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Last time we found some useful elements of C∞c (Rn), smooth functions ‘of com-
pact support’. We need to talk about this more later, but let me define the support
of a continuous function precisely. In fact here is a definition-lemma:-

(1) if u ∈ C(Rn), supp(u) = {u(x) 6= 0}

=
(⋃
{O ⊂ Rn;O is open and u = 0 on O}

){
= Rn \ U, U = the largest open set on which u = 0.

It is perhaps not immediately clear that the last ‘definition’ makes sense, since it
really asserts that there is a largest open set on which u = 0. Well, there is because
if U1 and U2 are open and u vanishes on them both then it vanishes on the union
U1 ∪ U2. It follows that U is the union of all open sets on which u vanishes, which
(noticing the complement) gives the middle equality. The first equality then follows
from continuity. In fact the support is a ‘sheafy’ object as we shall see and I assert
that the last definition, or if you like the second, is the best way to go.

You might like to modify the definition to take care of the case that u ∈ C0(Ω)
is only defined on an open set Ω in the first place.

So C0c (Rn) and C∞c (Rn) are the spaces of continuous and smooth functions of
compact support.

Proposition 1. If u, v ∈ C0c (Rn) then

(2)

u ∗ v(x) =

∫
u(x− y)v(y)dy =

∫
u(y)v(x− y)dy = v ∗ u ∈ C0c (Rn),

supp(u ∗ v) ⊂ supp(u) + supp(v) and

sup |(u+ v)| ≤ CR sup |u| sup |v| if supp(u) + supp(v) ⊂ B(0, R).

Note that the sum of two sets is the sets of sums of elements; check that it is
compact if they are both compact.

These follow respectively by change of variable, the fact that supp(u(x − ·)) =
x− supp(u) so y /∈ supp(u(x− ·)v(y)) unless x ∈ supp(u) + supp(v) and finally

(3) |
∫
u(x− y)v(y)dy| ≤ Vol(supp(u) + supp(v)) sup |u| sup |v|.

Now, convolution – which is what this product is called – has smoothing prop-
erties

C0c (Rn) ∗ C∞c (Rn) ⊂ C∞c (Rn).

To see this take the second form of u ∗ v and differentiate under the integral sign –
at least briefly you should think of taking difference quotients on the left and hence
insider the integral and using the fact (from Taylor’s formula with remainder) that
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the difference quotient converges to the derivative uniformly for an element of
C∞c (Rn). Thus

(4) ∂j(u ∗ v) = u ∗ (∂jv) ∈ C0c (Rn) =⇒ ∂α(u ∗ v) = u ∗ (∂αv)

from which higher differentiability follows by induction.
Now, last time we constructed bump functions. One was a χ ∈ C∞c (Rn) with

χ ≥ 0, supp(χ) ⊂ B(0, 1) which is not identically zero. We can scale it by a positive
constant so

∫
χ = 1. Now consider for a given u ∈ C0c (Rn) the sequence

(5) uk = u ∗ χk ∈ C∞c (Rn), χk(x) = knχ(kx) =⇒
∫
χk = 1.

Since supp(χk) ⊂ B(0, k−1) for all k, the support of uk is contained in a fixed
compact set such as supp(u) +B(0, 1).

We now claim that

uk → u uniformly .

Well, the way to see this is the estimate the supremum norm of the difference and
the trick is to write the difference as
(6)

u(x)−uk(x) = u(x)−
∫
u(x−y)χk(y)dy =

∫
(u(x)−u(x−y)χk(y)dy since

∫
χk = 1.

Then from the usual supremum estimate of integrals as used to get (3) ,

(7) sup |u−uk| ≤ C
∫
|u((x)−u(x−y)|χk(y) ≤ C sup |u−uk|

∫
χk = C sup |u−uk|

where we also use the fact that χk ≥ 0 and that it has integral 1.
So we have shown that if u ∈ C0c (Rn) there exists a sequence uk ∈ C∞c (Rn) with

support in a fixed compact set (very close to supp(u) if we want) such that uk → u
uniformly. However this implies

(8) C∞c (Rn) ⊂ L2(Rn) is dense w.r.t. ‖ · ‖L2

(because C0c (Rn) is dense and the convergence here implies convergence in L2 (by
LDC if you don’t know otherwise). Same argument works for L1 but I ask you to
do this more directly in the homework this week.

So now we know that

(9) C∞c (Rn) ⊂ S(Rn) ⊂ L2(Rn) are dense.

The density of the first in the second (with respect to the topology of S(Rn)) I
mentioned at the end last time. Take a different bump function ψ ∈ C∞c (Rn) with
support in B(0, 2), with ψ ≥ 0 (which does not matter here) and ψ = 1 on B(0, 1).
Then if φ ∈ S(Rn) define

(10) C∞c (Rn) 3 φk(x) = φ(x)ψ(
x

k
) = φ(x) on B(0, k)

since ψ(xk ) = 1 if |x| ≤ k. To estimate the norms of the difference (φ − φk)(x) =
φ(x)(1− ψ)(xk )consider

(11) xβ∂αx (φk)(x) =
∑
γ≤α

cγ,αx
β∂β−γφ(x)k|γ|(∂γ(1− ψ)(

x

k
)

where the powers of k are a bit worrying in terms of estimates! However, the point
is that (1 − ψ)(xk ) = 0 if |x| ≤ k so all terms vanish there. The supremum is then
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over |x| ≥ k, all the derivatives of 1 − ψ are bounded so, using the rapid decay of
derivatives of φ we see that all terms have a similar bound giving

(12) |xβ∂αx (φk)(x)| ≤ C(1 + k)−N−10kN , if |α|+ |β| ≤ N.

This implies φk → φ in S(Rn).
This in turn implies that the map

(13) L2(Rn) −→ S ′(Rn), f 7−→ Uf , Uf (φ) =

∫
fφ

is injective – since if Uf = 0 then Uf (gk) =
∫
fgk = 0 for a sequence C∞c (Rn) 3

gk → f in L2(Rn) so
∫
|f |2 = 0 and f = 0 in L2(Rn).

Note that this argument works for all the weighted L2 space

(14) 〈x〉sL2(Rn) 3 f −→ Uf ∈ S ′(Rn), Uf (φ) =

∫
fφ

where the map to S ′(Rn) is consistent with the inclusions 〈x〉tL2(Rn) ⊂ 〈x〉sL2(Rn)
if t ≤ s (because the weight is not involved in the defininition of Uf ). To get

injectivity for the weighted space, if f ∈ 〈x〉sL2(Rn) we take C∞c (Rn) 3 gk → 〈x〉2sf
with respect to norm on 〈x〉sL2(Rn) – since this is the same as saying

(15) 〈x〉−sgk −→ 〈x〉sf

with respect to the L2 norm – which we can arrange.
Finally it is time to set Uf ≡ f and regard these injections as inclusions; we also

know that F extends (by continuity from S(Rn)) to an isomorphism of L2(Rn) and
that this is consitent with the definition of F on S ′(Rn).

Now we are in a position to define the ‘L2-based Sobolev spaces’ using the Fourier
transform

(16) Hs(Rn) = {u ∈ S ′(Rn); û ∈ 〈ξ〉−sL2(Rn)}.

Clearly H0(Rn) = L2(Rn). These spaces decrease as s increases

(17) Hs′(Rn) ⊂ Hs(Rn) if s′ ≥ s

and each is a Hilbert space with respect to the appropriate norm

(18) ‖u‖2Hs =

∫
Rn

(1 + |ξ|2)s|û(ξ)|2dξ.

The idea is that Hs consists, for s ≥ 0, of L2 functions ‘with up to s derivatives
in L2’. For non-integral s in particular this requires a bit of explanation! However,
for the moment I will continue with the properties of these Sobolev spaces. One
thing indicating that there is some sense in the vague statement above is

(19) ∂j : Hs(Rn) −→ Hs−1(Rn), ∀ s ∈ R.

You might ask how this is defined, but the answer is that S(Rn) is dense in both
domain and range space and ∂j acts on it, so the claim is that it extends by
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continuity. The proof is a little diagram that we already know:-

(20) Hs(Rn)
∂j //

OO

F

��

Hs−1(Rn)
OO

F

��

S(Rn)
3 S

ff

∂j //
OO

F
��

S(Rn)
* 


77

OO

F
��

S(Rn)
kK

xx

×iξj
// S(Rn)

t�

''
〈ξ〉−sL2(Rn)

×iξj
// 〈ξ〉−s+1L2(Rn)

Here the top, dotted, arrow is defined by composition around the outside – consis-
tent with the inside and unique because of the density of the inclusions.

No theorem about ×xj on Sololev spaces, why?
Now, one very important result

Theorem 1 (Sobolev embedding). If s > k + n/2, k ∈ N0, then
(21)

Hs(Rn) ⊂ {u : Rn −→ C; has k continuous bounded derivatives} = Ck∞(Rn).

In fact the range is in Ck0 (Rn) – all the derivatives vanish at infinity. The space on
the right is a Banach space with respect to

(22) ‖u‖Ck = sup
x∈Rn, |α|≤k

|∂αu(x)|

Why? Start from 〈ξ〉−s ∈ L1(Rn) if s > n/2 and GL1(Rn) ⊂ C0∞(Rn).
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