PROBLEM SET 8 FOR 18.102, SPRING 2015 DUE SATURDAY 25TH APRIL BY 7AM

RICHARD MELROSE

Problem 8.1

Suppose that $E \in \mathcal{B}(H)$ is a compact self-adjoint operator on a separable Hilbert space and that E is non-negative in the sense that

$$(Eu, u) \ge 0 \ \forall \ u \in H.$$

Show that E has no negative eigenvalues and that the positive eigenvalues can be arranged in a (weakly) decreasing sequence

$$s_1 \geq s_2 \geq \cdots \rightarrow 0$$

either finite, or decreasing to zero, such that if $F \subset H$ has dimension N then

$$\min_{u \in F, \|u\| = 1} (Eu, u) \le s_N, \ \forall \ N.$$

NB. The s_j have to be repeated corresponding to the dimension of the associated eigenspace.

Problem 8.2

Extend this further to show that under the same conditions on E the eigenvalues are give by the minimax formula:-

$$s_j(E) = \max_{F \subset H; \dim F = j} \left(\min_{u \in F; ||u|| = 1} (Eu, u) \right).$$

Problem 8.3

With E as above, suppose that $D \in \mathcal{B}(H)$ is a bounded self-adjoint operator. Show that

$$s_j(DED) \le ||D||^2 s_j(E) \ \forall \ j.$$

NB. Be a bit careful about the minimax argument.

Problem 8.4

Briefly (just so we know that you understand it) suppose $V \in \mathcal{C}([0, 2\pi])$ is real-valued and non-negative go through the argument to show that $\lambda \in \mathbb{R}$ is an eigenvalue for the Dirichlet problem

$$\left(-\frac{d^2}{dx^2} + V(x)\right)u(x) = \lambda u(x) \text{ on } [0, 2\pi], \ u(0) = 0 = u(2\pi)$$

with a twice-continuously differentiable eigenfunction if and only if $s=1/\lambda$ is an eigenvalue of the operator

$$(\operatorname{Id} + AVA)^{-\frac{1}{2}} A^2 (\operatorname{Id} + AVA)^{-\frac{1}{2}}$$

where A is positive, self-adjoint and compact with eigenvalues $\frac{1}{\pi k}$, $k \in \mathbb{N}_0$.

Problem 8.5

Combining all these things, show that the eigenvalues of the Dirichlet problem, with V real-valued and continuous, repeated according to multiplicity (the dimension of the eigenspace) and arranged as a non-decreasing sequence,

$$\lambda_1 \le \lambda_2 \le \lambda_N \to \infty$$

satisfy

$$\lambda_k \ge \pi^2 k^2 + \min_{[0,2\pi]} V.$$

Consider the notion of an unbounded self-adjoint operator (since so far an operator is bounded, you should think of this as unbounded-self-adjoint-operator, a new notion which does included bounded self-adjoint operators). Namely, if H is a separable Hilbert space and $D \subset H$ is a dense linear subspace then a linear map $A: D \longrightarrow H$ is an unbounded self-adjoint operator if

- (1) For all $v, w \in D, \langle Av, w \rangle_H = \langle v, Aw \rangle_H$.
- (2) $\{u \in H; D \ni v \longmapsto \langle Av, u \rangle \in \mathbb{C} \text{ extends to a continuous map on } H\} = D.$ Show that

(1)
$$Gr(A) = \{(u, Au) \in H \times H; u \in D\}$$

is a closed subspace of $H \times H$ and that $A + i\operatorname{Id}: D \longrightarrow H$ is surjective with a bounded two-sided inverse $B: H \longrightarrow H$ (with range D of course).

Problem
$$8.7$$
 – extra

Suppose A is a compact self-adjoint operator on a separable Hilbert space and that $\text{Nul}(A) = \{0\}$. Define a dense subspace $D \subset H$ in such a way that $A^{-1} : D \longrightarrow H$ is an unbounded self-adjoint operator which is a two-sided inverse of A.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail\ address$: rbm@math.mit.edu