
CHAPTER 5

Coordinate invariance and manifolds

For the geometric applications we wish to make later (and of course
many others) it is important to understand how the objects discussed
above behave under coordinate transformations, so that they can be
transferred to manifolds (and vector bundles). The basic principle is
that the results above are independent of the choice of coordinates,
which is to say diffeomorphisms of open sets.

1. Local diffeomorphisms

Let Ωi ⊂ Rn be open and f : Ω1 −→ Ω2 be a diffeomorphism, so it
is a C∞ map, which is equivalent to the condition

(1.1) f ∗u ∈ C∞(Ω1) ∀ u ∈ C∞(Ω2), f ∗u = u ◦ f, f ∗u(z) = u(f(z)),

and has a C∞ inverse f−1 : Ω2 −→ Ω1. Such a map induces an isomor-
phisms f ∗ : C∞c (Ω2) −→ C∞c (Ω1) and f ∗ : C∞(Ω2) −→ C∞(Ω1) with
inverse (f−1)∗ = (f ∗)−1.

Recall also that, as a homeomorphism, f ∗ identifies the (Borel)
measurable functions on Ω2 with those on Ω1. Since it is continuously
differentiable it also identifies L1

loc(Ω2) with L1
loc(Ω1) and

(1.2)

u ∈ L1
c(Ω2) =⇒

∫
Ω1

f ∗u(z)|Jf (z)|dz =

∫
Ω1

u(z′)dz′, Jf (z) = det
∂fi(z)

∂zj
.

The absolute value appears because the definition of the Lebesgue in-
tegral is through the Lebesgue measure.

It follows that f ∗ : L2
loc(Ω2) −→ L2

loc(Ω1) is also an isomorphism. If
u ∈ L2(Ω2) has support in some compact subset K b Ω2 then f ∗u has
support in the compact subset f−1(K) b Ω1 and
(1.3)

‖f ∗u‖2
L2 =

∫
Ω1

|f ∗u|2dz ≤ C(K)

∫
Ω1

|f ∗u|2|Jf (z)|dz = C(K)‖u‖2
L2 .

Distributions are defined by duality, as the continuous linear functionals:-

(1.4) u ∈ C−∞(Ω) =⇒ u : C∞c (Ω) −→ C.
137
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We always embed the smooth functions in the distributions using inte-
gration. This presents a small problem here, namely it is not consistent
under pull-back. Indeed if u ∈ C∞(Ω2) and µ ∈ C∞c (Ω1) then

(1.5)

∫
Ω1

f ∗u(z)µ(z)|Jf (z)|dz =

∫
Ω2

u(z′)(f−1)∗µ(z′)dz′ or∫
Ω1

f ∗u(z)µ(z)dz =

∫
Ω2

u(z′)(f−1)∗µ(z′)|Jf−1(z′)|dz′,

since f ∗Jf−1 = (Jf )
−1.

So, if we want distributions to be ‘generalized functions’, so that the
identification of u ∈ C∞(Ω2) as an element of C−∞(Ω2) is consistent
with the identification of f ∗u ∈ C∞(Ω1) as an element of C−∞(Ω1) we
need to use (1.5). Thus we define

(1.6) f ∗ : C−∞(Ω2) −→ C−∞(Ω1) by f ∗u(µ) = u((f−1)∗µ|Jf−1|).

There are better ways to think about this, namely in terms of densities,
but let me not stop to do this at the moment. Of course one should
check that f ∗ is a map as indicated and that it behaves correctly under
composition, so (f ◦ g)∗ = g∗ ◦ f ∗.

As already remarked, smooth functions pull back under a diffeo-
morphism (or any smooth map) to be smooth. Dually, vector fields
push-forward. A vector field, in local coordinates, is just a first order
differential operator without constant term

(1.7) V =
n∑
j=1

vj(z)Dzj , Dzj = Dj =
1

i

∂

∂zj
.

For a diffeomorphism, the push-forward may be defined by

(1.8) f ∗(f∗(V )u) = V f ∗u ∀ u ∈ C∞(Ω2)

where we use the fact that f ∗ in (1.1) is an isomorphism of C∞(Ω2)
onto C∞(Ω1). The chain rule is the computation of f∗V, namely

(1.9) f∗V (f(z)) =
n∑

j,k=1

vj(z)
∂fj(z)

∂zk
Dk.

As always this operation is natural under composition of diffeomor-
phism, and in particular (f−1)∗(f∗)V = V. Thus, under a diffeomor-
phism, vector fields push forward to vector fields and so, more generally,
differential operators push-forward to differential operators.

Now, with these definitions we have
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Theorem 1.1. For every s ∈ R, any diffeomorphism f : Ω1 −→ Ω2

induces an isomorphism

(1.10) f ∗ : Hs
loc(Ω2) −→ Hs

loc(Ω1).

Proof. We know this already for s = 0. To prove it for 0 < s < 1
we use the norm on Hs(Rn) equivalent to the standard Fourier trans-
form norm:-

(1.11) ‖u‖2
s = ‖u‖2

L2 +

∫
R2n

|u(z)− u(ζ)|2

|z − ζ|2s+n
dzdζ.

See Sect 7.9 of [4]. Then if u ∈ Hs
c (Ω2) has support in K b Ω2 with

0 < s < 1, certainly u ∈ L2 so f ∗u ∈ L2 and we can bound the second
part of the norm in (1.11) on f ∗u :

(1.12)

∫
R2n

|u(f(z))− u(f(ζ))|2

|z − ζ|2s+n
dzdζ

=

∫
R2n

|u(z′)− u(ζ ′)|2

|g(z′)− g(ζ ′)|2s+n
|Jg(z′)||Jg(ζ ′)|dz′dζ ′

≤ C

∫
R2n

|u(z)− u(ζ)|2

|z − ζ|2s+n
dzdζ

since C|g(z′)− g(ζ ′)| ≥ |z′ − ζ ′| where g = f−1.
For the spaces of order m+ s, 0 ≤ s < 1 and m ∈ N we know that

(1.13) u ∈ Hm+s
loc (Ω2)⇐⇒ Pu ∈ Hs

loc(Ω2) ∀ P ∈ Diffm(Ω2)

where Diffm(Ω) is the space of differential operators of order at most
m with smooth coefficients in Ω. As noted above, differential operators
map to differential operators under a diffeomorphism, so from (1.13) it
follows that Hm+s

loc (Ω2) is mapped into Hm+s
loc (Ω1) by f ∗.

For negative orders we may proceed in the same way. That is if
m ∈ N and 0 ≤ s < 1 then
(1.14)

u ∈ Hs−m
loc (Ω2)⇐⇒ u =

∑
J

PJuJ , PJ ∈ Diffm(Ω2), uJ ∈ Hs(Ω2)

where the sum over J is finite. A similar argument then applies to
prove (1.10) for all real orders. �

Consider the issue of differential operators more carefully. If P :
C∞(Ω1) −→ C∞(Ω1) is a differential operator of order m with smooth
coefficients then, as already noted, so is

(1.15) Pf : C∞(Ω2) −→ C∞(Ω2), Pfv = (f−1)∗(Pf ∗v).
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However, the formula for the coefficients, i.e. the explicit formula for
Pf , is rather complicated:-

(1.16) P =
∑
|α|≤m

=⇒ Pf =
∑
|α|≤m

pα(g(z′))(Jf (z
′)Dz′)

α

since we have to do some serious differentiation to move all the Jacobian
terms to the left.

Even though the formula (1.16) is complicated, the leading part of
it is rather simple. Observe that we can compute the leading part of
a differential operator by ‘oscillatory testing’. Thus, on an open set Ω
consider
(1.17)

P (z,D)(eitψu) = eitψ
m∑
k=0

tkPk(z,D)u, u ∈ C∞(Ω), ψ ∈ C∞(Ω), t ∈ R.

Here the Pk(z,D) are differential operators of order m − k acting on
u (they involve derivatives of ψ of course). Note that the only way a
factor of t can occur is from a derivative acting on eitψ through

(1.18) Dzje
itψ = eitψt

∂ψ

∂zj
.

Thus, the coefficient of tm involves no differentiation of u at all and is
therefore multiplication by a smooth function which takes the simple
form

(1.19) σm(P )(ψ, z) =
∑
|α|=m

pα(z)(Dψ)α ∈ C∞(Ω).

In particular, the value of this function at any point z ∈ Ω is deter-
mined once we know dψ, the differential of ψ at that point. Using this
observation, we can easily compute the leading part of Pf given that
of P in (1.15). Namely if ψ ∈ C∞(Ω2) and (Pf )(z

′) is the leading part
of Pf for

(1.20) σm(Pf )(ψ
′, z′)v = lim

t→∞
t−me−itψPf (z

′, Dz′)(e
itψ′v)

= lim
t→∞

t−me−itψg∗(P (z,Dz)(e
itf∗ψ′f ∗v)

= g∗( lim
t→∞

t−me−itf
∗ψ′g∗(P (z,Dz)(e

itf∗ψ′f ∗v) = g∗Pm(f ∗ψ, z)f ∗v.

Thus

(1.21) σm(Pf )(ψ
′, ζ ′)) = g∗σm(P )(f ∗ψ′, z).

This allows us to ‘geometrize’ the transformation law for the leading
part (called the principal symbol) of the differential operator P. To do
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so we think of T ∗Ω, for Ω and open subset of Rn, as the union of the
T ∗ZΩ, z ∈ Ω, where T ∗z Ω is the linear space

(1.22) T ∗z Ω = C∞(Ω)/ ∼z, ψ ∼z ψ′ ⇐⇒
ψ(Z)− ψ′(Z)− ψ(z) + ψ′(z) vanishes to second order at Z = z.

Essentially by definition of the derivative, for any ψ ∈ C∞(Ω),

(1.23) ψ ∼z
n∑
j=1

∂ψ

∂z
(z)(Zj − zj).

This shows that there is an isomorphism, given by the use of coordi-
nates

(1.24) T ∗Ω ≡ Ω× Rn, [z, ψ] 7−→ (z, dψ(z)).

The point of the complicated-looking definition (1.22) is that it shows
easily (and I recommend you do it explicitly) that any smooth map
h : Ω1 −→ Ω2 induces a smooth map

(1.25) h∗T ∗Ω2 −→ T ∗Ω1, h([h(z), ψ]) = [z, h∗ψ]

which for a diffeomorphism is an isomorphism.

Lemma 1.2. The transformation law (1.21) shows that for any el-
ement P ∈ Diffm(Ω) the principal symbol is well-defined as an element

(1.26) σ(P ) ∈ C∞(T ∗Ω)

which furthermore transforms as a function under the pull-back map
(1.25) induced by any diffeomorphism of open sets.

Proof. The formula (1.19) is consistent with (1.23) and hence with
(1.21) in showing that σm(P ) is a well-defined function on T ∗Ω. �

2. Manifolds

I will only give a rather cursory discussion of manifolds here. The
main cases we are interested in are practical ones, the spheres Sn and
the balls Bn. Still, it is obviously worth thinking about the general case,
since it is the standard setting for much of modern mathematics. There
are in fact several different, but equivalent, definitions of a manifold.
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2.1. Coordinate covers. Take a Hausdorff topological (in fact
metrizable) space M. A coordinate patch on M is an open set and a
homeomorphism

M ⊃ Ω
F−→ Ω′ ⊂ Rn

onto an open subset of Rn. An atlas on M is a covering by such coor-
dinate patches (Ωa, Fa),

M =
⋃
a∈A

Ωa.

Since each Fab : Ω′a → Ω′a is, by assumption, a homeomorphism, the
transition maps

Fab : Ω′ab → Ω′ba ,

Ω′ab = Fb(Ωa ∩ Ωb) ,

(⇒ Ω′ba = Fa(Ωa ∩ Ωb))

Fab = Fa ◦ F−1
b

are also homeomorphisms of open subsets of Rn (in particular n is
constructed on components of M). The atlas is Ck, C∞, real analytic,
etc.) if each Fab is Ck, C∞ or real analytic. A C∞ (Ck or whatever)
structure on M is usually taken to be a maximal C∞ atlas (meaning any
coordinate patch compatible with all elements of the atlas is already
in the atlas).

2.2. Smooth functions. A second possible definition is to take
again a Hausdorff topological space and a subspace F ⊂ C(M) of the
continuous real-valued function onM with the following two properties.

1) For each p ∈M∃f1, . . . , fn ∈ F and an open set Ω 3 p such
that F = (f1, . . . , fn) : Ω → Rn is a homeomorphism onto an
open set, Ω′ ⊂ Rn and (F−1)∗g ∈ C∞(Ω′)∀g ∈ F .
2) F is maximal with this property.

2.3. Embedding. Alternatively one can simply say that a (C∞)
manifold is a subset M ⊂ RN such that ∀p ∈ M∃ an open set U 3 p,
U ⊂ RN , and h1, . . . , hN−n ∈ C∞(U) s.t.

M ∩ U = {q ∈ U ; hi(q) = 0, i = 1, . . . , N − n}
dhi(p) are linearly independent.

I leave it to you to show that these definitions are equivalent in
an appropriate sense. If we weaken the various notions of coordinates
in each case, for instance in the first case, by requiring that Ω′ ∈
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Rn−k× [0,∞)k for some k, with a corresponding version of smoothness,
we arrive at the notion of a manifold with cones.1

So I will assume that you are reasonably familiar with the notion of
a smooth (C∞) manifold M , equipped with the space C∞(M) — this
is just F in the second definition and in the first

C∞(M) = {u : M → R; u ◦ F−1 ∈ C∞(Ω′)∀ coordinate patches}.

Typically I will not distinguish between complex and real-valued func-
tions unless it seems necessary in this context.

Manifolds are always paracompact — so have countable covers by
compact sets — and admit partitions of unity.

Proposition 2.1. If M =
⋃
a∈A Ua is a cover of a manifold by open

sets then there exist ρa ∈ C∞(M) s.t. supp(ρa) b Ua (i.e., ∃Ka b Ua
s.t. ρa = 0 on M\Ka), these supports are locally finite, so if K b M
then

{a ∈ A; ρa(m) 6= 0 for some m ∈ K}
is finite, and finally ∑

a∈A

ρa(m) = 1, ∀ m ∈M.

It can also be arranged that

(1) 0 ≤ ρa(m) ≤ 1 ∀ a, ∀ m ∈M.
(2) ρa = µ2

a , µa ∈ C∞(M).
(3) ∃ ϕa ∈ C∞(M), 0 ≤ ϕa ≤ 1, ϕ = 1 in a neighborhood of

supp(ρa) and the sets supp(ϕa) are locally finite.

Proof. Up to you. �

Using a partition of unity subordinate to a covering by coordinate
patches we may transfer definitions from Rn to M, provided they are
coordinate-invariant in the first place and preserved by multiplication
by smooth functions of compact support. For instance:

Definition 2.2. If u : M −→ C and s ≥ 0 then u ∈ Hs
loc(M) if

for some partition of unity subordinate to a cover of M by coordinate
patches

(2.1)
(F−1

a )∗(ρau) ∈ Hs(Rn)

or (F−1
a )∗(ρau) ∈ Hs

loc(Ω
′
a).

1I always demand in addition that the boundary faces of a manifold with cones
be a embedded but others differ on this. I call the more general object a tied
manifold.
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Note that there are some abuses of notation here. In the first part
of (2.1) we use the fact that (F−1

a )∗(ρau), defined really on Ω′a (the
image of the coordinate patch Fa : Ωa → Ω′a ∈ Rn), vanishes outside a
compact subset and so can be unambiguously extended as zero outside
Ω′a to give a function on Rn. The second form of (2.1) is better, but
there is an equivalence relation, of equality off sets of measure zero,
which is being ignored. The definition doesn’t work well for s < 0
because u might then not be representable by a function so we don’t
know what u′ is to start with.

The most sysetematic approach is to define distributions on M first,
so we know what we are dealing with. However, there is a problem
here too, because of the transformation law (1.5) that was forced on
us by the local identification C∞(Ω) ⊂ C−∞(Ω). Namely, we really
need densities on M before we can define distributions. I will discuss
densities properly later; for the moment let me use a little ruse, sticking
for simplicity to the compact case.

Definition 2.3. If M is a compact C∞ manifold then C0(M) is a
Banach space with the supremum norm and a continuous linear func-
tional

(2.2) µ : C0(M) −→ R
is said to be a positive smooth measure if for every coordinate patch on
M, F : Ω −→ Ω′ there exists µF ∈ C∞(Ω′), µF > 0, such that

(2.3) µ(f) =

∫
Ω′

(F−1)∗fµFdz ∀ f ∈ C0(M) with supp(f) ⊂ Ω.

Now if µ, µ′ : C0(M) −→ R is two such smooth measures then
µ′F = vFµF with vF ∈ C∞(Ω′). In fact ∃ v ∈ C∞(M), v > 0, such
that F ∗vF = v on Ω. That is, the v’s patch to a well-defined function
globally on M. To see this, notice that every g ∈ C0

c (Ω′) is of the form
(F−1)∗g for some g ∈ C0(M) (with support in Ω) so (2.3) certainly
determines µF on Ω′. Thus, assuming we have two smooth measures,
vF is determined on Ω′ for every coordinate patch. Choose a partition
of unity ρa and define

v =
∑
a

ρaF
∗
a vFa ∈ C∞(M).

Exercise. Show (using the transformation of integrals under diffeo-
morphisms) that

(2.4) µ′(f) = µ(vf) ∀ f ∈ C∞(M).

Thus we have ‘proved’ half of
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Proposition 2.4. Any (compact) manifold admits a positive smooth
density and any two positive smooth densities are related by (2.4) for
some (uniquely determined) v ∈ C∞(M), v > 0.

Proof. I have already unloaded the hard part on you. The exten-
sion is similar. Namely, chose a covering of M by coordinate patches
and a corresponding partition of unity as above. Then simply define

µ(f) =
∑
a

∫
Ω′a

(F−1
a )∗(ρaf)dz

using Lebesgue measure in each Ω′a. The fact that this satisfies (2.3) is
similar to the exercise above. �

Now, for a compact manifold, we can define a smooth positive den-
sity µ′ ∈ C∞(M ; Ω) as a continuous linear functional of the form

(2.5) µ′ : C0(M) −→ C, µ′(f) = µ(ϕf) for some ϕ ∈ C∞(M)

where ϕ is allowed to be complex-valued. For the moment the notation,
C∞(M ; Ω), is not explained. However, the choice of a fixed positive C∞
measure allows us to identify

C∞(M ; Ω) 3 µ′ −→ ϕ ∈ C∞(M),

meaning that this map is an isomorphism.

Lemma 2.5. For a compact manifold, M, C∞(M ; Ω) is a complete
metric space with the norms and distance function

‖µ′‖(k) = sup
|α|≤k
|V α1

1 · · ·V α1
p ϕ|

d(µ′1, µ
′
2) =

∞∑
k=0

2−k
‖µ′‖(k)

1 + ‖µ′‖(k)

where {V1, . . . , Vp} is a collection of vector fields spanning the tangent
space at each point of M.

This is really a result of about C∞(M) itself. I have put it this way
because of the current relevance of C∞(M ; Ω).

Proof. First notice that there are indeed such vector fields on a
compact manifold. Simply take a covering by coordinate patches and
associated partitions of unity, ϕa, supported in the coordinate patch Ωa.
Then if Ψa ∈ C∞(M) has support in Ωa and Ψa ≡ 1 in a neighborhood
of supp(ϕa) consider

Va` = Ψa(F
−1
a )∗(∂z`), ` = 1, . . . , n,



146 5. COORDINATE INVARIANCE AND MANIFOLDS

just the coordinate vector fields cut off in Ωa. Clearly, taken together,
these span the tangent space at each point of M, i.e., the local coor-
dinate vector fields are really linear combinations of the Vi given by
renumbering the Va`. It follows that

‖µ′‖(k) = sup
|α≤k
|V α1

1 · · ·V αp
p ϕ| ∈M

is a norm on C∞(M ; Ω) locally equivalent to the Ck norm on ϕf on
compact subsets of coordinate patches. It follows that (2.6) gives a
distance function on C∞(M ; Ω) with respect to what is complete —
just as for S(Rn). �

Thus we can define the space of distributions on M as the space of
continuous linear functionals u ∈ C−∞(M)

(2.6) u : C∞(M ; Ω) −→ C, |u(µ)| ≤ Ck‖µ‖(k).

As in the Euclidean case smooth, and even locally integrable, functions
embed in C−∞(M) by integration

(2.7) L1(M) ↪→ C−∞(M), f 7→ f(µ) =

∫
M

fµ

where the integral is defined unambiguously using a partition of unity
subordinate to a coordinate cover:∫

M

fµ =
∑
a

∫
Ω′a

(F−1
a )∗(ϕafµa)dz

since µ = µadz in local coordinates.

Definition 2.6. The Sobolev spaces on a compact manifold are
defined by reference to a coordinate case, namely if u ∈ C−∞(M) then
(2.8)
u ∈ Hs(M)⇔ u(ψµ) = ua((F

−1
a )∗ψµa), ∀ ψ ∈ C∞c (Ωa) with ua ∈ Hs

loc(Ω
′
a).

Here the condition can be the requirement for all coordinate sys-
tems or for a covering by coordinate systems in view of the coordinate
independence of the local Sobolev spaces on Rn, that is the weaker
condition implies the stronger.
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Now we can transfer the properties of Sobolev for Rn to a compact
manifold; in fact the compactness simplifies the properties

Hm(M) ⊂ Hm′(M), ∀ m ≥ m′(2.9)

Hm(M) ↪→ Ck(M), ∀ m > k +
1

2
dimM(2.10) ⋂

m

Hm(M) = C∞(M)(2.11) ⋃
m

Hm(M) = C−∞(M).(2.12)

These are indeed Hilbert(able) spaces — meaning they do not have
a natural choice of Hilbert space structure, but they do have one. For
instance

〈u, v〉s =
∑
a

〈(F−1
a )∗ϕau, (F

−1
a )∗ϕav〉Hs(Rn)

where ϕa is a square partition of unity subordinate to coordinate covers.

3. Vector bundles

Although it is not really the subject of this course, it is important
to get used to the coordinate-free language of vector bundles, etc. So I
will insert here at least a minimum treatment of bundles, connections
and differential operators on manifolds.




