18.155 LECTURE 9 5 OCTOBER, 2017

RICHARD MELROSE

ABSTRACT. Notes before and after lecture - if you have questions, ask!

Singular support and symbols

- Singular support:- Since $\mathcal{C}^{\infty}(\Omega) \subset \mathcal{C}^{-\infty}(\Omega)$ is a well-defined subset the definition
- (1) $u \in \mathcal{C}^{\infty}(U)$ is smooth on $\Omega \subset U$ both open if $u|_{\Omega} \in \mathcal{C}^{\infty}(\omega)$

makes sense.

(2)

Lemma 1. If $u \in \mathcal{C}^{-\infty}(\Omega)$ and

$$\mathcal{O} = \bigcup \{ U \subset \Omega; U \text{ is open and } u \big|_U \in \mathcal{C}^{\infty}(U) \}$$

then $u|_{\mathcal{O}} \in \mathcal{C}^{\infty}(\mathcal{O}).$

Thus there is a largest open set to which $u \in \mathcal{C}^{-\infty}(\Omega)$ restricts to be smooth and we may unambiguously define the (relatively) closed set

(3)
$$\operatorname{singsupp}(u) = \Omega \setminus \mathcal{O}.$$

Obviously singsupp $(u) \subset \operatorname{supp}(u)$.

Proof. By assumption there is an open covering U_a of \mathcal{O} such that for each $a, u|_{U_a} = v_a \in \mathcal{C}^{\infty}(U_a)$. The fact that $\mathcal{C}^{\infty}(U) \subset \mathcal{C}^{-\infty}(U)$ is well-defined and the (obvious) pre-sheaf property of the $\mathcal{C}^{-\infty}(U)$ means that for any a, b

(4)
$$v_a|_{U_a \cap U_b} = v_b|_{U_a \cap U_b} = u|_{U_a \cap U_b}$$

so by the (again obvious) sheaf property ('locality') of the $\mathcal{C}^{\infty}(U)$ s there exists one function $v \in \mathcal{C}^{\infty}(\mathcal{O})$ such that $v|_{U_a} = v_a$ for all a. Now, we just have to show that $u|_{\mathcal{O}} = v$. This just means that $u(\psi) = v(\psi) = \int v\psi$ for all $\psi \in \mathcal{C}^{\infty}_{c}(\mathcal{O})$. Since $\operatorname{supp}(\psi)$ is compact it has a finite cover by the $U_{a_i} = U_i$ and we know that we can then decompose using a partition of unity to get $\psi = \sum_i \psi_i, \, \psi_i \in \mathcal{C}^{\infty}_{c}(U_i)$. So

(5)
$$u(\psi) = \sum_{i} u(\psi_i) = \sum_{i} v(\psi_i) = v(\psi).$$

Check some of the basic properties of singular support, in particular that if $u \in \mathcal{C}^{-\infty}(\Omega)$ and $\psi \in \mathcal{C}^{\infty}(\Omega)$ then

(6)
$$\operatorname{singsupp}(\psi u) \subset \operatorname{singsupp}(u).$$

RICHARD MELROSE

 $\operatorname{singsupp}(u * v) \subset \operatorname{singsupp}(u) + \operatorname{singsupp}(v).$

What is more important for us is that

Proposition 1. If
$$u \in C_c^{-\infty}(\mathbb{R}^n)$$
 and $v \in C^{-\infty}(\mathbb{R}^n)$ then

(7)

This follows from the smoothness of the convolution if either factor is smooth and the same inclusion, (7), for supports.

Exercise: If you are so inclinded you might like to check that the quotient spaces $\mathcal{C}^{-\infty}(U)/CI(U)$ for open sets U form a sheaf over \mathbb{R}^n . This is called the sheaf of *microfunctions*. Note that this is *not* a general fact, the quotient of sheaf by a subsheaf is always a presheaf but not in general a sheaf; here no 'sheafification' is required.

• Symbols:- Ellipticity of P(D). Last time I showed that ellipticity of P(D) is equivalent to the fact that there is a smooth function of compact support ψ such that

(8)
$$a(\xi) = \frac{1 - \psi(\xi)}{P(\xi)} \in \mathcal{C}^{\infty}(\mathbb{R}^n) \text{ and } |a(\xi)| \le C \langle \xi \rangle^{-m}.$$

In fact a has the special properties of a symbol of order -m.

• A symbol of order s (for any real s) is a function $a \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ satisfying the estimates

$$(9) \qquad |\partial^{\alpha}a(\xi)| \le C_{\alpha}\langle\xi\rangle^{s-|\alpha|} \Longleftrightarrow \sup_{\xi\in\mathbb{R}^n}\langle\xi\rangle^{-s+|\alpha|} |\partial^{\alpha}a(\xi)| \le \infty \ \forall \ \alpha\in\mathbb{N}_0^n.$$

We write $S^s(\mathbb{R}^n)$ for the linear space of such symbols. It is a Fréchet space with topology given by the seminorms implicit in (9). That, for an elliptic $P(\xi), a \in S^{-m}(\mathbb{R}^n)$ follows by differentiating (8) – by induction we find

(10)
$$\partial^{\alpha} a(\xi) = \frac{Q_{\alpha}}{P(\xi)^{1+|\alpha|}}$$

where Q_{α} is a polynomial of degree $(m-1)|\alpha|$ – proof as usual by differentiating again. This gives (9).

• Symbols and the Fourier transform:- The (inverse) Fourier transform of a symbol is a distribution $\mathcal{G}a \in \mathcal{S}'(\mathbb{R}^n)$ satisfying

(11) singsupp($\mathcal{G}a$) $\subset \{0\}$, $\mathcal{G}a \in \mathcal{C}_{c}^{-\infty}(\mathbb{R}^{n}) + \mathcal{S}(\mathbb{R}^{n})$, $P(D)\mathcal{G}a = \delta + R$, $R \in \mathcal{S}(\mathbb{R}^{n})$.

- Parametrices for constant coefficient elliptic operators.
- Local Sobolev spaces
- Local elliptic regularity.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail \ address: rbm@math.mit.edu$

 $\mathbf{2}$