18.155 LECTURE 8 3 OCTOBER, 2017

RICHARD MELROSE

Read: Chater 3 Section 6. I have some loose ends to tie up:

Lemma 1. If $\phi \in \mathcal{S}(\mathbb{R}^n)$ and $\partial^{\alpha} \phi(0) = 0$ for all $|\alpha| \leq N$ then for $\chi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^n)$,

(1)
$$\|\phi\chi(n\cdot)\|_N \to 0 \text{ as } n \to \infty, \ \|\psi\|_N = \sup_{x, |\alpha|+|\beta| \le N} |x^\beta \partial^\alpha \psi(x)|.$$

Proposition 1. If $u \in \mathcal{S}'(\mathbb{R}^n)$ and $\operatorname{supp}(u) \subset \{0\}$ then

(2)
$$u = \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} \delta_0$$

for some N and constants c_{α} .

I will sneak in a discussion of linear transformations which prepares the way for later treatment of the coordinate-invariance of distributions and is useful here. Observe that if $L \in \operatorname{GL}(n, \mathbb{R})$ is an invertible $n \times n$ (real) matrix, so $L : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ and for functions $v: \mathbb{R}^n \longrightarrow \mathbb{C}$ we define (as usual) $L^*v = v \circ L$ then $L^*: \mathcal{S}(\mathbb{R}^n) \longrightarrow$ $\mathcal{S}(\mathbb{R}^n)$ and by change-of-variable

(3)
$$\int (L^*\phi)(x)\psi(x)dx = \int \phi(y)(L^{-1})^*\psi(y)|\det L|^{-1}dy.$$

This means that – reverting to our formal embedding $\mathcal{S}(\mathbb{R}^n) \ni \phi \longmapsto U_{\phi} \in \mathcal{S}'(\mathbb{R}^n)$

(4)
$$U_{L^*\phi}(\psi) = \int (L^*\phi)\psi = U_{\phi}(|\det L|^{-1}(L^{-1})^*\psi)$$

so we are obliged by demands of consistency (and weak density) to define

(5)
$$(L^*u)(\psi) = u(|\det L|^{-1}(L^{-1})^*\psi) \ \forall \ u \in \mathcal{S}'(\mathbb{R}^n) \Longrightarrow$$

 $L^*: \mathcal{S}'(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n) \text{ is a bijection.}$

Notice that this definition does not make sense if L is not invertible, however $(L^{-1})^* = (L^*)^{-1}$ as one would want!

Why do I introduce this now? One reason it is very useful to think about homogeneity – simple behaviour under scaling of the coordinates. Let $M_t x = tx$ for t > 0, be the corresponding linear transformation. Then from the definition above, for $u \in \mathcal{S}'(\mathbb{R}^n)$, becomes

(6)
$$(M_t^*u)(\psi) = u(t^{-n}\psi(\cdot/t))$$

and this is (the only possible definition) consistent with scaling of functions.

Observe that $|x|^{-n+s}$, s > 0, is a locally integrable function on \mathbb{R}^n which defines

a tempered distribution and which is indeed homogeneous of degree -n + s: If 1

 $u = |x|^{-n+s} \in \mathcal{S}'(\mathbb{R}^n)$ then

(7)
$$(M_t^*u)(\psi) = t^{-n}u(\psi(\cdot/t)) = t^{-n}\int |x|^{-n+s}\psi(\frac{x}{t})dx$$

= $\int |x|^{-n+s}\psi(\frac{x}{t})d(x/t) = \int |ty|^{-n+s}\psi(y)dy = t^{-n+s}u(\psi)$
that is $M_t^*u = t^{-n+s}u, \ u = |x|^{-n+s}.$

So we say an elment $u \in \mathcal{S}'(\mathbb{R}^n)$ is homogeneous of degree z for any $z \in \mathbb{C}$ if

 $(8) \qquad \qquad M_t^*u=t^z u, \text{ i.e. } u(\psi(\cdot/t)=t^{z+n}u(\psi) \ \forall \ t>0, \ \psi\in \mathcal{S}(\mathbb{R}^n).$

We have shown that $|x|^{-n+s}$ is homogeneous of degree -n + s. You might like to check that this remains meaningful, and correct, if $s \in \mathbb{C}$, $\operatorname{Re} s > 0$. It does not make sense directly if $\operatorname{Re} s \leq 0$ because $|x|^{-n+s}$ is not then locally integrable across the origin.

Lemma 2. If $u \in \mathcal{S}'(\mathbb{R}^n)$ is homogeneous of degree $z \in \mathbb{C}$ then $x^{\beta} \partial^{\alpha} u$ is homogeneous of degree $s + |\beta| - |\alpha|$.

Lemma 3. The distribution $\partial^{\alpha} \delta_0$ is homogeneous of degree $-n - |\alpha|$.

Proposition 2. For appropriate constants c_n , $E_n = c_n |x|^{-n+2}$ (n > 2), $E_2 = c_2 \log |x|$, is a fundamental solution of $\Delta = -\sum_i \partial_i^2$.

Proof. I leave it to you in the next homework (not due until Oct 13) to compute the constants c_n .

Another important example of fundamental solutions is of the Cauchy-Riemann operator

(9)
$$\overline{\partial} = (\partial_x + i\partial_y) \text{ on } \mathbb{R}^2 = \mathbb{C}$$

where a factor of a 'half' is often included. Most of the elementary aspects of the theory of one complex variable can be deduced from the fact that

Lemma 4. $E = \frac{1}{2\pi}(x+iy)^{-1}$ is a fundamental solution of $\overline{\partial}$.

Proof. You can get this in various ways. One, relating to Dirac operators (that I hope to get to a bit later) is to use the fundamental solution for Δ when n = 2 discussed above and the identity

(10)
$$\Delta_2 = (\partial_x + i\partial_y)(\partial_x - i\partial_y) \Longrightarrow E = (\partial_x - i\partial_y)E_2$$

must be a fundamental solution for $\overline{\partial}$.

Next we start to consider *ellipticity* of a differential operator with constant coefficients P(D) (remember $D_i = \frac{1}{i}\partial_i$) or equivalently of its 'characteristic polynomial' $P(\xi)$.

See the notes starting around Definition 6.11.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail \ address: rbm@math.mit.edu$

 $\mathbf{2}$