PROBLEM SET 8, 18.155 DUE 1 DECEMBER, 2017

One thing that I have not been able to describe is the *wavefront set* of a distribution, so I ask you to assimilate the definition and deduce some basic properties. This notion involves cones in $\mathbb{R}^n \setminus \{0\}$ so let me define 'the open cone of aperture $\epsilon > 0$ around a point' to be

(1)
$$\Gamma(\bar{\xi},\epsilon) = \left\{ \xi \in \mathbb{R}^n \setminus \{0\}; \left| \frac{\xi}{|\xi|} - \frac{\xi}{|\bar{\xi}|} \right| < \epsilon \right\}.$$

Make sure you see that this is just a ball around the point in the sphere $\bar{\xi}/|\bar{\xi}| \in \mathbb{S}^{n-1}$ extended radially.

If $u \in \mathcal{C}^{-\infty}(\Omega)$, $\Omega \subset \mathbb{R}^n$ open, the wave front set of u is the subset

(2)
$$WF(u) \subset \Omega \times (\mathbb{R}^n \setminus \{0\})$$

defined in terms of its complement

(3)
$$\Omega \times (\mathbb{R}^n \setminus \{0\}) \ni (\bar{x}, \bar{\xi}) \notin WF(u) \iff$$

 $\exists \phi \in \mathcal{C}^{\infty}_{c}(\Omega), \ \phi(\bar{x}) \neq 0 \text{ and } \epsilon > 0 \text{ such that}$
 $\sup_{\Gamma} |\xi|^N |\mathcal{F}(\phi u)(\xi)| < \infty \ \forall \ N, \ \Gamma = \Gamma(\bar{\xi}, \epsilon).$

The idea is that the wavefront set gives information about the (co-) direction of singularities, not just their position.

Q8.1

For $u \in \mathcal{C}^{-\infty}(\Omega)$ show that (1) WF $(u) \subset \Omega \times (\mathbb{R}^n \setminus \{0\})$ is closed (as a subset of course) (2) WF(u) is 'conic' i.e. (4) (x, ξ) \in WF $(u) \Longrightarrow (x, t\xi) \in$ WF $(u), (x, \xi) \in \Omega \times (\mathbb{R}^n \setminus \{0\}), t > 0.$ (3) (5) WF $(u) \subset \text{singsupp}(u) \times (\mathbb{R}^n \setminus \{0\}).$

 $WF(u) \subset \mathrm{singsupp}(u) \times (\mathbb{R} \setminus \{0\})$

Q8.2

Given $\bar{\xi} \in \mathbb{R}^n \setminus \{0\}$ and $\epsilon_1 > \epsilon_2 > 0$ small construct a(n almost) conic cut-off $0 \leq \psi \in S^0(\mathbb{R}^n)$ (the symbol space) such that

(6)
$$\operatorname{supp} \psi \subset \Gamma(\bar{\xi}, \epsilon_1), \ \psi = \underset{1}{1} \text{ on } \Gamma(\bar{\xi}, \epsilon_2) \cap \{ |\xi| > 2 \}.$$

Show that $(\bar{x}, \bar{\xi}) \notin WF(u)$ is equivalent to

(7)
$$\psi \mathcal{F}(\phi u) \in \mathcal{S}(\mathbb{R}^n) \iff b_{\psi} * (\phi u) \in \mathcal{S}(\mathbb{R}^n), \ \hat{b}_{\psi} = \psi,$$

for some $\phi \in \mathcal{C}^{\infty}_{c}(\Omega), \ \phi(\bar{x}) \neq 0, \ \epsilon_{1} > \epsilon_{2} > 0.$

Hint:- One way is easy here. The other way the issue is that the definition of WF(u) only gives directly the condition that $b_{\psi} * \phi u \in H^{\infty}(\mathbb{R}^n)$ (the intersection of the Sobolev spaces). You should recall that b_{ψ} is the sum of a compactly supported distribution and an element of $\mathcal{S}(\mathbb{R}^n)$.

Q8.3

(1) Now show that $(\bar{x}, \bar{\xi}) \notin WF(u)$ implies that for some $\phi \in \mathcal{C}^{\infty}_{c}(\Omega), \ \phi(\bar{x}) \neq 0$ and some cone $\Gamma(\bar{x}, \epsilon), \ \epsilon > 0$

(8)
$$b * (\phi u) \in \mathcal{S}(\mathbb{R}^n) \ \forall \ \hat{b} \in S^m(\mathbb{R}^n), \ \operatorname{supp}(\hat{b}) \subset \Gamma(\bar{\xi}, \epsilon).$$

(2) Recall (you do not have to prove this, I will do it, and more, in class in L20) that if $b \in S^m(\mathbb{R}^n)$ and $\phi \in \mathcal{S}(\mathbb{R}^n)$ then there exist $\phi_{\alpha} \in \mathcal{S}(\mathbb{R}^n)$ and $b_{\alpha} \in S^{m-j}$ such that given k there exists $N = N_k$ such that the operator

(9)
$$E_N: u \longmapsto b * (\phi u) - \sum_{|\alpha| \le N} \phi_j(b_j * u)$$

has Schwartz kernel in $\mathcal{C}^k(\mathbb{R}^{2n})$.

(3) Conclude that if (8) holds then for any $\mu \in \mathcal{C}^{\infty}_{c}(\Omega)$

$$b * (\mu \phi u) \in \mathcal{S}(\mathbb{R}^n) \ \forall \ \hat{b} \in S^m(\mathbb{R}^n), \ \operatorname{supp}(\hat{b}) \subset \Gamma(\bar{\xi}, \epsilon).$$

Hint: A kernel in $\mathcal{C}^k(\mathbb{R}^{2n})$ defines a map from $H_c^{-k}(\mathbb{R}^n)$ to $H_{loc}^k(\mathbb{R}^n)$ so as k increases this becomes 'increasingly a smoothing operator'. If you know something about the support properties as well (from its definition) you get more.

(4) Hence deduce that $(\bar{x},\xi) \notin WF(u)$ is equivalent to the apparently stronger statement that for some $\epsilon > 0$

(10)
$$b * (\phi u) \in \mathcal{S}(\mathbb{R}^n) \ \forall \ \phi \in \mathcal{C}^{\infty}_{c}(\Omega), \ \operatorname{supp} \phi \subset B(\bar{x}, \epsilon),$$

 $\hat{b} \in S^m(\mathbb{R}^n), \ \operatorname{supp}(\hat{b}) \subset \Gamma(\bar{\xi}, \epsilon).$

Q8.4

Prove a complement to the last part of Q8.1 in the sense that for any $u \in \mathcal{C}^{-\infty}(\Omega)$ the wavefront set is a refinement of the singular support:-

(11)
$$\pi(WF(u)) = \operatorname{singsupp}(u), \ \pi(x,\xi) = x$$

Q8.5

This is a somwhat unfair, open-ended, question but I could not resist! Make of it what you will. We now have three 'support' sets for distributions in an open set U – support itself, singular support and this notion of wavefront set – the first two are subsets of U but the third is a subset of $U \times (\mathbb{R}^n \setminus \{0\})$. Since it is conic we can also think of WF(v) as a (closed) subset of $U \times \mathbb{S}^{n-1}$. Try to explain how these three correspond to sheaves, in the three cases

- (1) The support corresponds to the sheaf of linear spaces $\mathcal{C}^{-\infty}(U)$ over \mathbb{R}^n .
- (2) The second corresponds to the sheaf of linear spaces

$$\mathcal{C}^{-\infty}(U)/\mathcal{C}^{\infty}(U)$$

over \mathbb{R}^n .

(3) The new notion corresponds to a sheaf over $\mathbb{R}^n \times \mathbb{S}^{n-1}$ where the linear space over an open set $V \subset \mathbb{R}^n \times \mathbb{S}^{n-1}$ is the quotient

(12)
$$\mathcal{C}^{-\infty}(U)/\{v \in \mathcal{C}^{-\infty}(U) \text{ s.t. } WF(v) \cap V = \emptyset\}, \ U = \pi_1(V)$$

being projection onto the first factor.

Hint-Questions

- (a) If $U_1, U_2 \subset \mathbb{R}^n$ are open and $u \in \mathcal{C}^{\infty}(U_1 \cap U_2)$ do there exists functions $u_i \in \mathcal{C}^{\infty}(U_i)$ such that $u_1 u_2 = u$? It is enough to do this for the constant function 1 on $U_1 \cap U_2$.
- (b) If $U_1, U_2 \subset \mathbb{R}^n$ are open, $V_i \subset U_i \times \mathbb{S}^{n-1}$ open and $u \in \mathcal{C}^{-\infty}(U_1 \cap U_2)$ is such that $WF(u) \cap (V_1 \cap V_2) = \emptyset$ do there exists $u_i \in \mathcal{C}^{-\infty}(U_i)$ with $WF(u_i) \cap V_i = \emptyset$ and $u_1 u_2 = u$? You could try first writing u as the difference of two distributions on $U_1 \cap U_2$ where one has WF not meeting V_1 and the other has WF not meeting V_2 .

Q8.6-Opt.

Show the 'microellipticity of elliptic operators': If

$$P(x,D) = \sum_{|\alpha| \le m} p_{\alpha}(x) D^{\alpha}$$

has coefficients $p_{\alpha} \in \mathcal{C}^{\infty}(\Omega)$ and is elliptic in Ω then

(13)
$$WF(P(x, D)u) = WF(u) \ \forall \ u \in \mathcal{C}^{-\infty}(\Omega).$$

Pseudodifferential operators are also microlocal! You can use the properties of these operators in the notes to show this and deduce *microlocal* *elliptic regularity* of differential operators:

(14) if
$$P(x, D_x) = \sum_{|\alpha| \le m} p_{\alpha}(x) D_x^{\alpha}, \ p_{\alpha} \in \mathcal{C}^{\infty}(U),$$

 $p_m(x, \xi) = \sum_{|\alpha| = m} p_{\alpha}(x) \xi^{\alpha}, \text{ then } \forall \ u \in \mathcal{C}^{-\infty}(U)$
 $p_m(\bar{x}, \bar{\xi}) \neq 0 \Longrightarrow (\bar{x}, \bar{\xi}) \in \mathrm{WF}(P(x, D)u) \text{ iff } (\bar{x}, \bar{\xi}) \in \mathrm{WF}(u).$
Q8.7-opt.

Show that if $u, v \in \mathcal{C}^{-\infty}(\Omega)$ and there is no point $(x,\xi) \in WF(u)$ such that $(x, -\xi) \in WF(v)$ then it is possible to define the product $uv \in \mathcal{C}^{-\infty}(\Omega)$ consistently with multiplication when one element is smooth.

Hint: First think about the corresponding result for singular supports, which is just that $\operatorname{singsupp}(u) \cap \operatorname{singsupp}(v)$ allows you to define uv and try to do something similar.