CHAPTER 3

Hilbert spaces

There are really three ‘types’ of Hilbert spaces (over C). The finite dimensional
ones, essentially just C", with which you are pretty familiar and two infinite dimen-
sional cases corresponding to being separable (having a countable dense subset) or
not. As we shall see, there is really only one separable infinite-dimensional Hilbert
space and that is what we are mostly interested in. Nevertheless some proofs (usu-
ally the nicest ones) work in the non-separable case too.

I will first discuss the definition of pre-Hilbert and Hilbert spaces and prove
Cauchy’s inequality and the parallelogram law. This can be found in all the lecture
notes listed earlier and many other places so the discussion here will be kept suc-
cinct. Another nice source is the book of G.F. Simmons, “Introduction to topology
and modern analysis”. I like it — but I think it is out of print.

1. pre-Hilbert spaces

A pre-Hilbert space, H, is a vector space (usually over the complex numbers
but there is a real version as well) with a Hermitian inner product

(,): Hx H— C,
(3.1) (M1 + Aovg, w) = A (vi,w) + Ae(va, w),
(w,v) = (v,w)
for any vy, v, v and w € H and Ay, Ay € C which is positive-definite
(3.2) (v,v) >0, (v,v) =0=v=0.

Note that the reality of (v,v) follows from the second condition in (3.1), the posi-
tivity is an additional assumption as is the positive-definiteness.

The combination of the two conditions in (3.1) implies ‘anti-linearity’ in the
second variable

(3.3) (v, Mwy + Aows) = Ay (v, w1) + Mg (v, wo)

which is used without comment below.
The notion of ‘definiteness’ for such an Hermitian inner product exists without
the need for positivity — it just means

(3.4) (u,v) =0Vve H=u=0.
LEMMA 21. If H is a pre-Hilbert space with Hermitian inner product (,) then
1
(3.5) [[ul] = (u,u)?
is a norm on H.
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68 3. HILBERT SPACES

PROOF. The first condition on a norm follows from (3.2). Absolute homogene-
ity follows from (3.1) since

(3.6) 1A = (M, Ar) = APl

So, it is only the triangle inequality we need. This follows from the next lemma,
which is the Cauchy-Schwarz inequality in this setting — (3.8). Indeed, using the
‘sesqui-linearity’ to expand out the norm

(3.7) lu+ ]2 = (utv,u+v)
= Jlull® + (u,0) + (v, u) + ol < flufl® + 2[full o] + [[]®
= (flull + o).
O
LEMMA 22. The Cauchy-Schwarz inequality,
(3.8) [(w, 0)[ < [luflllvll V u,v e H
holds in any pre-Hilbert space.

PROOF. For any non-zero u, v € H and s € R positivity of the norm shows
that

(3.9) 0 < Jlu+ svl* = [ull* + 2s Re(u, v) + s?[[v]|*.

This quadratic polynomial is non-zero for s large so can have only a single minimum
at which point the derivative vanishes, i.e. it is where

(3.10) 2s||v]|? + 2 Re(u,v) = 0.
Substituting this into (3.9) gives
(3.11) [ull® = (Re(u, v))?/|[v]]* > 0 = [ Re(u, v)| < [[ul]lv]

which is what we want except that it is only the real part. However, we know that,
for some z € C with |z| = 1, Re(zu,v) = Rez(u,v) = |(u,v)| and applying (3.11)
with u replaced by zu gives (3.8). O

2. Hilbert spaces

DEerINITION 15. A Hilbert space H is a pre-Hilbert space which is complete
with respect to the norm induced by the inner product.

As examples we know that C" with the usual inner product
(3.12) (2,2) =Y 27

is a Hilbert space — since any finite dimensional normed space is complete. The
example we had from the beginning of the course is [? with the extension of (3.12)

(3.13) (a,b) = Zajbij, a,bel®
j=1

Completeness was shown earlier.
The whole outing into Lebesgue integration was so that we could have the
‘standard example’ at our disposal, namely

(3.14) L*(R) = {u € Lic(R); [u* € L1 (R)}/N
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where N is the space of null functions. and the inner product is
(3.15) (u, v) = / .
Note that we showed that if u, v € £2(R) then uv € L1(R).

3. Orthonormal sets
Two elements of a pre-Hilbert space H are said to be orthogonal if
(3.16) (u,v) =0 <= u L v.
A sequence of elements e; € H, (finite or infinite) is said to be orthonormal if
llei]l = 1 for all ¢ and (e;,e;) =0 for all ¢ # j.

PROPOSITION 20 (Bessel’s inequality). If e;, i € N, is an orthonormal sequence
in a pre-Hilbert space H, then

(3.17) Z |(u, e)|* < |Jul|* ¥V u € H.
PROOF. Start with the finite case, it =1, ..., N. Then, for any u € H set

N
(3.18) v = Z(u,ei)ei.

This is supposed to be ‘the projection of w onto the span of the e;’. Anyway,
computing away we see that

N

(3.19) (v,ej) = D (w,ei)(ei ej) = (ure))

i=1
using orthonormality. Thus, v —v L e; for all j so v —v L v and hence

(3.20) 0= (u—wv,v)=(u,v) — |Jv]|*.
Thus ||v]|? = |(u,v)| and applying the Cauchy-Schwarz inequality we conclude that
v < |lv|/|lu]| so either v = 0 or ||v]| < |lu|. Expanding out the norm (and
observing that all cross-terms vanish)
N
loll> = > 1w, e0)* < Jull?
i=1

which is (3.17).

In case the sequence is infinite this argument applies to any finite subsequence,
since it just uses orthonormality, so (3.17) follows by taking the supremum over
N. |

4. Gram-Schmidt procedure

DEFINITION 16. An orthonormal sequence, {e;}, (finite or infinite) in a pre-
Hilbert space is said to be mazrimal if

(3.21) u€ H, (u,e;)=0Vi=u=0.

THEOREM 12. FEvery separable pre-Hilbert space contains a mazimal orthonor-
mal set.
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PROOF. Take a countable dense subset — which can be arranged as a sequence
{v;} and the existence of which is the definition of separability — and orthonormalize
it. Thus if v; # 0 set e; = v1/||v1||. Proceeding by induction we can suppose to
have found for a given integer n elements e;, i = 1,...,m, where m < n, which are
orthonormal and such that the linear span

(3.22) sp(et, .-, em) =sp(v1,...,05).

To show the inductive step observe that if v,,41 is in the span(s) in (3.22) then the
same ¢;’s work for n + 1. So we may as well assume that the next element, v,,41 is
not in the span in (3.22). It follows that

n
w

(3.23) W= Vpy1 — Z(vwrh ej)e; # 080 emyr = m
j=1

makes sense. By construction it is orthogonal to all the earlier e;’s so adding e;,+1

gives the equality of the spans for n + 1.

Thus we may continue indefinitely, since in fact the only way the dense set
could be finite is if we were dealing with the space with one element, 0, in the first
place. There are only two possibilities, either we get a finite set of e;’s or an infinite
sequence. In either case this must be a maximal orthonormal sequence. That is,
we claim

(3.24) HouleVji=u=0.

This uses the density of the v,’s. There must exist a sequence w; where each wj is
a Uy, such that w; — w in H, assumed to satisfy (3.24). Now, each v,, and hence
each wj, is a finite linear combination of e;’s so, by Bessel’s inequality

(3.25) sl =~ lwjs en)l® = Y I(w = wy, e) P < Jfu— wyl)?
k k

where (u,e;) = 0 for all j has been used. Thus ||w;|| — 0 and u = 0. O

Now, although a non-complete but separable pre-Hilbert space has maximal
orthonormal sets, these are not much use without completeness.

5. Complete orthonormal bases

DEFINITION 17. A maximal orthonormal sequence in a separable Hilbert space
is called a complete orthonormal basis.

This notion of basis is not quite the same as in the finite dimensional case
(although it is a legitimate extension of it).

THEOREM 13. If {e;} is a complete orthonormal basis in a Hilbert space then
for any element u € H the ‘Fourier-Bessel series’ converges to u :

oo

(3.26) u= 2:(u7 €i)e;.

i=1
PROOF. The sequence of partial sums of the Fourier-Bessel series
N

(3.27) un =Y (u,e)e;

=1
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is Cauchy. Indeed, if m < m/ then

/

(3.28) s = wn > =Y (w,e)* <Y [(use)?
i=m-+1 >m

which is small for large m by Bessel’s inequality. Since we are now assuming
completeness, u,, — w in H. However, (u.,,e;) = (u,e;) as soon as m > i and
[(w — un,e;)| < ||w— uyl| so in fact

(329) (w, ei) = lim (Um, ei) = (uz ei)

m—» 00

for each 7. Thus in fact u — w is orthogonal to all the e; so by the assumed com-
pleteness of the orthonormal basis must vanish. Thus indeed (3.26) holds. O

6. Isomorphism to [?

A finite dimensional Hilbert space is isomorphic to C™ with its standard inner
product. Similarly from the result above

PROPOSITION 21. Any infinite-dimensional separable Hilbert space (over the
complex numbers) is isomorphic to [?, that is there exists a linear map

(3.30) T:H—[?

which is 1-1, onto and satisfies (Tu, Tv);2 = (u,v) g and | Tull;z = ||lullg for all u,
ve H.

PROOF. Choose an orthonormal basis — which exists by the discussion above
and set

(3.31) Tu = {(u, €;)}52;.

This maps H into [2 by Bessel’s inequality. Moreover, it is linear since the entries
in the sequence are linear in u. It is 1-1 since Tw = 0 implies (u,e;) = 0 for all j
implies u = 0 by the assumed completeness of the orthonormal basis. It is surjective
since if {¢;}52, € [* then

o0
(3.32) u = Z ¢jej
j=1

converges in H. This is the same argument as above — the sequence of partial sums
is Cauchy since if n > m,

(3.33) > celli= D I
j=m+1 j=m+1

Again by continuity of the inner product, Tu = {c;} so T is surjective.

The equality of the norms follows from equality of the inner products and the
latter follows by computation for finite linear combinations of the e; and then in
general by continuity. O
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7. Parallelogram law

What exactly is the difference between a general Banach space and a Hilbert
space? It is of course the existence of the inner product defining the norm. In fact
it is possible to formulate this condition intrinsically in terms of the norm itself.

PROPOSITION 22. In any pre-Hilbert space the parallelogram law holds —
(3.34) v+ w|)® + v — w||® = 2||v||* + 2||w|]?, ¥V v,w € H.

PROOF. Just expand out using the inner product
(3.35) o+ wl* = [Jo]* + (v, w) + (w, v) + [|Jw]®
and the same for ||[v — w||? and see the cancellation. O

PROPOSITION 23. Any normed space where the norm satisfies the parallelogram
law, (3.34), is a pre-Hilbert space in the sense that

1
(3.36) (v, w) = 7 (o +wll* = o = wl* + il + iw]|* = illv - iw]]?)
is a positive-definite Hermitian inner product which reproduces the norm.

PROOF. A problem below. O

So, when we use the parallelogram law and completeness we are using the
essence of the Hilbert space.

8. Convex sets and length minimizer

The following result does not need the hypothesis of separability of the Hilbert
space and allows us to prove the subsequent results — especially Riesz’ theorem —
in full generality.

ProrosiTION 24. If C C H s a subset of a Hilbert space which is

(1) Non-empty
(2) Closed
(3) Convexz, in the sense that vi,v1 € C implies %(vl +uwvy) el

then there exists a unique element v € C' closest to the origin, i.e. such that
3.37 = inf .
(3:37) lollr = in Jlul

PROOF. By definition of inf there must exist a sequence {v,} in C' such that
lvn]] = d = infyecce ||u|lg. We show that v, converges and that the limit is the
point we want. The parallelogram law can be written

(3.38) lon = vml|* = 2llvnll* + 2llvm||* = 4/l (vn +vm)/2]1*.

Since ||v,|| — d, given € > 0 if N is large enough then n > N implies 2|v,||* <
2d? + €2 /2. By convexity, (v, + vpm)/2 € C 50 ||(vn + vm)/2||> > d?. Combining
these estimates gives

(3.39) n,m >N = |[v, — vp||? < 4d* + €% — 4d? = €

so {v,} is Cauchy. Since H is complete, v,, — v € C, since C is closed. Moreover,
the distance is continuous so ||v||g = lim,— e ||vn|| = d.
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Thus v exists and uniqueness follows again from the parallelogram law. If v
and v’ are two points in C with [|v|| = ||[v/|| = d then (v+v")/2 € C so

(3.40) lo = o'lf* = 2lJv]]* + 2[|v']* = 4]l (v + ) /2] <0 = v =",

9. Orthocomplements and projections

ProrosiTiON 25. If W C H 1is a linear subspace of a Hilbert space then

(3.41) Wt ={ueH;(uw)=0YweW}
is a closed linear subspace and W N W+ = {0}. If W is also closed then
(3.42) H=WaWw

meaning that any w € H has a unique decomposition u = w + w' where w € W
and wt € W+,

PROOF. That W+ defined by (3.41) is a linear subspace follows from the lin-
earity of the condition defining it. If u € W+ and w € W then v L u by the
definition so (u,u) = ||ul|*> = 0 and u = 0. Since the map H > u — (u,w) € C is
continuous for each w € H its null space, the inverse image of 0, is closed. Thus

(3.43) wt = () {(u,w) =0}
weWw
is closed.
Now, suppose W is closed. If W = H then W+ = {0} and there is nothing to
show. So consider u € H, u ¢ W and set

(3.44) C=u+W={eH;u=u+w, weW}

Then C is closed, since a sequence in it is of the form u), = u + w,, where w,, is a
sequence in W and u/, converges if and only if w,, converges. Also, C' is non-empty,
since u € C and it is convex since v’ = u + w’ and v’ = v + w” in C implies
(v +u")/2=u+ (v +w")/2 € C.

Thus the length minimization result above applies and there exists a unique
v € C such that ||v]| = inf,ec ||¢']. The claim is that this v is perpendicular to
W — draw a picture in two real dimensions! To see this consider an aritrary point
w € W and A € C then v 4+ Aw € C and

(3.45) lv+ Mw|? = [lo]* + 2Re(A(v, w)) + [A]?[Jw]]*.

Choose \ = te'? where t is real and the phase is chosen so that e (v, w) = |(v, w)| >
0. Then the fact that ||v| is minimal means that

[ol* + 2] (v, w)| + £||w]|* = [Jv]]* =

(3.46) t(2](v, w)| + t|w|?) >0V t € R = |(v,w)| =0

which is what we wanted to show.

Thus indeed, given u € H \ W we have constructed v € W+ such that v =
v+ w, w € W. This is (3.42) with the uniqueness of the decomposition already
shown since it reduces to 0 having only the decomposition 0+ 0 and this in turn is

W nwt ={o}. O



74 3. HILBERT SPACES

Since the construction in the preceding proof associates a unique element in W,
a closed linear subspace, to each v € H, it defines a map

(3.47) My : H — W.

This map is linear, by the uniqueness since if u; = v; + w;, w; € W, (v;, w;) = 0 are
the decompositions of two elements then

(3.48) Arug + Aqug = (A1v1 + Aawva) + (AMwr + Aaws)

must be the corresponding decomposition. Moreover Iyyw = w for any w € W
and |lu|? = ||v||* + |Jw||?, Pythagoras’ Theorem, shows that

(3.49) Iy = Hw, [[Myul < [lu = [Ty < 1.

Thus, projection onto W is an operator of norm 1 (unless W = {0}) equal to its
own square. Such an operator is called a projection or sometimes an idempotent
(which sounds fancier).

LEMMA 23. If {e;} is any finite or countable orthonormal set in a Hilbert space
then the orthogonal projection onto the closure of the span of these elements is

(3.50) Pu= Z(u, ek )ex-

ProOOF. We know that the series in (3.50) converges and defines a bounded
linear operator of norm at most one by Bessel’s inequality. Clearly P? = P by the
same argument. If W is the closure of the span then (u— Pu) L W since (u— Pu) L
ey for each k and the inner product is continuous. Thus u = (v — Pu) + Pu is the
orthogonal decomposition with respect to W. a

10. Riesz’ theorem

The most important application of these results is to prove Riesz’ representation
theorem (for Hilbert space, there is another one to do with measures).

THEOREM 14. If H is a Hilbert space then for any continuous linear functional
T : H — C there exists a unique element ¢ € H such that

(3.51) T(u) = (u,¢) VueH.

ProoOF. If T is the zero functional then ¢ = 0 gives (3.51). Otherwise there
exists some u' € H such that T'(u') # 0 and then there is some u € H, namely
u=v'/T(u") will work, such that T'(u) = 1. Thus

(3.52) C={ueH;Tw) =1} =T""({1}) £ 0.

The continuity of T and the second form shows that C is closed, as the inverse
image of a closed set under a continuous map. Moreover C' is convex since

(3.53) T((u+u")/2) = (T(u) +T())/2.
Thus, by Proposition 24, there exists an element v € C of minimal length.

Notice that C' = {v 4+ w;w € N} where N = T~1({0}) is the null space of T.
Thus, as in Proposition 25 above, v is orthogonal to N. In this case it is the unique
element orthogonal to N with T'(v) = 1.

Now, for any u € H,

(3.54)
u—T(u)v satisfies T(u—T (u)v) = T'(u) —T(w)T(v) =0 = v = w+T(u)v, w € N.



11. ADJOINTS OF BOUNDED OPERATORS 75

Then, (u,v) = T(u)||v||? since (w,v) = 0. Thus if ¢ = v/|v||? then
(3.55) u=w+ (u,¢)v = T(u) = (u,$)T(v) = (u, ).

11. Adjoints of bounded operators

As an application of Riesz’ we can see that to any bounded linear operator on
a Hilbert space
(3.56) A:H — H, |Aullg <C|lul|lg VueH
there corresponds a unique adjoint operator.

PROPOSITION 26. For any bounded linear operator A : H — H on a Hilbert
space there is a unique bounded linear operator A* : H — H such that
(3.57) (Au,v) g = (u, A"0) g YV u,v € H and | A = ||A*].

PROOF. To see the existence of A*v we need to work out what A*v € H should

be for each fixed v € H. So, fix v in the desired identity (3.57), which is to say
consider

(3.58) H > u— (Au,v) € C.
This is a linear map and it is clearly bounded, since
(3.59) |(Au, 0)| < [|Aullellvlla < (LAl @) ]l &-

Thus it is a continuous linear functional on H which depends on v. In fact it is just
the composite of two continuous linear maps

u— Au w— (w,v) C

(3.60) H " —S"H —
By Riesz’ theorem there is a unique element in H, which we can denote A*v (since
it only depends on v) such that
(3.61) (Au,v) = (u, A*v) Y u € H.
Now this defines the map A* : H — H but we need to check that it is linear and
continuous. Linearity follows from the uniqueness part of Riesz’ theorem. Thus if
v1, v9 € H and ¢y, co € C then
(3.62) (Au,civy + covg) = e1(Au, v1) + 2 (Au, va)

=t1(u, A%v1) + T2 (u, A"vg) = (u, c1 A" vg + ca A% v9)
where we have used the definitions of A*v; and A*vy — by uniqueness we must have

A* (Cl"Ul + CQ’UQ) = ClA*Ul + CQA*’UQ.
Since we know the optimality of Cauchy’s inequality

(3.63) lolla = Sup [ (u, v)]

ul||=1

it follows that

(3.64) A% = ”SﬁEl |(u, A™)| = HSIﬂlgl |(Au,v)| < || Al[|v]].
So in fact
(3.65) [A* < [|A]

which shows that A* is bounded.
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The defining identity (3.57) also shows that (A*)* = A so the reverse equality
in (3.65) also holds and so

(3.66) 1A% = [lAll

12. Compactness and equi-small tails

A compact subset in a general metric space is one with the property that any
sequence in it has a convergent subsequence, with its limit in the set. You will recall,
with pleasure no doubt, the equivalence of this condition to the (more general since
it makes good sense in an arbitrary topological space) covering condition, that any
open cover of the set has a finite subcover. So, in a separable Hilbert space the
notion of a compact set is already fixed. We want to characterize it, actually in
several ways.

A general result in a metric space is that any compact set is both closed and
bounded, so this must be true in a Hilbert space. The Heine-Borel theorem gives a
converse to this, for R™ or C" (and hence in any finite dimensional normed space)
in which any closed and bounded set is compact. Also recall that the convergence
of a sequence in C" is equivalent to the convergence of the n sequences given by its
components and this is what is used to pass first from R to C and then to C™. All
of this fails in infinite dimensions and we need some condition in addition to being
bounded and closed for a set to be compact.

To see where this might come from, observe that

LEMMA 24. In any metric space a set, S, consisting of the points of a convergent
sequence, s : N — M, together with its limit, s, is compact.

PROOF. The set here is the image of the sequence, thought of as a map from
the integers into the metric space, together with the limit (which might or might
not already be in the image of the sequence). Certainly this set is bounded, since
the distance from the intial point is bounded. Moreover it is closed. Indeed, the
complement M \ S is open —if p € M \ S then it is not the limit of the sequence,
so for some € > 0, and some N, if n > N then s(n) ¢ B(p, €). Shrinking e further if
necessary, we can make sure that all the s(k) for k¥ < N are not in the ball either
— since they are each at a positive distance from p. Thus B(p,e) C M \ S.

Finally, S is compact since any sequence in S has a convergent subsequence.
To see this, observe that a sequence {¢;} in S either has a subsequence converging
to the limit s of the original sequence or it does not. So we only need consider the
latter case, but this means that, for some € > 0, d(t;, s) > €; but then ¢; takes values
in a finite set, since S\ B(s,€) is finite — hence some value is repeated infinitely
often and there is a convergent subsequence. O

LEMMA 25. The tmage of a convergent sequence in a Hilbert space is a set with
equi-small tails with respect to any orthonormal sequence, i.e. if e is an othonormal
sequence and u, — u is a convergent sequence then given € > 0 there exists N such
that

(3.67) Z |(tn, ex)]? < €2V n.
k>N
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PROOF. Bessel’s inequality shows that for any u € H,

(3.68) D (s er) P < Jluf®.
k

The convergence of this series means that (3.67) can be arranged for any single
element u, or the limit w by choosing N large enough, thus given ¢ > 0 we can
choose N’ so that

(3.69) Z |(u, ex)]? < €2/2.
k>N’
Consider the closure of the subspace spanned by the ey with & > N. The
orthogonal projection onto this space (see Lemma 23) is

(3.70) Pyu = Z (u, ex)ek.
k>N
Then the convergence u, — w implies the convergence in norm || Pyuy,| — || Pyu|,
S0
(3.71) | Prvun||* = Z |(tn, er)|? < €, n>n'.
k>N

So, we have arranged (3.67) for n > n’ for some N. This estimate remains valid if
N is increased — since the tails get smaller — and we may arrange it for n < n’ by
chossing N large enough. Thus indeed (3.67) holds for all n if N is chosen large
enough. O

This suggests one useful characterization of compact sets in a separable Hilbert
space.

PrOPOSITION 27. A set K C H in a separable Hilbert space is compact if
and only if it is bounded, closed and has equi-small tails with respect to any (one)
complete orthonormal basis.

Proor. We already know that a compact set in a metric space is closed and
bounded. Suppose the equi-smallness of tails condition fails with respect to some
orthonormal basis ej. This means that for some € > 0 and all p there is an element
u, € K, such that

(3.72) > up,er)* > €.

k>p

Consider the subsequence {u,} generated this way. No subsequence of it can have
equi-small tails (recalling that the tail decreases with p). Thus, by Lemma 25,
it cannot have a convergent subsequence, so K cannot be compact if the equi-
smallness condition fails.

Thus we have proved the equi-smallness of tails condition to be necessary for
the compactness of a closed, bounded set. It remains to show that it is sufficient.

So, suppose K is closed, bounded and satisfies the equi-small tails condition
with respect to an orthonormal basis e; and {u,} is a sequence in K. We only
need show that {u,} has a Cauchy subsequence, since this will converge (H being
complete) and the limit will be in K (since it is closed). Consider each of the
sequences of coefficients (u,,e) in C. Here k is fixed. This sequence is bounded:

(3.73) (tn, ex)| < [Junll < C
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by the boundedness of K. So, by the Heine-Borel theorem, there is a subsequence
Up, such that (un,,,ex) converges as | — oo.

We can apply this argument for each k£ = 1,2,.... First extracting a subse-
quence of {u, 1} {un} so that the sequence (u, 1,e1) converges. Then extract a
subsequence 2 of w, 1 so that (uy,2,es) also converges. Then continue induc-
tively. Now pass to the ‘diagonal’ subsequence vy, of {u,} which has kth entry the
kth term, uy  in the kth subsequence. It is ‘eventually’ a subsequence of each of
the subsequences previously constructed — meaning it coincides with a subsequence
from some point onward (namely the kth term onward for the kth subsquence).
Thus, for this subsequence each of the (v, e) converges.

Consider Parseval’s identity (the orthonormal set ey, is complete by assumption)
for the difference

an - UnHHQ = Z |(Un - Un+laek)|2 + Z |(Un - UnJrlvek)‘z

k<N k>N

< S 00 = vasre ) P42 3 10 en) 242 3 [(ngr )P

k<N k>N k>N

1

(3.74)

where the parallelogram law on C has been used. To make this sum less than 2
we may choose N so large that the last two terms are less than €2/2 and this may
be done for all n and [ by the equi-smallness of the tails. Now, choose n so large
that each of the terms in the first sum is less than €2/2N, for all [ > 0 using the
Cauchy condition on each of the finite number of sequence (v, e;). Thus, {v,} is
a Cauchy subsequence of {u,} and hence as already noted convergent in K. Thus
K is indeed compact. g

13. Finite rank operators

Now, we need to starting thinking a little more seriously about operators on
a Hilbert space, remember that an operator is just a continuous linear map T :
H — H and the space of them (a Banach space) is denoted B(H) (rather than the
more cumbersome B(H, H) which is needed when the domain and target spaces are
different).

DEFINITION 18. An operator T € B(H) is of finite rank if its range has fi-
nite dimension (and that dimension is called the rank of T'); the set of finite rank
operators will be denoted R(H).

Why not F(H)? Because we want to use this for the Fredholm operators.
Clearly the sum of two operators of finite rank has finite rank, since the range
is contained in the sum of the ranges (but is often smaller):

(3.75) (Th 4+ T2)u € Ran(Th) + Ran(Ts) V u € H.

Since the range of a constant multiple of T is contained in the range of T it follows
that the finite rank operators form a linear subspace of B(#).
What does a finite rank operator look like? It really looks like a matrix.

LEMMA 26. If T : H — H has finite rank then there is a finite orthonormal
set {ex}t_, in H such that

(3.76) Tu = Z cij(u, e;)e;.
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PROOF. By definition, the range of T, R = T'(H) is a finite dimensional sub-
space. So, it has a basis which we can diagonalize in H to get an orthonormal basis,
e, 1 =1,...,p. Now, since this is a basis of the range, Tu can be expanded relative
to it for any u € H :

P

(3.77) Tu= Z(TU7 €i)e;.

i=1

On the other hand, the map u — (T'u, €;) is a continuous linear functional on H,
so (T'u,e;) = (u,v;) for some v; € H; notice in fact that v; = T*e;. This means the
formula (3.77) becomes

(3.78) Tu = Z(u, v;)e€;.

Now, the Gram-Schmidt procedure can be applied to orthonormalize the sequence
€1, .-+, €p, V1...,Up Tesulting in eq,...,er. This means that each v; is a linear
combination which we can write as

L
(379) V; = Zﬁ-je]u
Jj=1

Inserting this into (3.78) gives (3.76) (where the constants for i > p are zero). O

It is clear that
(3.80) B e B(H) and T € R(H) then BT € R(H).

Indeed, the range of BT is the range of B restricted to the range of T and this is
certainly finite dimensional since it is spanned by the image of a basis of Ran(T).
Similalry TB € R(H) since the range of T'B is contained in the range of 7. Thus
we have in fact proved most of

PRrROPOSITION 28. The finite rank operators form a x-closed two-sided ideal in
B(H), which is to say a linear subspace such that

(3.81) By, Bo € B(H), T € R(H) = BiT B2, T* € R(H).

PrOOF. It is only left to show that 7™ is of finite rank if 7" is, but this is an
immediate consequence of Lemma 26 since if T is given by (3.76) then

N
(3.82) T u = z Ci;(u, e)e;j
ij=1
is also of finite rank. O

LEMMA 27 (Row rank=Colum rank). For any finite rank operator on a Hilbert
space, the dimension of the range of T is equal to the dimension of the range of T*.

PRrROOF. From the formula (3.78) for a finite rank operator, it follows that the
vi, © = 1,...,p must be linearly independent — since the e; form a basis for the
range and a linear relation between the v; would show the range had dimension less
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than p. Thus in fact the null space of T is precisely the orthocomplement of the
span of the v; — the space of vectors orthogonal to each v;. Since

P
(T’U,, w) = Z(ua Ui)(eia ’LU) =
i=1
P
(3.83) (w,Tu) = Z(vi,u)(w,ei) =
i=1
P
T w = Z(w, €;)v;
i=1
the range of T™ is the span of the v;, so is also of dimension p. O

14. Compact operators

DEFINITION 19. An element K € B(H), the bounded operators on a separable
Hilbert space, is said to be compact (the old terminology was ‘totally bounded’
or ‘completely continuous’) if the image of the unit ball is precompact, i.e. has
compact closure — that is if the closure of K{u € H;||u|l% < 1} is compact in H.

Notice that in a metric space, to say that a set has compact closure is the same
as saying it is contained in a compact set.

PROPOSITION 29. An operator K € B(H), bounded on a separable Hilbert space,
is compact if and only if it is the limit of a norm-convergent sequence of finite rank
operators.

PROOF. So, we need to show that a compact operator is the limit of a conver-
gent sequence of finite rank operators. To do this we use the characterizations of
compact subsets of a separable Hilbert space discussed earlier. Namely, if {e;} is
an orthonormal basis of H then a subset I C H is compact if and only if it is closed
and bounded and has equi-small tails with respect to {e;}, meaning given ¢ > 0
there exits N such that

(3.84) Z |(v,e))? < Vvel
i>N
Now we shall apply this to the set K(B(0,1)) where we assume that K is
compact (as an operator, don’t be confused by the double usage, in the end it turns

out to be constructive) — so this set is contained in a compact set. Hence (3.84)
applies to it. Namely this means that for any € > 0 there exists n such that

(3.85) S l(Ku,e)* < VueH, July <1
i>n
For each n consider the first part of these sequences and define
(3.86) Kou=Y (Ku,e;)e;.
k<n
This is clearly a linear operator and has finite rank — since its range is contained in

the span of the first n elements of {e;}. Since this is an orthonormal basis,

(3.87) [Ku — Knullf =Y [(Ku, )]

i>n
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Thus (3.85) shows that |Ku — K,ull3 < €. Now, increasing n makes ||Ku — K, u||
smaller, so given € > 0 there exists n such that for all N > n,

(3.88) IK — Knl|lg = sup [|[Ku— Kyul|ly <e.
1

flull<

Thus indeed, K,, — K in norm and we have shown that the compact operators are
contained in the norm closure of the finite rank operators.

For the converse we assume that 7;, — K is a norm convergent sequence in
B(H) where each of the T;, is of finite rank — of course we know nothing about the
rank except that it is finite. We want to conclude that K is compact, so we need to
show that K(B(0,1)) is precompact. It is certainly bounded, by the norm of K. By
a result above on compactness of sets in a separable Hilbert space we know that it
suffices to prove that the closure of the image of the unit ball has uniformly small
tails. Let Iy be the orthogonal projection off the first N elements of a complete
orthonormal basis {ex} — so

(389) u = Z (’LL, ek)ek + I yu.
k<N
Then we know that ||IIy|| = 1 (assuming the Hilbert space is infinite dimensional)

and ||IIyul| is the ‘tail’. So what we need to show is that given € > 0 there exists
n such that

(3.90) lu| <1 = |UnKul| <e.
Now,
(3.91) I Kul < [T (K — To)ull + [Ty T

so choosing n large enough that |K — T,,|| < ¢/2 and then using the compactness
of T,, (which is finite rank) to choose N so large that

(3.92) lull <1 = |[TxToul| < ¢/2

shows that (3.90) holds and hence K is compact. O

ProrosiTION 30. For any separable Hilbert space, the compact operators form
a closed and x-closed two-sided ideal in B(H).

PROOF. In any metric space (applied to B(H)) the closure of a set is closed,
so the compact operators are closed being the closure of the finite rank operators.
Similarly the fact that it is closed under passage to adjoints follows from the same
fact for finite rank operators. The ideal properties also follow from the correspond-
ing properties for the finite rank operators, or we can prove them directly anyway.
Namely if B is bounded and T is compact then for some ¢ > 0 (namely 1/||B||
unless it is zero) ¢B maps B(0, 1) into itself. Thus ¢I'B = T'¢B is compact since
the image of the unit ball under it is contained in the image of the unit ball under
T; hence T'B is also compact. Similarly BT is compact since B is continuous and
then

(3.93) BT (B(0,1)) C B(T(B(0,1))) is compact

since it is the image under a continuous map of a compact set. (I
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15. Weak convergence

It is convenient to formalize the idea that a sequence be bounded and that each
of the (un,ex), the sequence of coefficients of some particular Fourier-Bessel series,
should converge.

DEFINITION 20. A sequence, {u,}, in a Hilbert space, H, is said to converge
weakly to an element u € H if it is bounded in norm and (u;,v) — (u,v) converges
in C for each v € H. This relationship is written

(3.94) Up — U.

In fact as we shall see below, the assumption that [|u,| is bounded and that u
exists are both unnecessary. That is, a sequence converges weakly if and only if
(tn,v) converges in C for each v € H. Conversely, there is no harm in assuming
it is bounded and that the ‘weak limit’ u € H exists. Note that the weak limit is
unique since if v and ' both have this property then (v —u',v) = lim, o (tn, v) —
lim,, o0 (tn,v) = 0 for all v € H and setting v = u — v’ it follows that u = u’.

LEMMA 28. A (strongly) convergent sequence is weakly convergent with the
same limit.

PRrOOF. This is the continuity of the inner product. If u,, — u then

(3.95) |(un, v) = (u,v)] < [lup — ull[[of| =0

for each v € H shows weak convergence. O
LEMMA 29. For a bounded sequence in a separable Hilbert space, weak con-

vergence is equivalent to component convergence with respect to an orthonormal
basis.

PROOF. Let e; be an orthonormal basis. Then if u, is weakly convergent
it follows immediately that (u,,er) — (u,er) converges for each k. Conversely,
suppose this is true for a bounded sequence, just that (u,,er) — ¢ in C for each
k. The norm boundedness and Bessel’s inequality show that

(3.96) D lel? = lim > [(un, ex)* < C?sup [Juy,||?
k<p e k<p "

for all p. Thus in fact {cx} € I and hence
(3.97) U= chek cH
k

by the completeness of H. Clearly (u,,ex) — (u,ex) for each k. It remains to show
that (un,v) — (u,v) for all v € H. This is certainly true for any finite linear
combination of the e; and for a general v we can write

(398) (una ”U) - (u,v) = (unv’vp) - (U,Up) + (unvv - vp) - (U7U - ’UP) =
|(un, v) = (4, 0)] < [(un, vp) = (u,vp)| + 2C][v — vy |
where v, = > (v, ei)ex is a finite part of the Fourier-Bessel series for v and C'is a
k<p
bound for ||u,||. Now the convergence v, — v implies that the last term in (3.98)
can be made small by choosing p large, independent of n. Then the second last term
can be made small by choosing n large since v, is a finite linear combination of the
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er. Thus indeed, (un,v) — (u,v) for all v € H and it follows that w, converges
weakly to u. ([

PROPOSITION 31. Any bounded sequence {u,} in a separable Hilbert space has
a weakly convergent subsequence.

This can be thought of as an analogue in infinite dimensions of the Heine-Borel
theorem if you say ‘a bounded closed subset of a separable Hilbert space is weakly
compact’.

PROOF. Choose an orthonormal basis {er} and apply the procedure in the
proof of Proposition 27 to extract a subsequence of the given bounded sequence
such that (uy,,ex) converges for each k. Now apply the preceeding Lemma to
conclude that this subsequence converges weakly. ([l

LEMMA 30. For a weakly convergent sequence u, — u
(3.99) u] < liminf ||u,].

PrROOF. Choose an orthonormal basis e, and observe that
(3.100) D l(w,er)? = nli_)rr(;Z |(tn, €1)]2.

k<p k<p
The sum on the right is bounded by |u,||? independently of p so
(3.101) D llu, e < lim inf [l ||?
k<p

by the definition of liminf. Then let p — oo to conclude that
(3.102) |ul|? < limninf [, |2

from which (3.99) follows. O

LEMMA 31. An operator K € B(H) is compact if and only if the image Ku,
of any weakly convergent sequence {uy} in H is strongly, i.e. norm, convergent.

This is the origin of the old name ‘completely continuous’ for compact operators,
since they turn even weakly convergent into strongly convergent sequences.

Proor. First suppose that u,, — u is a weakly convergent sequence in H and
that K is compact. We know that [[u,| < C is bounded so the sequence Ku,
is contained in CK(B(0,1)) and hence in a compact set (clearly if D is compact
then so is ¢D for any constant ¢.) Thus, any subsequence of Ku,, has a convergent
subseqeunce and the limit is necessarily Ku since Ku,, = Ku (true for any bounded
operator by computing

(3.103) (Kup,v) = (Un, K*v) = (u, K*v) = (Ku,v).)

But the condition on a sequence in a metric space that every subsequence of it has
a subsequence which converges to a fixed limit implies convergence. (If you don’t
remember this, reconstruct the proof: To say a sequence v, does not converge to
v is to say that for some € > 0 there is a subsequence along which d(v,, ,v) > e
This is impossible given the subsequence of subsequence condition (converging to
the fixed limit v.))

Conversely, suppose that K has this property of turning weakly convergent
into strongly convergent sequences. We want to show that K (B(0,1)) has compact



84 3. HILBERT SPACES

closure. This just means that any sequence in K(B(0,1)) has a (strongly) con-
vergent subsequence — where we do not have to worry about whether the limit is
in the set or not. Such a sequence is of the form Kw, where u,, is a sequence in
B(0,1). However we know that the ball is weakly compact, that is we can pass to
a subsequence which converges weakly, u,, — u. Then, by the assumption of the
Lemma, Ku,, — Ku converges strongly. Thus u, does indeed have a convergent
subsequence and hence K(B(0,1)) must have compact closure. O

As noted above, it is not really necessary to assume that a sequence in a Hilbert
space is bounded, provided one has the Uniform Boundedness Principle, Theorem 3,
at the ready.

ProOPOSITION 32. Ifwu, € H is a sequence in a Hilbert space and for allv € H
(3.104) (Un,v) = F(v) converges in C

then ||uy||m is bounded and there exists w € H such that u, — w (converges
weakly).

ProOOF. Apply the Uniform Boundedness Theorem to the continuous function-
als

(3.105) To(u) = (u,uy), T : H—C

where we reverse the order to make them linear rather than anti-linear. Thus, each
set |T,(u)| is bounded in C since it is convergent. It follows from the Uniform
Boundedness Principle that there is a bound

(3.106) ITa]l < C.

However, this norm as a functional is just ||T},|| = ||un||z so the original sequence
must be bounded in H. Define T': H — C as the limit for each u :

(3.107) T(u) = nll)rrgo Tn(u) = nh_)rrgo(u, Up).
This exists for each u by hypothesis. It is a linear map and from (3.106) it is

bounded, ||T'|| < C. Thus by the Riesz Representation theorem, there exists w € H
such that

(3.108) T(u) = (u,w) Vu e H.

Thus (un,u) — (w,u) for all u € H so u, — w as claimed. O

16. The algebra B(H)

Recall the basic properties of the Banach space, and algebra, of bounded oper-
ators B(H) on a separable Hilbert space H. In particular that it is a Banach space
with respect to the norm

(3.109) Il = sup [|Aull

llullx=1
and that the norm satisfies
(3.110) |AB]| < [[A[l|| Bl
as follows from the fact that

[ABu < [|A[[l| Bull < [Al[llB][[[u]-
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Consider the set of invertible elements:
(3.111) GL(H)={A € B(H);3 Be B(H), BA=AB=1d}.

Note that this is equivalent to saying A is 1-1 and onto in view of the Open Mapping
Theorem, Theorem 4.
This set is open, to see this consider a neighbourhood of the identity.

LEMMA 32. If A€ B(H) and ||A]| < 1 then
(3.112) Id—A € GL(H).

PRrROOF. This follows from the convergence of the Neumann series. If ||A|| < 1
then ||A7|| < ||A]J7, from (3.110), and it follows that

(3.113) B=>) A
=0

(where A° = Id by definition) is absolutely summable in B(H) since Y || A7 con-
j=0

verges. Since B(H) is a Banach space, the sum converges. Moreover by the conti-
nuity of the product with respect to the norm

n n+1
— ; J— 1 J—B_—
(3.114) AB_AnlggoZA _nlgr;oZA =B-1d
3=0 j=1
and similarly BA = B —1Id. Thus (Id—A)B = B(Id —A) = Id shows that B is a
(and hence the) 2-sided inverse of Id —A. O

PROPOSITION 33. The invertible elements form an open subset GL(H) C B(H).

PROOF. Suppose G € GL(H), meaning it has a two-sided (and unique) inverse
G teB(H):

(3.115) GG =GG ! =1d.

Then we wish to show that B(G;e) C GL(H) for some € > 0. In fact we shall see
that we can take e = ||G~1||~!. To show that G + B is invertible set

(3.116) FE=-G'B=G+B=G(Id+G'B) =G(Id—E)
From Lemma 32 we know that

(3.117) |B|| < 1/|G Y| = |G™'B|| < 1 = Id —E is invertible.

Then (Id —F)~'G~! satisfies

(3.118) (Id-E)'G G+ B)=(1d-E) *(1d-F) =1d.

Moreover E' = —BG~1 also satisfies |[E'|| < ||B||||G~!|| < 1 and

(3.119) (G+B)G '1d—FE)' = 1d-E)Id-E)"' =1d.

Thus G 4+ B has both a ‘left’ and a ‘right’ inverse. The associtivity of the operator
product (that A(BC) = (AB)C) then shows that

(3.120) G'(Id—E") ' = Id-E)"'G " (G+B)G™'(1d-E") ' = ld-E)~'G™!

so the left and right inverses are equal and hence G + B is invertible. [
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Thus GL(H) C B(H), the set of invertible elements, is open. It is also a group
— since the inverse of G1 Gy if Gy, Go € GL(H) is G5 G,

This group of invertible elements has a smaller subgroup, U(#), the unitary
group, defined by

(3.121) UH) ={U € GL(H); U =U*}.

The unitary group consists of the linear isometric isomorphisms of H onto itself —
thus

(3.122) (Uu,Uv) = (u,v), |[Uu| =||ull V u,v e H, U e UH).

This is an important object and we will use it a little bit later on.

The groups GL(H) and U(H) for a separable Hilbert space may seem very
similar to the familiar groups of invertible and unitary n x n matrices, GL(n) and
U(n), but this is somewhat deceptive. For one thing they are much bigger. In fact
there are other important qualitative differences — you can find some of this in the
problems. One important fact that you should know, even though we will not try
prove it here, is that both GL(H) and U(H) are contractible as a metric spaces —
they have no significant topology. This is to be constrasted with the GL(n) and
U(n) which have a lot of topology, and are not at all simple spaces — especially for
large n. One upshot of this is that U(#H) does not look much like the limit of the
U(n) as n — oo. Another important fact that we will show is that GL(H) is not
dense in B(H), in contrast to the finite dimensional case.

17. Spectrum of an operator

Another direct application of Lemma 32, the convergence of the Neumann se-
ries, is that if A € B(H) and A € C has |A| > ||A|| then [[A"1A|| < 1so (Id—=\"1A4)~!
exists and satisfies

(3.123) ATd—AATd-A"tA) " =Td = A" Td-A"1A) T (A - A).

Thus, A — A € GL(H) has inverse (A — A)~! = A7}(Id —A~1A)~L. The set of X for
which this operator is invertible,

(3.124) {A e C;(A\Id-A) e GL(H)} cC

is an open, and non-empty, set called the resolvent set (usually (A — \)~! is called
the resolvent). The complement of the resolvent set is called the spectrum of A

(3.125) Spec(4) ={A e C;\Id—A ¢ GL(H)}.

As follows from the discussion above it is a compact set — it cannot be empty. You
should resist the temptation to think that this is the set of eigenvalues of A, that
is not really true.

For a bounded self-adjoint operator we can say more quite a bit more.

PRrROPOSITION 34. If A: H — H is a bounded operator on a Hilbert space and
A* = A then A — \1d is invertible for all A € C\ R and at least one of A — ||A||1d
and A+ ||A||Id is not invertible.

The proof of the last part depends on a different characterization of the norm
in the self-adjoint case.
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LEMMA 33. If A* = A then
(3.126) 1A = sup |(Au,u)].

[lull=1
PROOF. Certainly, [{Au,u)| < ||A||||u||? so the right side can only be smaller
than or equal to the left. Suppose that

Then for any u, v € H, |(Au,v)| = (Ae?u, v) for some 6 € [0,27), so we can arrange
that (Au,v) = [(Au/,v)| is non-negative and ||v/|| = 1 = |ju|| = ||v||. Dropping the
primes and computing using the polarization identity (really just the parallelogram
law)

(3.127)

4{Au,v) = (A(u+v),u+v)—(A(u—v), u—v)+i{A(u+iv), u+iv) —i(A(u—iv), u—iv).

By the reality of the left side we can drop the last two terms and use the bound to
see that

(3.128) 4(Au, v) < a(flu+l* + lu—o|*) = 2a([Ju]|* + [[v]*) = 4a
Thus, Al = supj,=|v|=1 [{Au, v)| < a and hence [|A]| = a. |

PROOF OF PROPOSITION 34. If A = s+it where t # 0 then A— X\ = (A—s)—it
and A — s is bounded and selfadjoint, so it is enough to consider the special case
that A = ét. Then for any u € H,

(3.129) Im((A — it)u,u) = —t|ul®.

So, certainly A — it is injective, since (A — it)u = 0 implies v = 0 if ¢ # 0. The
adjoint of A — it is A + it so the adjoint is injective too. It follows that the range
of A —it is dense in H. Indeed, if v € H and v L (A —it)u for all w € H, so v is
orthogonal to the range, then

(3.130) 0 = Im((A — it)v,v) = —t||v[|.

By this density of the range, if w € H there exists a sequence u, in H with
(A —it)u,, — w. But this implies that ||u,| is bounded, since t||u,||?> = — Im((A —
it)un, u,) and hence we can pass to a weakly convergent subsequence, w, — wu.
Then (A — it)u, — (A —it)u = w so A — it is 1-1 and onto. From the Open
Mapping Theorem, (A — it) is invertible.

Finally then we need to show that one of A+ ||A||Id is NOT invertible. This
follows from (3.126). Indeed, by the definition of sup there is a sequence u,, € H
with [Ju,| = 1 such that either (Au,,u,) — [|A| or (Aup,u,) — —[|A|. We may
pass to a weakly convergent subsequence and so assume u,, — u. Assume we are in
the first case, so this means ((A — ||A]|)un, u,) — 0. Then

1(A = AN ual* = | Aun | = 20 All) Aun, wn) + | A un |

(3.131)
[ Aunl* = 2| A (A = [| A, wn) = AN [Jun .

The second two terms here have limit —||A||? by assumption and the first term
is less than or equal to || A||?. Since the sequence is positive it follows that ||(4 —
| Al)?un|| — 0. This means that A — ||A| Id is not invertible, since if it had a
bounded inverse B then 1 = |lu,| < ||B|||[(A — ||A|)?u,|| which is impossible.
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The other case is similar (or you can replace A by —A) so one of A + ||A]| is not
invertible. (]

18. Spectral theorem for compact self-adjoint operators

One of the important differences between a general bounded self-adjoint op-
erator and a compact self-adjoint operator is that the latter has eigenvalues and
eigenvectors — lots of them.

THEOREM 15. If A € K(H) is a self-adjoint, compact operator on a separable
Hilbert space, so A* = A, then H has an orthonormal basis consisting of eigenvec-
tors of A, u; such that

(3.132) Auj = Ajuj, A;j € R\ {0},
consisting of an orthonormal basis for the possibly infinite-dimensional (closed)
null space and eigenvectors with non-zero eigenvalues which can be arranged into a

sequence such that |\;| is a non-increasing and \; — 0 as j — oo (in case Nul(A)+
is finite dimensional, this sequence is finite).

The operator A maps Nul(A)+ into itself so it may be clearer to first split off the null
space and then look at the operator acting on Nul(A)* which has an orthonormal
basis of eigenvectors with non-vanishing eigenvalues.

Before going to the proof, let’s notice some useful conclusions. One is that we
have ‘Fredholm’s alternative’ in this case.

COROLLARY 4. If A € K(H) is a compact self-adjoint operator on a separable
Hilbert space then the equation
(3.133) u—Au=f
either has a unique solution for each f € H or else there is a non-trivial finite
dimensional space of solutions to
(3.134) u—Au=0
and then (3.133) has a solution if and only if f is orthogonal to all these solutions.

PRrROOF. This is just saying that the null space of Id —A is a complement to
the range — which is closed. So, either Id —A is invertible or if not then the range
is precisely the orthocomplement of Nul(Id —A). You might say there is not much
alternative from this point of view, since it just says the range is always the ortho-
complement of the null space. a

Let me separate off the heart of the argument from the bookkeeping.

LEMMA 34. If A € K(H) is a self-adjoint compact operator on a separable
(possibly finite-dimensional) Hilbert space then
(3.135) F(u) = (Au,u), F:{ue H;|u| =1} — R
is a continuous function on the unit sphere which attains its supremum and infimum
where
(3.136) sup [F(w)] = Al

flull=1

Furthermore, if the mazimum or minimum of F(u) is non-zero it is attained at an
eiwvenvector of A with this extremal value as eigenvalue.
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PROOF. Since |F(u)]| is the function considered in (3.126), (3.136) is a direct
consequence of Lemma 33. Moreover, continuity of F' follows from continuity of A
and of the inner product so

(3.137) |F(u) = F(u')] < [(Au, u) = (Au, v')|+[(Au, u') — (A, )| < 2[| Al flu—']

since both © and «’ have norm one.

If we were in finite dimensions this almost finishes the proof, since the sphere
is then compact and a continuous function on a compact set attains its sup and inf.
In the general case we need to use the compactness of A. Certainly F' is bounded,
(3.138) |F(u)| < Sup |(Au, w)| < [[A].-

ul|=
Thus, there is a sequence u;; such that F(u,”) — sup F' and another u,, such that
F(u,,) — inf F. The weak compactness of the unit sphere means that we can pass
to a weakly convergent subsequence in each case, and so assume that uf — u*
converges weakly. Then, by the compactness of A, Au} — AuT converges strongly,
i.e. in norm. But then we can write

(3.139)  [F(uy) — F(u®)] < [(Auy — ™), u)| + |[(Au™, uyy — u™))|
— (A — ), u)| + [, A — u®))] < 2 Aug — Au|
to deduce that F(u*) = lim F(u}) are respectively the sup and inf of F. Thus
indeed, as in the finite dimensional case, the sup and inf are attained, and hence
are the max and min. Note that this is NOT typically true if A is not compact as
well as self-adjoint.
Now, suppose that AT = sup F’ > 0. Then for any v € H with v L u™ and
|lv]| = 1, the curve
(3.140) Ly,:(—m,m) 360+ cosOu™ +sindv
lies in the unit sphere. Expanding out
(3.141) F(L,(0)) =
(AL, (), L,(0)) = cos? OF (uT) 4 2sin(20) Re(Au™,v) + sin?(0) F (v)
we know that this function must take its maximum at 8 = 0. The derivative there
(it is certainly continuously differentiable on (—m,7)) is Re(Au™,v) which must
therefore vanish. The same is true for v in place of v so in fact
(3.142) (Aut,v) =0V v Lu", ||v]| =1.

Taking the span of these v’s it follows that (Au*,v) = 0 for all v L u™ so ATu
must be a multiple of u™ itself. Inserting this into the definition of F' it follows
that Au™ = ATu™ is an eigenvector with eigenvalue AT = sup F.

The same argument applies to inf F' if it is negative, for instance by replacing
A by —A. This completes the proof of the Lemma. O

PrOOF OF THEOREM 15. First consider the Hilbert space Ho = Nul(4)* C
‘H. Then, as noted above, A maps H into itself, since
(3.143) (Au,v) = (u, Av) =0V u € Hy, v € Nul(A) = Au € H,.
Moreover, Ay, which is A restricted to Ho, is again a compact self-adjoint operator

— where the compactness follows from the fact that A(B(0,1)) for B(0,1) C Hy is
smaller than (actually of course equal to) the whole image of the unit ball.
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Thus we can apply the Lemma above to Ay, with quadratic form Fp, and find
an eigenvector. Let’s agree to take the one associated to sup Fy unless sup Fy <
—inf Fy in which case we take one associated to the inf. Now, what can go wrong
here? Nothing except if Fy = 0. However in that case we know from Lemma 33
that ||A|| =0so A =0.

So, we now know that we can find an eigenvector with non-zero eigenvalue
unless A = 0 which would implies Nul(4) = H. Now we proceed by induction.
Suppose we have found N mutually orthogonal eigenvectors e; for A all with norm
1 and eigenvectors A; — an orthonormal set of eigenvectors and all in Hg. Then we
consider

(3.144) Hy = {u € Ho = Nul(A)*; (u,e;) =0, j=1,...,N}.
From the argument above, A maps Hy into itself, since
(3.145) (Au, e;) = (u, Aej) = Aj(u,ej) =0if u € Hy = Au € Hn.

Moreover this restricted operator is self-adjoint and compact on Hy as before so
we can again find an eigenvector, with eigenvalue either the max of min of the new
F for H . This process will not stop uness F' = 0 at some stage, but then A =0
on Hy and since Hy L Nul(A) which implies Hy = {0} so H must have been
finite dimensional.

Thus, either Hy is finite dimensional or we can grind out an infinite orthonormal
sequence e; of eigenvectors of A in Hy with the corresponding sequence of eigen-
values such that |A;| is non-increasing — since the successive Fi’s are restrictions
of the previous ones the max and min are getting closer to (or at least no further
from) 0.

So we need to rule out the possibility that there is an infinite orthonormal
sequence of eigenfunctions e; with corresponding eigenvalues \; where inf; |A;| =
a > 0. Such a sequence cannot exist since e; — 0 so by the compactness of A,
Ae; — 0 (in norm) but |Ae;| > a which is a contradiction. Thus if null(4)* is
not finite dimensional then the sequence of eigenvalues constructed above must
converge to 0.

Finally then, we need to check that this orthonormal sequence of eigenvectors
constitutes an orthonormal basis of Hg. If not, then we can form the closure of the
span of the e; we have constructed, H', and its orthocomplement in Hy — which
would have to be non-trivial. However, as before F' restricts to this space to be
F' for the restriction of A’ to it, which is again a compact self-adjoint operator.
So, if F’ is not identically zero we can again construct an eigenfunction, with non-
zero eigenvalue, which contracdicts the fact the we are always choosing a largest
eigenvalue, in absolute value at least. Thus in fact F/ = 0 so A’ = 0 and the
eigenvectors form and orthonormal basis of Nul(A)+. This completes the proof of
the theorem. (]

19. Functional Calculus

So the non-zero eigenvalues of a compact self-adjoint operator form the image of
a sequence in [—||A||, || A||] either converging to zero or finite. If f € CO([—||A|, || A
then one can define an operator

(3.146) f(A) € B(H), f(A)u= Zf(ku)(u,ei)ei



20. COMPACT PERTURBATIONS OF THE IDENTITY 91

where {e;} is a complete orthonormal basis of eigenfunctions. Provided f(0) = 0
this is compact and if f is real it is self-adjoint. This formula actually defines a
linear map

(3.147) CO[= 1AL I|AN]) — B(H) with f(A)g(A) = (fg)(A).

Such a map exists for any bounded self-adjoint operator. Even though it may
not have eigenfunctions — or not a complete orthonormal basis of them anyway, it
is still possible to define f(A) for a continous function defined on [—||Al], ||A]|] (in
fact it only has to be defined on Spec(A4) C [—|| 4], ||4||]] which might be quite a lot
smaller). This is an effective replacement for the spectral theorem in the compact
case.

How does one define f(A)? Well, it is easy enough in case f is a polynomial,
since then we can factorize it and set
(3.148)

fR)=cz—21)(z—22)...(z—2n) = f(A) =c(A—21)(A — 23) ... (A — zn).
Notice that the result does not depend on the order of the factors or anything like
that. To pass to the case of a general continuous function on [—||A||, ||A]|] one can
use the norm estimate in the polynomial case, that
(3.149) A< sup  [f(2)]-

ze[= [ AILIIAI

This allows one to pass f in the uniform closure of the polynomials, which by the
Stone-Weierstrass theorem is the whole of C°([—||A]|, ||A||]). The proof of (3.149) is
outlined in Problem 5.33 below.

20. Compact perturbations of the identity

I have generally not had a chance to discuss most of the material in this section,
or the next, in the lectures.

Compact operators are, as we know, ‘small’ in the sense that the are norm
limits of finite rank operators. If you accept this, then you will want to say that an
operator such as

(3.150) Id-K, K € K(H)

is ‘big’. We are quite interested in this operator because of spectral theory. To say
that A € C is an eigenvalue of K is to say that there is a non-trivial solution of

(3.151) Ku—JAu=0

where non-trivial means other than than the solution v = 0 which always exists. If
A is an eigenvalue of K then certainly A € Spec(K), since A— K cannot be invertible.
For general operators the converse is not correct, but for compact operators it is.

LEMmMA 35. If K € B(H) is a compact operator then A € C\{0} is an eigenvalue
of K if and only if A € Spec(K).

PROOF. Since we can divide by A we may replace K by A™' K and consider the
special case A = 1. Now, if K is actually finite rank the result is straightforward.
By Lemma 26 we can choose a basis so that (3.76) holds. Let the span of the e;
be W — since it is finite dimensional it is closed. Then Id —K acts rather simply —
decomposing H =W @ W, u = w + v’

(3.152) (Md-K)(w+w")=w+ (Idw —K')u', K' :W — W
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being a matrix with respect to the basis. Now, 1 is an eigenvalue of K if and only
if 1 is an eigenvalue of K’ as an operator on the finite-dimensional space W. Now,
a matrix, such as Idy, —K’, is invertible if and only if it is injective, or equivalently
surjective. So, the same is true for Id — K.

In the general case we use the approximability of K by finite rank operators.
Thus, we can choose a finite rank operator F such that |K — F| < 1/2. Thus,
(Id—K + F)~! = Id —B is invertible. Then we can write
(3.153) Id-K=Id—-(K-F)—-F=(Id—(K - F))Id—-L), L= (Id—B)F.

Thus, Id — K is invertible if and only if Id —L is invertible. Thus, if Id —K is not
invertible then Id —L is not invertible and hence has null space and from (3.153) it
follows that Id — K has non-trivial null space, i.e. K has 1 as an eigenvalue. O

A little more generally:-

ProrosiTION 35. If K € KC(H) is a compact operator on a separable Hilbert
space then

null(Id —K) = {u € H; (Idg)u = 0} is finite dimensional
(3.154) Ran(Id—K) ={ve H;u € H, v= (Id—K)u} is closed and
Ran(Id —K)* = {w € H; (w, Ku) =0 Y u € H} is finite dimensional

and moreover
(3.155) dim (null(Id —K)) = dim (Ran(Id —K)™*) .

PrOOF OF PROPOSITION 35. First let’s check this in the case of a finite rank
operator K = T. Then
(3.156) Nul(Id -T') = {u € H;u = Tu} C Ran(T).
A subspace of a finite dimensional space is certainly finite dimensional, so this
proves the first condition in the finite rank case.

Similarly, still assuming that T is finite rank consider the range
(3.157) Ran(Id —T") = {v € H;v = (Id —=T)u for some u € H}.

Consider the subspace {u € H;Tu = 0}. We know that this this is closed, since T'
is certainly continuous. On the other hand from (3.157),

(3.158) Ran(Id —T) D Nul(T).

Remember that a finite rank operator can be written out as a finite sum
N

(3.159) Tu=Y (u,e)f;
i=1

where we can take the f; to be a basis of the range of T. We also know in this
case that the e; must be linearly independent — if they weren’t then we could write
one of them, say the last since we can renumber, out as a sum, ey = Y c¢;e;, of

J<N
multiples of the others and then find
N—-1
(3.160) Tu="Y(u,e;)(fi + G fv)

i=1
showing that the range of T has dimension at most N — 1, contradicting the fact
that the f; span it.
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So, going back to (3.159) we know that Nul(7T") has finite codimension — every
element of #H is of the form
N
(3.161) w=u'+Y die;, u € Nul(T).
i=1
So, going back to (3.158), if Ran(Id —T) # Nul(T'), and it need not be equal, we
can choose — using the fact that Nul(T) is closed — an element g € Ran(Id —T') \
Nul(T") which is orthogonal to Nul(T"). To do this, start with any a vector ¢’ in
Ran(Id —7") which is not in Nul(7). It can be split as ¢’ = v’ + g where g L
Nul(T) (being a closed subspace) and u” € Nul(T), then g # 0 is in Ran(Id —T)
and orthongonal to Nul(T). Now, the new space Nul(T) @ Cg is again closed and
contained in Ran(Id —T). But we can continue this process replacing Nul(T') by
this larger closed subspace. After a a finite number of steps we conclude that
Ran(Id —T) itself is closed.
What we have just proved is:

LEMMA 36. If V C H is a subspace of a Hilbert space which contains a closed
subspace of finite codimension in H — meaning V. O W where W is closed and there

are finitely many elements e; € H, i = 1,..., N such that every element u € H is
of the form

N
(3.162) w=u+ Z cie;, ¢ € C,

i=1
then V itself is closed.
So, this takes care of the case that K = T has finite rank! What about the
general case where K is compact? Here we just use a consequence of the approxi-

mation of compact operators by finite rank operators proved last time. Namely, if
K is compact then there exists B € B(#H) and T of finite rank such that

1
(3.163) K=B+T |B|| <.

Now, consider the null space of Id —K and use (3.163) to write
(3.164) Id—K = (Id—B) - T = (Id—B)(Id=T"), T' = (Id —B)~'T.

Here we have used the convergence of the Neumann series, so (Id —B)~! does exist.
Now, T is of finite rank, by the ideal property, so

(3.165) Nul(Id —K) = Nul(Id —7") is finite dimensional.

Here of course we use the fact that (Id —K)u = 0 is equivalent to (Id—T")u = 0
since Id — B is invertible. So, this is the first condition in (3.154).

Similarly, to examine the second we do the same thing but the other way around
and write

(3.166) Id-K = (Id-B) — T = (Id —~T")(1d—B), T" = T(1d —B)~.
Now, T" is again of finite rank and
(3.167) Ran(Id —K) = Ran(Id —7") is closed

again using the fact that Id — B is invertible — so every element of the form (Id —K)u
is of the form (Id —T")u’ where u’ = (Id —B)u and conversely.
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So, now we have proved all of (3.154) — the third part following from the first
as discussed before.

What about (3.155)7 This time let’s first check that it is enough to consider
the finite rank case. For a compact operator we have written
(3.168) (Id-K)=G(Id-T)

where G = Id —B with || B| < 3 is invertible and T is of finite rank. So what we
want to see is that

(3.169) dim Nul(Id —K') = dim Nul(Id —=7T") = dim Nul(Id - K™).
However, Id —K* = (Id —=T*)G* and G* is also invertible, so
(3.170) dim Nul(Id —K*) = dim Nul(Id —T*)

and hence it is enough to check that dim Nul(Id —7") = dim Nul(Id —7™*) — which is
to say the same thing for finite rank operators.

Now, for a finite rank operator, written out as (3.159), we can look at the
vector space W spanned by all the f;’s and all the e;’s together — note that there is
nothing to stop there being dependence relations among the combination although
separately they are independent. Now, T': W — W as is immediately clear and

N
(3.171) T = Z(v, fiei

i=1
soT : W — W too. In fact Tw’ = 0 and T*w’ = 0 if w' € W since then
(w',e;) =0 and (w', f;) = 0 for all 7. It follows that if we write R : W «— W for
the linear map on this finite dimensional space which is equal to Id —7" acting on
it, then R* is given by Id —T™ acting on W and we use the Hilbert space structure
on W induced as a subspace of H. So, what we have just shown is that
(3.172)

(Id-Thu=0<=uecWand Ru=0, (Id-T")u=0<=u € W and R*u = 0.

Thus we really are reduced to the finite-dimensional theorem
(3.173) dim Nul(R) = dim Nul(R*) on W.

You no doubt know this result. It follows by observing that in this case, every-
thing now on W, Ran(W) = Nul(R*)* and finite dimensions

(3.174)  dimNul(R) 4+ dim Ran(R) = dim W = dim Ran(WW) 4+ dim Nul(R").
(I

21. Fredholm operators

DEFINITION 21. A bounded operator F' € B(#) on a Hilbert space is said to be
Fredholm if it has the three properties in (3.154) — its null space is finite dimensional,
its range is closed and the orthocomplement of its range is finite dimensional.

For general Fredholm operators the row-rank=colum-rank result (3.155) does not
hold. Indeed the difference of these two integers

(3.175) ind(F) = dim (null(Id —K)) — dim (Ran(Id —K)*)

is a very important number with lots of interesting properties and uses.

Notice that the last two conditions in (3.154) are really independent since the
orthocomplement of a subspace is the same as the orthocomplement of its closure.
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There is for instance a bounded operator on a separable Hilbert space with trivial
null space and dense range which is not closed. How could this be? Think for
instance of the operator on L?(0,1) which is multiplication by the function z.
This is assuredly bounded and an element of the null space would have to satisfy
zu(x) = 0 almost everywhere, and hence vanish almost everywhere. Moreover the
density of the L? functions vanishing in x < € for some (non-fixed) ¢ > 0 shows
that the range is dense. However it is clearly not invertible.

Before proving this result let’s check that the third condition in (3.154) really
follows from the first. This is a general fact which I mentioned, at least, earlier but
let me pause to prove it.

PROPOSITION 36. If B € B(H) is a bounded operator on a Hilbert space and
B* is its adjoint then

(3.176) Ran(B)* = (Ran(B))* = {v € H; (v,w) = 0V w € Ran(B)} = Nul(B*).

PROOF. The definition of the orthocomplement of Ran(B) shows immediately
that

(3.177) v € (Ran(B))* <= (v,w) =0V w € Ran(B) < (v,Bu) =0V u € H
< (B*v,u) =0V u€H < B*v=0<<= v e Nul(B").

On the other hand we have already observed that V+ = (V) for any subspace —
since the right side is certainly contained in the left and (u,v) = 0 for all v € V
implies that (u,w) = 0 for all w € V by using the continuity of the inner product
to pass to the limit of a sequence v, — w. O

Thus as a corrollary we see that if Nul(Id —K) is always finite dimensional for
K compact (i. e. we check it for all compact operators) then Nul(Id —K™*) is finite
dimensional and hence so is Ran(Id —K)= .

22. Kuiper’s theorem — Under construction

I have never presented the material in this section in lectures, it is there in case
you are interested in ‘something more’ about invertible operators on Hilbert space.
For finite dimensional spaces, such as C, the group of invertible operators, denoted
typically GL(V), is a particularly important example of a Lie group. One reason it
is important is that it carries a good deal of ‘topological’ structure. In particular —
I’'m assuming you have done a little topology — its fundamental group is not trivial,
in fact it is isomorphic to Z. This corresponds to the fact that a continuous closed
curve ¢ : S — GL(N) is contractible if and only if its winding number is zero — the
effective number of times that the determinant goes around the origin in C. There
is a lot more topology than this (and it is actually very complicated).

Perhaps surprisingly, the corresponding group of the bounded operators on a
separable (complex) infinite-dimensional Hilbert space which have bounded inverses
(or equivalently those which are bijections in view of the open mapping theorem)
is contractible. This is Kuiper’s theorem, and means that this group, GL(H), has
no ‘topology’ at all, no holes in any dimension and for topological purposes it is
like a big open ball. The proof is not really hard, but it is not exactly obvious
either. It depends on an earlier idea, ‘Eilenberg swindle’, which shows how the
infinite-dimensionality is exploited. As you can guess, this is sort of amusing (if
you have the right attitude ...).
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One of the theorems just beyond our reach in terms of time, is Kuiper’s theorem
to the effect that the group of invertible operators on a separable Hilbert space is
contractible. Let’s denote by GL(H) this group:- in view of the open mapping
theorem we know that

(3.178) GL(H) = {A € B(H); A is injective and surjective.}.

Contractibility is the topological notion of ‘topologically trivial’. It means precisely
that there is a continuous map

v:[0,1] x GL(H) — GL(H) s.t.
(3.179) v(0,A) = A, v(1,A) =1d, V¥ A € GL(H).
Continuity here means for the metric space [0, 1] x GL(H) where the metric comes
from the norms on R and B(H).

Note that GL(H) is not contractible in the finite dimensional case (provided
H has positive dimension). This can be seen by looking at the determinant — see
Problem??

Initially we will consider only the notion of ‘weak contractibility’ which has
nothing to do with weak convergence, rather just means that for any compact set
X C GL(H) we can find a continuous map

~v:[0,1] x X — GL(H) s.t.

3.180
( ) v(0,4)=A, v(1,A)=1d, ¥V A€ X.

In fact, to carry out the construction without having to worry about too many
things at one, just consider (path) connectedness of GL(H) meaning that there is
a continuous map as in (3.180) where X = {A} just consists of one point — so the
map is just 7y : [0,1] — GL(H) such that v(0) = 4, v(1) =1d.

The construction of « is in three steps

(1) Creating a gap
(2) Rotating to a trivial factor
(3) Eilenberg’s swindle.

LEMMA 37 (Creating a gap). If A € B(H) and € > 0 is given there is a
decomposition H = Hyi & Hy, ® Hp into three closed mutually orthogonal infinite-
dimensional subspaces such that if Qr is the orthogonal projections onto Hy for
I =K, L, O then

(3.181) 1QLBQk| <e.

Proor. Choose an orthonormal basis e;, j € N, of H. The subspaces H; will
be determined by a corresponding decomposition

(3.182) N=KULUO, KNL=KNO=LNO =0.

Thus H; has orthonormal basis ey, k € I, I = K, L, O. To ensure (3.181) we choose
the decomposition (3.182) so that all three sets are infinite and so that

(3.183) |(e1, Bep)| < 27 leVie L, ke K.
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Indeed, then for w € H, Qgu € Hg can be expanded to > (Qgu,ex)er and
kEK
expanding in Hj, similalry,

QrBQxu=) (BQru,e) =Y > (Bey,e)(Qxu, ex)
(3.184) leL kel keK

1
= QuBQxul? < Y [(Quuser)® Y [(Bey, )l < € llull®
k

keL ke K

giving (3.181). The absolute convergence of the series following from (3.183) and
Bessel’s inequality justifies the use of Cauchy-Schwarz inequality here.

Thus, it remains to find a decomposition (3.182) for which (3.183) holds. This
follows from Bessel’s inequality. First choose 1 € K then (Bej,e;) — 0 as | — oo
so |(Bei,er,)| < €/4 for I large enough and we will take [ > 2k;. Then we use
induction on N, choosing K(N), L(N) and O(N) with

K(N)={ki=1<ke<...;ky}and L(N) ={l; <ls < --- <lIn}, Iy > 2k,
kr >1,—1 for 1 <r < N and O(N) = {1,...,Ix} \ (K(N) U L(N)). Now, choose
kn41 > Iy by such that |(e;, Begy,, )| <27/ "Ne, foralll € L(N), and then Iy41 >
2kn 41 such that |(ery,,,Br)| < e N1 Fefor k € K(N+1) = K(N) U {knt1}
and the inductive hypothesis follows with L(N + 1) = N(N) U {In41}-

Given a fixed operator A € GL(H) Lemma 37 can be applied with e = || A~ 71,
It then follows that the curve

(3.185) A(s) = A—sQLAQk, s €10,1]
lies in GL(H) and has endpoint satisfying
(3.186) QLBQk =0, B=A(1), Q.Qk =0=QxQr, Qx = Q%, QL = Q7

where all three projections, Qr, Qk and Id —Qx — Q1 have infinite rank.

These three projections given an identification of H = H & H @& H and so
replace the bounded operators by 3 x 3 matrices withe entries which are bounded
operators on H. The condition (3.186) means that

Bi1 Bz Bis 1 0 0 0 0O
(3187) B=| 0 Bw Bu|,Qx=[0 0 0|, Q=0 1 0
Bs1 Bsy Bss 0 00 0 0 0

Under the conditions (3.186) consider
(3.188) Q1 =BQxkB '(1d-Qr), Q2 =1d-Q — P
Clearly Q@1 = QLQ2 =0 = Q2Qr = @1Q and
Qf = BQxB™'(1d-Q1)BQxk B~ (1d-Q1) = BQx B~ BQxB~'(1d—Qr) = Q1.
Q2Q1 = (1d-Qr)P — P> =0=P((I1d-Qr) — P) = Q:1Qs,
Q3 =1d-Qr + P~ (1d—Qr)P - P(Id-Qr) = Q2
so these are commuting projections decomposing the range of Q3 = Id —Q . Now,

@Q1BQk = BQrB '(1d—Q1)BQk = BQx,
Q2BQKx =0, Q3BQk = 0.
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so decomposing the image space in terms of these projections gives a matrix of the
form

Q1BQKr * x
(3.189) B = 0 *
0

Now, consider the curve in 3 X 3 matrices
(3.190)

0 -1 0

B(s) = Qo +sinf(Q1 +Qr) + cosd(HB™'Q, + BHQL), H=|1 0 0
0 0 O

Clearly B(1) = B = A(1),
(3191) B(s) '=Q+(s*+(1—-s*)"'(1-s)(P+Qr)—sHB 'P+ BHQ)
Once we have arranged that Qp BQx = 0 it follows that
Qr and P = BQxB ' (Id—-Qy)

are disjoint projections with P having range equal to that of BQg. If A = QAP
is an isomorphism between the ranges of P and @ and A’ = PA'Qy is its inverse,
it is possible to rotate the range of P to that of Qp,

(3.192) R(0) = cosOP +sinfA —sinfA" + cos0Q + (Id—P — Qp).

That this is a rotation can be seen directly

(3.193) R(O)R(—-0) =1d.

Thus the homotopy R(6)B, 6 € [0,7/2], connects B to

(3.194) B'=(d—P—-Q.)B+ AB

since B =0and (Id-Q1)B'Qx = (Id—P — Q1)BQx + (Id —QL)ABQ};, = 0 so
B’ maps the range of Qg to the range of Q;, and as such is an isomorphism,

(3.195) QLB'Qx = QLABQx = QLAPQk = (QLAP)(PBQk) = APQk.

Now, a similar, simpler, rotation can be made from the range of Q1 to the range
of Q using any isomorphism, which can be chosen to be G = (APQx)™?,

(3.196) R'(0) = cosbQr +sin G —sin 0APQ +cos 0Q k + Qo, R (0R(—0) =1d.

The homotopy R/'(6)B’ connects B’ to B” which has QxB"Qx = Qi so with
respect to the 2 x 2 decomposition given by Qx and Id —Q g,

v (ld E
(3.197) B" = (0 F> .
The invertibility of this is equivalent to the invertibility of F' and the homotopy
no_ (Id (1-9)E
(3.198) B"(s) = (0 r

connects it to
_(Id © I 1 (Id —(1- s)EF_1
(3.199) L= (O F) , (B"(s))™" = (O Jane

through invertibles.
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The final step is ‘Eilenberg’s swindle’. Start from the form of L in (3.199),
choose an isomorphism Ran(Qx) = [?(H) @ 1?(H) and then consider the successive
rotations in terms of this 2 x 2 decomposition

cos sinF !

(3.200) L(e)_(_sm o ) 0 c0,1/2,

cosOF 1 singF~!
L(9) = (—sin@F cosOF ) , 0 €[m/2,7]
extended to be the constant isomorphism F on the extra factor. Then take the
isomorphism

(3.201) 2(H) & 2(H) ® H — LA(H) ® 2(H), ({w}, {w:},v) — ({u:}, {v,w:})
in which the last element of H is place at the beginning of the second sequence.
Now the rotations in (3.200) act on this space and L(m — ) gives a homotopy

connecting B to the identity.
O






