-negative, meaning (1) holds. This proves the inequality

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

with equality only where a = 1, which is $u^p = v^q$ (including the case where both are zero).

(b) If $0 \le f \in \mathcal{R}(\alpha)$ and $0 \le g \in \mathcal{R}(\alpha)$ then f^p and $g^q \in \mathcal{R}(\alpha)$ by Theorem 6.11. It also follows that $fg \in \mathcal{R}(\alpha)$ and, using (†)

$$\int_{a}^{b} f g d\alpha \leq \frac{1}{p} \int_{a}^{b} f^{p} d\alpha + \frac{1}{q} \int_{a}^{b} g^{q} d\alpha = 1.$$

(c) If f and g are complex-valued in $\mathcal{R}(\alpha)$ then |f| and |g| are non-negative elements of $\mathcal{R}(\alpha)$ and $fg \in \mathcal{R}(\alpha)$. Moverover

$$|\int_{a}^{b} fg d\alpha| \le \int_{a}^{b} |f| |g| d\alpha.$$

If $I = \int_a^b |f|^p \neq 0$ and $J = \int_a^b |g|^q \neq 0$ then apply the conclusion of the previous part to |f|/c and |g|/d where $c^p = I$ and $d^q = J$. This gives the desired result

$$\left| \int_a^b fg d\alpha \right| \le cd = \left(\left| \int_a^b |f|^p d\alpha \right| \right)^{1/p} \left(\left| \int_a^b |g|^q d\alpha \right| \right)^{1/q}.$$

On the other hand if one of these integrals vanishes, say the first since we can always reverse the roles of p and q, then

$$\int_a^b |f|(c|g|)d\alpha \le c^q \frac{1}{q} \int_a^b |g|^q d\alpha$$

for any c>0 and sending $c\to 0$ shows that $\int_a^b |f||g|d\alpha=0$ so the inequality still holds. \square

(4) Chapter 6, Problem 11

Setting p = q = 2 in the previous problem we see that

$$(\int_a^b |uv| d\alpha)^2 \le \int_a^b |u|^2 d\alpha \int_a^b |v|^2 d\alpha.$$

Now multiply out

$$\begin{split} \int_a^b |u+v|^2 d\alpha &= \int_a^b |u|^2 d\alpha + \int_a^b (\bar{u}v+u\bar{v}) d\alpha \\ &+ \int_a^b |v|^2 d\alpha \leq (\left(\int_a^b |u|^2 d\alpha\right)^{\frac{1}{2}} + \left(\int_a^b |v|^2 d\alpha\right)^{\frac{1}{2}})^2. \end{split}$$

This means $||u+v||_2 \le ||u||_2 + ||v||_2$. Now setting u=f-g and v=h-g gives the general case.