• I will finish the discussion of the trace ideal.

An operator is of trace class, $A \in (T)(H)$ if it is a finite sum of products of Hilbert-Schmidt operators, $A = \sum_{i=1}^{N} B_i D_i, B_i, D_i \in \mathrm{HS}(H).$

If $A \in (T)(H)$ then the trace norm

(1)
$$||A||_{\mathrm{Tr}} = \sup \sum_{i} |\langle Ae_i, f_i \rangle| < \infty.$$

If $A \in \mathcal{B}(H)$ and $||A||_{\mathrm{Tr}} < \infty$ then $P = (AA^*)^{\frac{1}{4}} \in \mathrm{HS}(H)$ and hence A is the product of two Hilbert-Schmidt operators.

The trace functional is defined by

(2)
$$\operatorname{Tr}(A) = \sum_{i} \langle Ae_i, e_i \rangle_H, \ A \in \operatorname{Tr}(H), \ \operatorname{Tr}: (T)(H) \longrightarrow \mathbb{C}$$

is linear, continuous and independent of the orthonormal basis used to define it.

If
$$A \in (T)(H)$$
 and $B \in \mathcal{B}(H)$ then

 $\operatorname{Tr}([A,B]) = 0.$

(3)

(5)

(7)

Conversely, if
$$A \in (T)(H)$$
 and $Tr(A) = 0$ then A is a sum of such commutators.

If
$$A = A^* \in (T)(H)$$
 then

(4)
$$\operatorname{Tr}(A) = \sum_{i} \lambda_{i}$$

is the sum of the eigenvalues repeated with multiplicity. This is true even if A is not self-adjoint (Lidskii's theorem) but harder to prove.

• Fredholm operators.

If $L \in \mathcal{B}(H)$ has closed range then it has a unique 'generalized inverse' $Q \in \mathcal{B}(H)$ satisfying

$$QL = \operatorname{Id} - P_{\operatorname{null}(L)}, \ LQ = \operatorname{Id} - P_{\operatorname{null}(L^*)}.$$

• By definition L is *Fredholm* if it has closed range and both the null space and orthocomplement to the range are finite dimensional.

The index is the difference of the dimensions, defined for L Fredholm:-

(6)
$$\operatorname{ind}(L) = \operatorname{dim}\operatorname{null}(L) - \operatorname{dim}\operatorname{null}(L^*).$$

If $L \in \mathcal{B}(H)$ then L is Fredholm if and only if it has an inverse Q' modulo compact operators

$$Q'L - \mathrm{Id}, LQ' - \mathrm{Id} \in \mathcal{K}(H).$$

Hence iff it has an inverse modulo errors in (T)(H).

The Fredholm operators are open in $\mathcal{B}(H)$ and stable under the addition of compact operators.

If L is Fredholm and Q is an inverse modulo errors in (T)(H) then (Calderón's formula)

(8)
$$\operatorname{ind}(L) = \operatorname{Tr}([L,Q]).$$

The index is constant on components of $\mathcal{F}(H)$ and labels them.

• The harmonic oscillator on $\mathbb{R}^n,$

(9)
$$H = \Delta + |x|^2 = \sum_{i=1}^n (-\partial_1^2 - \dots - \partial_n^2) + |x|^2$$

has eigenfunctions (the Hermite functions) h_α ∈ S(ℝⁿ), α ∈ ℕ₀ⁿ, forming an orthonormal basis of L²(ℝⁿ).
If u ∈ S'(ℝⁿ) the Fourier-Bessel series

(10)
$$u = \sum_{\alpha} u(h_{\alpha})h_{\alpha}$$

converges in $\mathcal{S}'(\mathbb{R}^n)$ and

(11)
$$u \in \mathcal{S}(\mathbb{R}^n) \iff (10) \text{ converges in } \mathcal{S}(\mathbb{R}^n).$$

Department of Mathematics, Massachusetts Institute of Technology *E-mail address*: rbm@math.mit.edu

 $\mathbf{2}$