PROBLEM SET 4 FOR 18.102, 'SPRING' 2015 DUE SAURDAY 28 FEBRUARY, BY 7AM

RICHARD MELROSE

Problem 4.1

Combining the original definition with Lebesgue's dominated convergence, show that $f: \mathbb{R} \longrightarrow \mathbb{C}$ is in $\mathcal{L}^1(\mathbb{R})$ if and only if there exists a sequence $u_n \in \mathcal{C}(\mathbb{R})$ and $F \in \mathcal{L}^1(\mathbb{R})$ such that $|u_n(x)| \leq F(x)$ a.e. and $u_n(x) \to f(x)$ a.e.

Problem 4.2

Define $\mathcal{L}^{\infty}(\mathbb{R})$ as the set of functions $g: \mathbb{R} \longrightarrow \mathbb{C}$ such that there exists C > 0 and $v_n \in \mathcal{C}(\mathbb{R})$ with $|v_n(x)| \leq C$ and $v(x) \to g(x)$ a.e. Show that \mathcal{L}^{∞} is a linear space, that

$$\|g\|_{\infty} = \inf\{\sup_{\mathbb{R} \backslash E} |g(x)|; E \text{ has measure zero and } \sup_{\mathbb{R} \backslash E} |g(x)| < \infty\}$$

is a seminorm on $\mathcal{L}^{\infty}(\mathbb{R})$ and that this makes $L^{\infty}(\mathbb{R}) = \mathcal{L}^{\infty}(\mathbb{R})/\mathcal{N}$ into a Banach space, where \mathcal{N} is the space of null functions.

Problem 4.3

Show that if $g \in \mathcal{L}^{\infty}(\mathbb{R})$ and $f \in \mathcal{L}^{1}(\mathbb{R})$ then $gf \in \mathcal{L}^{1}(\mathbb{R})$ and that this defines a map

$$L^{\infty} \times L^{1}(\mathbb{R}) \longrightarrow L^{1}(\mathbb{R})$$

which satisfies $||gf||_{L^1} \leq ||g||_{L^\infty} ||f||_{L^1}$.

Problem 4.4

Define a set $U \subset \mathbb{R}$ to be (Lebesgue) measureable if its characteristic function

$$\chi_U(x) = \begin{cases} 1 & x \in U \\ 0 & x \notin U \end{cases}$$

is in $\mathcal{L}^{\infty}(\mathbb{R})$. Letting \mathcal{M} be the collection of measureable sets, show

- (1) $\mathbb{R} \in \mathcal{M}$
- (2) $U \in \mathcal{M} \Longrightarrow \mathbb{R} \setminus U \in \mathcal{M}$
- (3) $U_j \in \mathcal{M}$ for $j \in \mathbb{N}$ then $\bigcup_{i=1}^{\infty} U_i \in \mathcal{M}$
- (4) If $U \subset \mathbb{R}$ is open then $U \in \mathcal{M}$

Problem 4.5

If $U \subset \mathbb{R}$ is measureable and $f \in \mathcal{L}^1(\mathbb{R})$ show that

$$\int_{U} f = \int_{1} \chi_{U} f \in \mathbb{C}$$

is well-defined. Prove that if $f \in \mathcal{L}^1(\mathbb{R})$ then

$$I_f(x) = \begin{cases} \int_{(0,x)} f & x \ge 0\\ \int_{(0,x)} f & x < 0 \end{cases}$$

is a bounded continuous function on \mathbb{R} .

Problem 4.6 – Extra

Recall (from Rudin's book for instance) that if $F:[a,b] \longrightarrow [A,B]$ is an increasing continuously differentiable map, in the strong sense that F'(x) > 0, between finite intervals then for any continuous function $f:[A,B] \longrightarrow \mathbb{C}$, (Rudin shows it for Riemann integrable functions)

(1)
$$\int_{A}^{B} f(y)dy = \int_{a}^{b} f(F(x))F'(x)dx.$$

Prove the corresponding identity for every $f \in \mathcal{L}^1((A,B))$, which in particular requires the right side to make sense.

Problem
$$4.7$$
 – Extra

Show that if $f \in \mathcal{L}^1(\mathbb{R})$ and I_f in Problem 4.5 vanishes identically then $f \in \mathcal{N}$.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail\ address$: rbm@math.mit.edu