18.100B, FALL 2002, HOMEWORK 8 SOLUTIONS

Was due in 2-251, by Noon, Tuesday November 19 Rudin:

(1)

Chapter 6, Problem 5

Solution. 1. No, it is not true that a bounded function, f on [a,b] with
f? € R(a) is necessarily in R(«) itself. We need a counterexample to see
this. Take the function f = 1 at rational points and f = —1 at irrational
points. This is not integrable by the preceeding question (the difference
between upper and lower sums is always 2(b — a)). On the other hand
=1,

2. If f is real-valued and bounded and f3 € R(«a) then f € R(a) as
follows from Theorem 6.11 with ¢(t) = t'/3 the unique real cube root. [

Chapter 6, Problem 7

Solution. (a) If f € R on [0,1] then

[ o= [ s [ s

and if |f| < M then | [; f( dx|<2Mcsof f(x dx—>f0 x)dz as
¢ | 0. [Tt is enough to say that fc f(z)dx depends continuously on ¢ by
Theorem 6.20.

(b) Consider g(z) = 73/2, 2 > 0 and g(0) = 0. This is definitely not
integrable since it is not bounded. Moverover the integral over [c, 1] does
not converge since

1
/ 2732 dr = —2(1 — c_%) — 00

as ¢ | 0. Now consider the function
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For any ¢ > 0 this function is integrable on [c, 1] since it is bounded and
has only a finite number of points of discontinuity. The integral over any
of the intervals [5- 2% 3 ] is —2((2k — 1)z — (2k)z and over [+l L] s

2((2k)% — (2k+1)2). Both of these are bounded in absolute value by Ck~2
Combining the two integrals shows that the integral over [2:H—1_] ig
2(2(2k)2 — (2k + 1)z — (2k — 1)2) < Ck~3/2 (by Taylor’s theorem applied
tox=0for2— (1+x)2 —(1—x)2 with # = 1/2k. Thus if N is the largest
integer such that 2N < ¢ then

1
| fdx—/ fdz| <CN"2 - 0as N — oo
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and
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converges by comparison to Y k—3/2 < 0o. This shows that fcl fdx con-
k=1

verges as ¢ — 0.

Note that if f is bounded and integrable on [c, 1] for every ¢ > 0 then it
is integrable on [0, 1], so you cannot do this with a bounded function. O

Chapter 6, Problem 10, (a),(b) and (c).

Proof. (a) If u =0 or v = 0 this is obvious so we can assume that both are

positive. Since p and ¢ are both positive and p = q% both of them must
lie in the interval 1 < p < co. Now divide through the inequality we want
by v? and set a = u?/v?. It follows that uv'~9 = a'/? since ¢/p = ¢ — 1.

Thus we only need to show that
1 1
al/pgfa—i—f, 0<a< oo
p q

The continuous function %a + % — a*/? is positive at 0 and tends to co as
a — oo. Thus if it has an interior minimum in (0, co0) it will have to be at
a point where the derivative vanishes, namely % = %al/ P=1 which is to say
a = 1. Since it takes the value 0 there it is in fact non-negative, meaning
holds. This proves the inequality

uf 4
u < — + —
p q

with equality only where @ = 1, which is u? = v? (including the case where
both are zero).

(b)) If 0 < f € R(e) and 0 < g € R(«) then fP and ¢g? € R(«) by
Theorem 6.11. It also follows that fg € R(«) and, using (})

b 1 b 1 b
da < = fPda + - Ido = 1.
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(¢) If f and g are complex-valued in R(«) then |f| and |g| are non-
negative elements of R(a) and fg € R(«). Moverover

I/abfgdozl < /ab|f|g|da.

If7= fab [f|P # 0 and J = f: lg]? # 0 then apply the conclusion of the
previous part to |f|/c and |g|/d where ¢? = I and d? = J. This gives the
desired result

b b 1/p b 1/q
|/ fgda|§cd=< / Iflpdoz) <| / |g|%za|> .

On the other hand if one of these intgrals vanishes, say the first since we
can always reverse the roles of p and ¢, then

b 1 b
/ l(clghda < er / lgl9dos

for any ¢ > 0 and sending ¢ — 0 shows that ff | fllglda = 0 so the inequality
still holds. g



(4) Chapter 6, Problem 11
Setting p = ¢ = 2 in the previous problem we see that

b b b
(/ |uv|da)2§/ |u|2da/ lv|2dav.

Now multiply out

b b b
/ |u+v|2da:/ |u|2da—|—/ (v + uv)da

+/ab v|2da < ((/ab Iulzda> + (/:Wd@) )

This means ||u + v||2 < ||ul|2 + ||v]|2. Now setting u=f —gandv=h—g
gives the general case.
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