Rudin:
(1) Chapter 2, Problem 6

Done in class on Thursday September 26. Here $E \subset X$ is a subset of a metric space and E^{\prime} is the set of limit points, in X, of E.
(a) Prove that E^{\prime} is closed.

If $p \in X$ is a limit point of E^{\prime} then for each $r>0, B(p, r) \cap E^{\prime} \ni$ q is not empty. Since q is a limit point of E and $r-d(p, q)>0$, $B(q, r-d(p, q)) \cap E$ is an infinite set. By the triangle inequality, $B(q, r-d(p, q)) \subset B(p, r)$ so $B(p, r) \cap E$ is also infinite and p is therefore a limit point of E, i.e. $p \in E^{\prime}$. Thus E^{\prime} contains each of its limit points and it is therefore closed.
(b) Prove that E and \bar{E} have the same limit points.

If p is a limit point of E then it is a limit point of \bar{E} since $E \subset \bar{E}$. If p is a limit point of \bar{E} then $B\left(p, \frac{1}{n}\right) \cap(E \backslash\{0\})$ decreases with n; either it is infinite for all n or it is empty for large n. We show that the second case cannot occur. Indeed this woould imply that $B\left(p, \frac{1}{n}\right) \cap\left(E^{\prime} \backslash\{p\}\right)$ is infinite for all n and hence that p is a limit point of E^{\prime}; by the preceding result it is then a limit point of E contradicting the assumption that it is not. Thus a limit point of \bar{E} is a limit point of E.
(c) Do E and E^{\prime} have the same limit points?

No, not in general. A limit point of E^{\prime} must be a limit point of E but the converse need not be true. For example consider $E=\{1 / n \in$ $\mathbb{R} ; n \in \mathbb{N}\}$. This has a single limit point, 0 so $E^{\prime}=\{0\}$ has no limit points at all.
(2) Chapter 2, Problem 8
(a) Is every point of every open set $E \subset \mathbb{R}^{2}$ a limit point of E ?

Yes. If $E \subset \mathbb{R}^{2}$ is open then $B(p, r) \subset E$ for some $r^{\prime}>0$ and all $0<r<r^{\prime}$. Since $B(p, r) \subset \mathbb{R}^{2}$ is infinite if $r>0$ it follows that p is a limit point of E.
(b) Same question for E closed?

No, not in general. For instance the set containing a single point $\{0\}$ is closed but has no limit points.
(3) Chapter 2, Problem 9.

Let E° denote all the interior points of $E \subset X$, meaning that $p \in E^{\circ}$ if $B(p, r) \subset E$ for some $r>0$.
(a) Prove that E° is always open

If $p \in E^{\circ}$ then $B(p, r) \subset E$ for some $r>0$ and if $q \in B(p, r)$ then, by the triangle inequality, $B(q, r-d(p, q)) \subset E$ so $B(p, r) \subset E^{\circ}$ and hence E° is open.
(b) Prove that E is open if and only if $E=E^{\circ}$.

Certainly if E is open then $E=E^{\circ}$ since for each $p \in E$ there exists $r>0$ such that $B(p, r) \subset E$. Conversely if $E^{\circ}=E$ then this holds for each $p \in E$ so E is open.
(c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.

If $G \subset E$ is open then for each $p \in G$ there exists $r>0$ such that $B(p, r) \subset G$, hence $B(p, r) \subset E$ so $p \in E^{\circ}$ and it follows that $G \subset E^{\circ}$.
(d) Prove that the complement of E° is the closure of the complement of E.
The complement $\left(E^{\circ}\right)^{\complement}$ consists of the points $p \in E$ such that $B(p, r) \cap$ $E^{\complement} \neq \emptyset$ for all $r>0$. Since $p \notin E^{\complement}$ this implies that p is a limit point of E^{\complement} so

$$
\left(E^{\circ}\right)^{\complement} \subset \overline{E^{\complement}}
$$

Conversely if $p \in \overline{E^{\complement}}$ then, by Problem 6 above, either $p \in E^{\complement}$ or $p \in\left(E^{\mathrm{C}}\right)^{\prime}$ (or both). In the first case certainly $p \in\left(E^{\circ}\right)^{\complement}$, since $E^{\circ} \subset E$. So we may assume $p \in E$, i.e. $p \notin E^{\text {С }}$, and $p \in\left(E^{\mathrm{C}}\right)^{\prime}$. Then for each $r>0 B(p, r) \cap\left(E^{\complement}\right) \neq \emptyset$ (since p is a limit point not in the set) and this means $B(p, r)$ is NOT a subset of E for any $r>0$, hence $p \notin E^{\circ}$. Thus $\overline{E^{\complement}} \subset\left(E^{\circ}\right)^{\text {С }}$ and these two sets are therefore equal.
(e) Do E and \bar{E} have the same interiors?

Not necessarily. For instance $(0,1) \cup(1,2) \subset \mathbb{R}$ is open, so equal to its interior, but its closure is $[0,2]$ with interior $(0,2)$ which contains the extra point 1 . It is always the case that $E^{\circ} \subset(\bar{E})^{\circ}$.
(f) Do E and E° have the same closures?

Again in general no. For example if $E=\{0\} \subset \mathbb{R}$ its interior is empty but it is closed and non-empty. Clearly the closure of E contains the closure of E°.
(4) Chapter 2, Problem 11.
(a) d_{1} is not a metric since for the three points $0, \frac{1}{2}$ and $\frac{1}{4}$

$$
\frac{1}{4}=\left(0-\frac{1}{2}\right)^{2}>\left(0-\frac{1}{4}\right)^{2}+\left(\frac{1}{4}-\frac{1}{2}\right)^{2}=\frac{1}{8}
$$

(b) d_{2} is a metric. It satisfies the first two axioms trivially. To see the triangle inequality first note that

$$
|x-y| \leq|x-z|+|z-y|
$$

for any three real numbers. Taking square-roots of both sides (using the montonicity of $\sqrt{ }$) we find

$$
\begin{aligned}
d_{2}(x, y)=\sqrt{|x-y|} \leq \sqrt{|x-z|}+|z-y| & \\
& =\sqrt{\left(d_{2}(x, z)\right)^{2}+\left(d_{2}(z, y)^{2}\right.} \leq d_{2}(x, z)+d_{2}(z, y)
\end{aligned}
$$

by the usual triangle inequality.
(c) d_{3} is not a metric since $d_{3}(x,-x)=0$ for all x.
(d) d_{4} is not a metric since $d_{4}(1,2) \neq d_{4}(2,1)$.
(e) d_{5} is a metric. Certainly it is symmetric and $d_{5}(x, y)=0$ implies $|x-y|=0$ and hence $x=y$. To get the triangle inequality we need to find the sign of

$$
\frac{|x-z|}{1+|x-z|}+\frac{|y-z|}{1+|y-z|}-\frac{|x-y|}{1+|x-y|}
$$

Multplying by the product of the demoninators (which are all strictly positive) this is the same as the sign of

$$
\begin{aligned}
&(1+|x-y|)(1+|y-z|)|x-z|+(1+|x-y|)(1+|x-z|)|y-z| \\
& \quad-(1+|x-z|)(1+|y-z|)|x-y| \\
&=|x-y||y-z||x-z|+2|y-z||x-z|+(|x-z|+|y-z|-|x-y|)
\end{aligned}
$$

All three terms here are non-negative, the last being the triangle inequality. Thus d_{5} does also satisfy the triangle inequality.
Remark: If $d(x, y)$ is a metric then so is

$$
\frac{d(x, y)}{1+d(x, y}
$$

The proof in general essentially the same.

