BRIEF NOTES FOR AND AFTER 18.155 LECTURE 2 12 SEPTEMBER 2017

RICHARD MELROSE

- The topology of $\mathcal{S}(\mathbb{R}^n)$ continued. Continuity in terms of the norms Definition of $\mathcal{S}'(\mathbb{R}^n)$ Embedding of $L^2(\mathbb{R}^n)$ into $\mathcal{S}'(\mathbb{R}^n)$. Operations on $\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{S}'(\mathbb{R}^n)$ $\mathcal{S}(\mathbb{R}^n) \subset L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$.
- The Fourier transform is an isomorphism on Schwartz space of test functions will be completed on Thursday.

For $\phi \in L^1(\mathbb{R}^n)$

(1)
$$\mathcal{F}\phi = \hat{\phi}(\xi) = \int e^{-ix\cdot\xi}\phi(x)dx.$$

 $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{C}^0_{\infty}(\mathbb{R}^n)$ (bounded continuous functions) Continuity of FT as a map on $\mathcal{S}(\mathbb{R}^n)$ and

(2)
$$\partial_{\xi_j}\hat{\phi} = -i\widehat{x_j\phi}, \ \xi_j\hat{\phi} = -i\widehat{\partial_{x_j\phi}\phi}$$

I messed up the proof of this in class – it is in the lecture notes but here is the argument a little more cleanly:- By the FTC

(3)
$$e^{-ix_is} - 1 = \int_0^{x_i} (\frac{d}{dt}e^{-its})dt = -is\int_0^{x_i} e^{-its}dt$$

(even for $x_i < 0$) so

(4)
$$|\frac{e^{-ix_is} - 1}{s}| \le |\int_0^{x_i}| \le |x_i|$$

This means that if $u \in \mathcal{S}(\mathbb{R}^n)$ (in fact if $(1 + |x|)u \in L^1$)

(5)
$$\frac{e^{-ix\cdot(\xi+se_i)} - e^{-ix\cdot\xi}}{s}u(x) \to -ix_iu(x)$$

converges points wise and is bounded by $(1 + |x_i|)|u(x)|$ so by Lebesgue Dominated Convergence

(6)
$$\frac{\hat{u}(\xi + se_i) - \hat{u}(\xi)}{s} \to -i\widehat{x_i u(x)}$$

shows that \hat{u} , for $u \in \mathcal{S}(\mathbb{R}^n)$ is differentiable, and in fact that the partial derivatives are bounded and continuous. Repeating the argmument it follows that if $u \in \mathcal{S}(\mathbb{R}^n)$ then all derivatives of \hat{u} exist and are bounded.

I gave the similar argument by integration by parts that $\xi_i \hat{u} = -i\partial_i u$ if $u \in \mathcal{S}(\mathbb{R}^n)$. Combining the two it follows that

(7)
$$\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n).$$

RICHARD MELROSE

Schwartz functions vanishing at zero Translations Inversion formula

$$\mathcal{FG} = \mathcal{GF} = \mathrm{Id}, \ \mathcal{G}\phi(\xi) = (2\pi)^{-n}(\hat{\phi})(-\xi)$$

Coming up:

- Fourier transform of tempered distributions
- Density of test functions in square-integrable functions
- Fourier transform of square-integrable functions
- Sobolev spaces

References

Department of Mathematics, Massachusetts Institute of Technology E-mail address: rbm@math.mit.edu

(8)