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PREFACE 5

Preface

These are notes for the course ‘Introduction to Functional Analysis’ — or in
the MIT style, 18.102, from various years culminating in Spring 2013. There are
many people who I should like to thank for comments on and corrections to the
notes over the years, but for the moment I would simply like to thank the MIT
undergraduates who have made this course a joy to teach, as a result of their
interest and enthusiasm.
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Introduction

This course is intended for ‘well-prepared undergraduates’ meaning specifically
that they have a rigourous background in analysis at roughly the level of the first
half of Rudin’s book [2] — at MIT this is 18.100B. In particular the basic theory of
metric spaces is used freely. Some familiarity with linear algebra is also assumed,
but not at a very sophisticated level.

The main aim of the course in a mathematical sense is the presentation of the
standard constructions of linear functional analysis, centred on Hilbert space and
its most significant analytic realization as the Lebesgue space L?(R) and leading up
to the spectral theory of ordinary differential operators. In a one-semester course
at MIT it is only just possible to get this far. Beyond the core material I have
included other topics that I believe may prove useful both in showing how to apply
the ‘elementary’ material and more directly.

Dirichlet problem. The eigenvalue problem with potential perturvation on
an interval is one of the proximate aims of this course, so let me describe it briefly
here for orientation.

Let V : [0,1] — R be a real-valued continuous function. We are interested in
‘oscillating modes’ on the interval; something like this arises in quantum mechanics
for instance. Namely we want to know about functions u(z) — twice continuously
differentiable on [0, 1] so that things make sense — which satisfy the differential
equation

fal — A d th
(1) —@(:E) + V(z)u(z) = Au(x) and the

boundary conditions u(0) = u(1) = 0.

Here the eigenvalue, A is an ‘unknown’ constant. More precisely we wish to know
which such A’s can occur. In fact all A’s can occur with « = 0 but this is the ‘trivial
solution” which will always be there for such an equation. What other solutions are
there? The main result is that there is an infinite sequence of \’s for which there
is a non-trivial solution of (1) A; € R — they are all real, no non-real complex \’s
can occur. For each of the \; there is at least one (and maybe more) non-trivial
solution u; to (1). We can say a lot more about everything here but one main aim
of this course is to get at least to this point. From a Physical point of view, (1)
represents a linearized oscillating string with fixed ends.

So the journey to a discussion of the Dirichlet problem is rather extended and
apparently wayward. The relevance of Hilbert space and the Lebesgue integral is
not immediately apparent, but I hope this will become clear as we proceed. In fact
in this one-dimensional setting it can be avoided, although at some cost in terms
of elegance. The basic idea is that we consider a space of all ‘putative’ solutions to
the problem at hand. In this case one might take the space of all twice continuously
differentiable functions on [0, 1] — we will consider such spaces at least briefly below.
One of the weaknesses of such an approach is that it is not closely connected with
the ‘energy’ invariant of a solution, which is the integral

0 | 0GP+ V@@

It is the importance of such integrals which brings in the Lebesgue integral and
leads to a Hilbert space structure.
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In any case one of the significant properties of the equation (1) is that it is
‘linear’. So we start with a brief discussion of linear spaces. What we are dealing
with here can be thought of as the an eigenvalue problem for an ‘infinite matrix’.
This in fact is not a very good way of looking at things (there was such a matrix
approach to quantum mechanics in the early days but it was replaced by the sort
of ‘operator’ theory on Hilbert space that we will use here.) One of the crucial
distinctions between the treatment of finite dimensional matrices and an infinite
dimensional setting is that in the latter topology is encountered. This is enshrined
in the notion of a normed linear space which is the first important topic treated.

After a brief treatment of normed and Banach spaces, the course proceeds to the
construction of the Lebesgue integral. Usually I have done this in one dimension, on
the line, leading to the definition of the space L!(RR). To some extent I follow here
the idea of Jan Mikusiniski that one can simply define integrable functions as the
almost everywhere limits of absolutely summable series of step functions and more
significantly the basic properties can be deduced this way. While still using this
basic approach I have dropped the step functions almost completely and instead
emphasize the completion of the space of continuous functions to get the Lebesgue
space. Even so, Mikusinski’s approach still underlies the explicit identification of
elements of the completion with Lebesgue ‘functions’. This approach is followed in
the book of Debnaith and Mikusinski.

After about a three-week stint of integration and then a little measure theory
the course proceeds to the more gentle ground of Hilbert spaces. Here I have been
most guided by the (old now) book of Simmons. We proceed to a short discussion
of operators and the spectral theorem for compact self-adjoint operators. Then
in the last third or so of the semester this theory is applied to the treatment of
the Dirichlet eigenvalue problem and treatment of the harmonic oscillator with a
short discussion of the Fourier transform. Finally various loose ends are brought
together, or at least that is my hope.






CHAPTER 1

Normed and Banach spaces

In this chapter we introduce the basic setting of functional analysis, in the form
of normed spaces and bounded linear operators. We are particularly interested in
complete, i.e. Banach, spaces and the process of completion of a normed space to
a Banach space. In lectures I proceed to the next chapter, on Lebesgue integration
after Section 7 and then return to the later sections of this chapter at appropriate
points in the course.

There are many good references for this material and it is always a good idea
to get at least a couple of different views. I suggest the following on-line sources
Wilde [4], Chen [1] and Ward [3]. The treatment here, whilst quite brief, does
cover what is needed later.

1. Vector spaces

You should have some familiarity with linear, or I will usually say ‘vector’,
spaces. Should I break out the axioms? Not here I think, but they are included
in Section 14 at the end of the chapter. In short it is a space V' in which we can
add elements and multiply by scalars with rules quite familiar to you from the the
basic examples of R™ or C™. Whilst these special cases are (very) important below,
this is not what we are interested in studying here. The main examples are spaces
of functions hence the name of the course.

Note that for us the ‘scalars’ are either the real numbers or the complex numbers
— usually the latter. To be neutral we denote by K either R or C, but of course
consistently. Then our set V' — the set of vectors with which we will deal, comes
with two ‘laws’. These are maps

(1.1) +:VxV —=V :KxV-—V

which we denote not by +(v,w) and -(s,v) but by v + w and sv. Then we impose
the axzioms of a vector space — see (14) below! These are commutative group axioms
for +, axioms for the action of K and the distributive law linking the two.

The basic examples:

e The field K which is either R or C is a vector space over itself.

e The vector spaces K" consisting of ordered n-tuples of elements of K.
Addition is by components and the action of K is by multiplication on
all components. You should be reasonably familiar with these spaces and
other finite dimensional vector spaces.

e Seriously non-trivial examples such as C([0,1]) the space of continuous
functions on [0, 1] (say with complex values).

In these and many other examples we will encounter below the ‘component
addition’ corresponds to the addition of functions.

9
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LEMMA 1. If X is a set then the spaces of all functions
(1.2) FX;R)y={u: X — R}, F(X;C)={u: X — C}
are vector spaces over R and C respectively.

NoN-PROOF. Since I have not written out the axioms of a vector space it is
hard to check this — and I leave it to you as the first of many important exercises.
In fact, better do it more generally as in Problem 5.1 — then you can say ‘if V is
a linear space then F(X;V) inherits a linear structure’. The main point to make
sure you understand is that, because we do know how to add and multiply in either
R and C, we can add functions and multiply them by constants (we can multiply
functions by each other but that is not part of the definition of a vector space so we
ignore it for the moment since many of the spaces of functions we consider below
are not multiplicative in this sense):-

(1.3) (c1fi+cafo)(w) = c1fi(x) + cafo(w)
defines the function ¢ f1 + cofe if ¢1, co € K and f1, fo € F(X;K). O

Most of the linear spaces we will meet are either subspaces of these function-
type spaces, or quotients of such subspaces — see Problems 5.2 and 5.3.

Although you are probably most comfortable with finite-dimensional vector
spaces it is the infinite-dimensional case that is most important here. The notion
of dimension is based on the concept of the linear independence of a subset of a
vector space. Thus a subset E C V is said to be linearly independent if for any

finite collection of elements v; € E, ¢ = 1,..., N, and any collection of ‘constants’
a; € K, 7=1,..., N the identity

N
(1.4) > awi=0=a;=0VYi.

i=1

That is, it is a set in which there are ‘no non-trivial finite linear dependence rela-
tions between the elements’. A vector space is finite-dimensional if every linearly
independent subset is finite. It follows in this case that there is a finite and maxi-
mal linearly independent subset — a basis — where maximal means that if any new
element is added to the set F then it is no longer linearly independent. A basic
result is that any two such ‘bases’ in a finite dimensional vector space have the
same number of elements — an outline of the finite-dimensional theory can be found
in ProblemXXX.

Still it is time to leave this secure domain behind, since we are most interested
in the other case, namely infinite-dimensional vector spaces. As usual with such
mysterious-sounding terms as ‘infinite-dimensional’ it is defined by negation.

DEFINITION 1. A vector space is infinite-dimensional if it is not finite dimen-
sional, i.e. for any N € N there exist N elements with no, non-trivial, linear depen-
dence relation between them.

As is quite typical the idea of an infinite-dimensional space, which you may be quite
keen to understand, appears just as the non-existence of something. That is, it is
the ‘residual’ case, where there is no finite basis. This means that it is ‘big’.

So, finite-dimensional vector spaces have finite bases, infinite-dimensional vec-
tor spaces do not. The notion of a basis in an infinite-dimensional vector spaces
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needs to be modified to be useful analytically. Convince yourself that the vector
space in Lemma 1 is infinite dimensional if and only if X is infinite.

2. Normed spaces

In order to deal with infinite-dimensional vector spaces we need the control
given by a metric (or more generally a non-metric topology, but we will not quite
get that far). A norm on a vector space leads to a metric which is ‘compatible’
with the linear structure.

DEFINITION 2. A norm on a vector space is a function, traditionally denoted
(1.5) |11+ V' — [0, 00),
with the following properties
Definiteness)
1.6) veV, |v|=0=v=0.

(
(
(Absolute homogeneity) For any A € K and v € V,
(1.7) [[Av]| = [Al[Jv]].
(

Triangle Inequality) The triangle inequality holds, in the sense that for any two
elements v, w € V

(1.8) lo +wl <ol + [lw]-

Note that (1.7) implies that [|0]] = 0. Thus (1.6) means that ||v|| = 0 is equiv-
alent to v = 0. This definition is based on the same properties holding for the
standard norm(s), |z|, on R and C. You should make sure you understand that

T ifxz>0

] € [0,00) is a norm as is
—x ifz <0

R>x — |z :{
(1.9)

Coz=z+iy — |z| = (2® +¢?)7.
Situations do arise in which we do not have (1.6):-

DEFINITION 3. A function (1.5) which satisfes (1.7) and (1.8) but possibly not
(1.6) is called a seminorm.

A metric, or distance function, on a set is a map

(1.10) d: X xX —[0,00)
satisfying three standard conditions

(1.11) dlz,y) =0<—=z =y,

(1.12) d(z,y) =d(y,z) V x,y € X and
(1.13) d(z,y) <d(z,z) +d(z,y) Vz,y,z € X.

If you do not know about metric spaces, then you are in trouble. I suggest that
you take the appropriate course now and come back next year. You could read the
first few chapters of Rudin’s book [2] before trying to proceed much further but it
will be a struggle to say the least. The point of course is
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PROPOSITION 1. If || - || is @ norm on V then
(1.14) d(v, w) = [[v —w]|
is a distance on V turning it into a metric space.

PRrROOF. Clearly (1.11) corresponds to (1.6), (1.12) arises from the special case
A= —1of (1.7) and (1.13) arises from (1.8). O

We will not use any special notation for the metric, nor usually mention it
explicitly — we just subsume all of metric space theory from now on. So ||v — w|| is
the distance between two points in a normed space.

Now, we need to talk about a few examples; there are more in Section 7.
The most basic ones are the usual finite-dimensional spaces R™ and C™ with their
Euclidean norms

(1.15) 2| = (Z xil2>

where it is at first confusing that we just use single bars for the norm, just as for
R and C, but you just need to get used to that.

There are other norms on C" (I will mostly talk about the complex case, but
the real case is essentially the same). The two most obvious ones are

|2]0o = max |x;|, © = (x1,...,2,) € C",

(1.16) |1,|1 :Z|x2|
but as you will see (if you do the problems) there are also the norms
(1.17) 2l = (3 i), 1< p < oo.

In fact, for p = 1, (1.17) reduces to the second norm in (1.16) and in a certain sense
the case p = oo is consistent with the first norm there.
In lectures I usually do not discuss the notion of equivalence of norms straight

away. However, two norms on the one vector space — which we can denote | - ||(1)
and [ - [|(2) are equivalent if there exist constants Cy and Co such that
(1.18) [oll1y < Chllvllzy, [[vll) < Cellvlly Vo eV

The equivalence of the norms implies that the metrics define the same open sets —
the topologies induced are the same. You might like to check that the reverse is also
true, if two norms induced the same topologies (just meaning the same collection
of open sets) through their associated metrics, then they are equivalent in the sense
of (1.18) (there are more efficient ways of doing this if you wait a little).

Look at Problem 5.6 to see why we are not so interested in norms in the finite-
dimensional case — namely any two norms on a finite-dimensional vector space are
equivalent and so in that case a choice of norm does not tell us much, although it
certainly has its uses.

One important class of normed spaces consists of the spaces of bounded con-
tinuous functions on a metric space X :

(1.19) Coo(X) =Coo(X;C) = {u: X — C, continuous and bounded} .
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That this is a linear space follows from the (obvious) result that a linear combi-
nation of bounded functions is bounded and the (less obvious) result that a linear
combination of continuous functions is continuous; this we know. The norm is the
best bound

(1.20) [ulloc = sup [u(z)].

reX

That this is a norm is straightforward to check. Absolute homogeneity is clear,
Melloo = |AJulloo and ||u||loo = O means that w(z) = 0 for all z € X which is
exactly what it means for a function to vanish. The triangle inequality ‘is inherited
from C’ since for any two functions and any point,

(1.21) [(u+0)(2)] < fu()] + [v()] < [lulloo + V]l
by the definition of the norms, and taking the supremum of the left gives
[+ vlloo < [[tfloo + [[0]|oo-

Of course the norm (1.20) is defined even for bounded, not necessarily contin-
uous functions on X. Note that convergence of a sequence u,, € Coo(X) (remember
this means with respect to the distance induced by the norm) is precisely uniform
convergence

(1.22) [t = v]|oo = 0 <= up(x) — v(z) uniformly on X.

Other examples of infinite-dimensional normed spaces are the spaces [, 1 <
p < oo discussed in the problems below. Of these {2 is the most important for us.
It is in fact one form of Hilbert space, with which we are primarily concerned:-

(1.23) ?={a:N—C; Z la(4)|* < oo}

It is not immediately obvious that this is a linear space, nor that
1

2

(1.24) lal: = 3 la)P

is a norm. It is. From now on we will generally use sequential notation and think
of a map from N to C as a sequence, so setting a(j) = a;. Thus the ‘Hilbert space’
12 consists of the square summable sequences.

3. Banach spaces

You are supposed to remember from metric space theory that there are three
crucial properties, completeness, compactness and connectedness. It turns out that
normed spaces are always connected, so that is not very interesting, and they
are never compact (unless you consider the trivial case V' = {0}) so that is not
very interesting either — although we will ultimately be very interested in compact
subsets — so that leaves completeness. That is so important that we give it a special
name in honour of Stefan Banach.

DEFINITION 4. A normed space which is complete with respect to the induced
metric is a Banach space.

LEMMA 2. The space Coo(X), defined in (1.19) for any metric space X, is a
Banach space.
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PRrROOF. This is a standard result from metric space theory — basically that the
uniform limit of a sequence of (bounded) continuous functions on a metric space
is continuous. However, it is worth noting how one proves completeness at least in
outline. Suppose u, is a Cauchy sequence in Co(X). This means that given § > 0
there exists IV such that

(1.25) n,m > N = ||ty — Um]|oo = sup |un(z) — um(z)| < 9.
X

Fixing € X this implies that the sequence w,(z) is Cauchy in C. We know that
this space is complete, so each sequence u,, (x) must converge (we say the sequence
of functions converges pointwise). Since the limit of u,,(z) can only depend on z, we
define u(x) = lim,, u,(x) in C for each z € X and so define a function v : X — C.
Now, we need to show that this is bounded and continuous and is the limit of wu,,
with respect to the norm. Any Cauch sequence is bounded in norm — take § = 1 in
(1.25) and it follows from the triangle inequality that

(1.26) lumlloo < [luntilloo +1, m >N

and the finite set ||uy, || for n < N is certainly bounded. Thus ||un||s < C, but this
means |u,(z)] < C for all x € X and hence |u(x)| < C by properties of convergence
in C and thus ||u]le < C.

The uniform convergence of u,, to u now follows from (1.25) since we may pass
to the limit in the inequality to find
n>N = |u,(z) —u@)| = lm |u,(x) —un(x)] <9I
(1.27) m—ee

= ||un —ul| <4

The continuity of v at € X follows from the triangle inequality in the form

u(y) — w(@)] < fu(y) = un ()] + [un(y) = un(@)] + [un () — un(2)]
< 2fu = uplloo + [un(z) = un(y)|.

Give § > 0 the first term on the far right can be make less than §2 by choosing n
large using (1.27) and then the second term can be made less than /2 by choosing
d(z,y) small enough. O

I have written out this proof (succinctly) because this general structure arises
often below — first find a candidate for the limit and then show it has the properties
that are required.

There is a space of sequences which is really an example of this Lemma. Con-
sider the space c¢o consisting of all the sequence {a;} (valued in C) such that
lim;_,o a; = 0. As remarked above, sequences are just functions N — C. If we
make {a;} into a function ao: D = {1,1/2,1/3,...} — C by setting a(1/j) = q;
then we get a function on the metric space D. Add 0 to D to get D = DU {0} C
[0,1] C R; clearly 0 is a limit point of D and D is, as the notation dangerously in-
dicates, the closure of D in R. Now, you will easily check (it is really the definition)
that a : D — C corresponding to a sequence, extends to a continuous function
on D vanishing at 0 if and only if lim;_, » a; = 0, which is to say, {a;} € co. Thus
it follows, with a little thought which you should give it, that ¢ is a Banach space
with the norm
(1.28) lalloe = sup llaj]l-
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What is an example of a non-complete normed space, a normed space which is
not a Banach space? These are legion of course. The simplest way to get one is to
‘put the wrong norm’ on a space, one which does not correspond to the definition.
Consider for instance the linear space T of sequences N — C which ‘terminate’,
i.e. each element {a;} € T has a; = 0 for j > J, where of course the J may depend
on the particular sequence. Then T C ¢g, the norm on ¢ defines a norm on 7 but
it cannot be complete, since the closure of 7T is easily seen to be all of ¢y — so there
are Cauchy sequences in 7 without limit in 7.

One result we will exploit below, and I give it now just as preparation, concerns
absolutely summable series. Recall that a series is just a sequence where we ‘think’
about adding the terms. Thus if v,, is a sequence in some vector space V' then there

N
is the corresponding serquence of partial sums wy = Y. v;. I will say that {v,} is
i=1
a series if I am thinking about summing it.

So a sequence {v,} with partial sums {wy} is said to be absolutely summable
if
(1.29) Z lonllv < o0, ie. Z lwny —wn_1]lv < .
n N>1

PROPOSITION 2. The sequence of partial sums of any absolutely summable se-
ries in a normed space is Cauchy and a normed space is complete if and only if
every absolutely summable series in it converges, meaning that the sequence of par-
tial sums converges.

PROOF. The sequence of partial sums is
n
(1.30) wn =Y ;.
j=1
Thus, if m > n then

(1.31) Wy, — Wy, = Z ;.

j=n+1

It follows from the triangle inequality that

(1.32) [wn = wmllv < > lvllv
j=n+1

So if the series is absolutely summable then

oo o0
> llvilly <ooand lim > flully =0.
J=1 j=n+1

Thus {w,,} is Cauchy if {v;} is absolutely summable. Hence if V' is complete then
every absolutely summable series is summable, i.e. the sequence of partial sums
converges.

Conversely, suppose that every absolutely summable series converges in this
sense. Then we need to show that every Cauchy sequence in V' converges. Let
uy, be a Cauchy sequence. It suffices to show that this has a subsequence which
converges, since a Cauchy sequence with a convergent subsequence is convergent.
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To do so we just proceed inductively. Using the Cauchy condition we can for every
k find an integer Ny such that

(1.33) n,m > N = |Jun — || < 27F.

Now choose an increasing sequence nj where ny > Ni and ng > ni—1 to make it
increasing. It follows that

(1.34) 1ty — tn,_, || < 27 M

Denoting this subsequence as uj, = uy,, it follows from (1.34) and the triangle
inequality that

(1.35) > g, —upy || < 4
n=1

so the sequence v; = uj, vy = uj, —uj_;, k > 1, is absolutely summable. Its
sequence of partial sums is w; = u; so the assumption is that this converges, hence
the original Cauchy sequence converges and V' is complete. g

Notice the idea here, of ‘speeding up the convergence’ of the Cauchy sequence
by dropping a lot of terms. We will use this idea of absolutely summable series
heavily in the discussion of Lebesgue integration.

4. Operators and functionals

As above, I suggest that you read this somewhere else (as well) for instance
Wilde, [4], Chapter 2 to 2.7, Chen, [1], the first part of Chapter 6 and of Chapter
7 and/or Ward, [3], Chapter 3, first 2 sections.

The vector spaces we are most interested in are, as already remarked, spaces
of functions (or something a little more general). The elements of these are the
objects of primary interest but they are related by linear maps. A map between
two vector spaces (over the same field, for us either R or C) is linear if it takes
linear combinations to linear combinations:-

(136) T:V — VV, T(01U1+(L2’02) = (11T(’U1)+CLQT(02), Yo, vg €V, ay,as € K.

The sort of examples we have in mind are differential, or more especially, integral
operators. For instance if u € C(]0, 1]) then its Riemann integral

(1.37) (Tu)(z) = /Ox u(s)ds
is continuous in z € [0, 1] and so defines a map
(1.38) T :C([0,1]) — C([0,1]).

This is a linear map, with linearity being one of the standard properties of the
Riemann integral.

In the finite-dimensional case linearity is enough to allow maps to be studied.
However in the case of infinite-dimensional normed spaces we need to impose con-
tinuity. Of course it makes perfectly good sense to say, demand or conclude, that
a map as in (1.36) is continuous if V' and W are normed spaces since they are then
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metric spaces. Recall that for metric spaces there are several different equivalent
conditions that ensure a map, T : V. — W, is continuous:

(1.39) v, —mvinV=Tv, > Tvin W
(1.40) O C W open = T~ *(0) C V open
(1.41) C C W closed = T~1(C) C V closed.

For a linear map between normed spaces there is a simpler characterization of
continuity in terms of the norm.

PROPOSITION 3. A linear map (1.36) between normed spaces is continuous if
and only if it is bounded in the sense that there exists a constant C such that

(1.42) ITv|lw < Cllv]ly ¥ v eV

Of course bounded for a function on a metric space already has a meaning and this
is not it! The usual sense would be ||[Tv| < C but this would imply ||T(av)| =
la|||Tv|| < C so Tv = 0. Hence it is not so dangerous to use the term ‘bounded’ for
(1.42) — it is really ‘relatively bounded’, i.e. takes bounded sets into bounded sets.
From now on, bounded for a linear map means (1.42).

Proor. If (1.42) holds then if v, — v in V it follows that |Tv — Tv,|| =
IT(v —vp)|| < Cllv—vp|| = 0 as n — oo so Tvy, — Tv and continuity follows.

For the reverse implication we use the second characterization of continuity
above. Thus if T is continuous then the inverse image 7' (Bw (0,1)) of the open
unit ball around the origin contains the origin in V' and so, being open, must contain
some By (0, €). This means that

(143) T(Bv(o,e)) C Bw(o, 1) SO ||’U||V < €— HT’UHW <1

Now proceed by scaling. If 0 # v € V then ||v/|| < € where v/ = ev/2||v]|. So (1.43)
shows that ||7v']] < 1 but this implies (1.42) with C = 2/e — it is trivially true if
v=0. g

As a general rule we drop the distinguishing subscript for norms, since which
norm we are using can be determined by what it is being applied to.

So, if T': V. — W is continous and linear between normed spaces, or from
now on ‘bounded’, then

(1.44) Il = sup IITe] < oo
v||=1

LEMMA 3. The bounded linear maps between normed spaces V and W form a
linear space B(V,W) on which ||T|| defined by (1.44) or equivalently

(1.45) IT|| = inf{C; (1.42) holds}
s a norm.

PROOF. First check that (1.44) is equivalent to (1.45). Define ||T'|| by (1.44).
Then for any v € V, v # 0,

[T]|
o]

(1.46) IT| > |1 T(—)) =

since as always this is trivially true for v = 0. Thus ||T|| is a constant for which
(1.42) holds.

ol = [Tl <[ITl]lv]l
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Conversely, from the definition of ||T||, if € > 0 then there exists v € V with
[lv]] = 1 such that |T]| — e < ||Tv|| < C for any C for which (1.42) holds. Since
€ > 0 is arbitrary, ||T|| < C and hence ||T| is given by (1.45).

From the definition of | T'||, ||T|| = 0 implies Tv = 0 for all v € V and for X # 0,
(1.47) AT = e ATl = AT
and this is also obvious for A = 0. This only leaves the triangle inequality to check
and for any T, S € B(V,W), and v € V with |v|| =1

(1.48) (T + S)vllw = |Tv + Svllw < [[Tvllw + [|Svllw < IT]] +[IS]
so taking the supremum, |7 + S| < ||T| + ||S]|- O

Thus we see the very satisfying fact that the space of bounded linear maps
between two normed spaces is itself a normed space, with the norm being the best
constant in the estimate (1.42). Make sure you absorb this! Such bounded linear
maps between normed spaces are often called ‘operators’ because we are thinking
of the normed spaces as being like function spaces.

You might like to check boundedness for the example of a linear operator in
(1.38), namely that in terms of the supremum norm on C([0,1]), ||T]| < 1.

One particularly important case is when W = K is the field, for us usually C.
Then a simpler notation is handy and one sets V/ = B(V,C) — this is called the
dual space of V' (also sometimes denoted V*.)

PROPOSITION 4. If W is a Banach space then B(V, W), with the norm (1.44),
is a Banach space.

PRrROOF. We simply need to show that if W is a Banach space then every Cauchy
sequence in B(V,W) is convergent. The first thing to do is to find the limit. To
say that T,, € B(V,W) is Cauchy, is just to say that given € > 0 there exists N
such that n, m > N implies ||T;, — T)»,|| < €. By the definition of the norm, if v € V
then ||T,v — Trvllw < || T — T||[Jv]|v so Tyv is Cauchy in W for each v € V. By
assumption, W is complete, so

(1.49) Thyv — win W.

However, the limit can only depend on v so we can define a map T : V — W by
Tv =w = lim, . Tpv as in (1.49).

This map defined from the limits is linear, since T, (A\v) = AT,,v — AT'v and
T (v1+v2) = Tpvr +Thva — Tog +Twe = T(v1 +v2). Moreover, ||| T, — | Tl <
|7 — Trn|| so ||T5]| is Cauchy in [0, 00) and hence converges, with limit .S, and

(1.50) 7ol = Y [Tl < Sl
so ||T|| < S shows that T is bounded.
Returning to the Cauchy condition above and passing to the limit in ||T5,v —

Tl < €l|lv]| as m — oo shows that ||T;, — T'|| < € if n > M and hence T,, — T in
B(V, W) which is therefore complete. O

Note that this proof is structurally the same as that of Lemma 2.
One simple consequence of this is:-

COROLLARY 1. The dual space of a normed space is always a Banach space.
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However you should be a little suspicious here since we have not shown that
the dual space V' is non-trivial, meaning we have not eliminated the possibility
that V' = {0} even when V # {0}. The Hahn-Banach Theorem, discussed below,
takes care of this.

One game you can play is ‘what is the dual of that space’. Of course the dual
is the dual, but you may well be able to identify the dual space of V' with some
other Banach space by finding a linear bijection between V' and the other space,
W, which identifies the norms as well. We will play this game a bit later.

5. Subspaces and quotients

The notion of a linear subspace of a vector space is natural enough, and you
are likely quite familiar with it. Namely W C V where V is a vector space is a
(linear) subspace if any linear combinations A\jw; + Aows € W if A1, Ay € K and
wy, we € W. Thus W ‘inherits’ its linear structure from V. Since we also have a
topology from the metric we will be especially interested in closed subspaces. Check
that you understand the (elementary) proof of

LEMMA 4. A subspace of a Banach space is a Banach space in terms of the
restriction of the norm if and only if it is closed.

There is a second very important way to construct new linear spaces from old.
Namely we want to make a linear space out of ‘the rest’ of V, given that W is
a linear subspace. In finite dimensions one way to do this is to give V an inner
product and then take the subspace orthogonal to W. One problem with this is that
the result depends, although not in an essential way, on the inner product. Instead
we adopt the usual ‘myopia’ approach and take an equivalence relation on V' which
identifies points which differ by an element of W. The equivalence classes are then
‘planes parallel to W’. T am going through this construction quickly here under
the assumption that it is familiar to most of you, if not you should think about it
carefully since we need to do it several times later.

So, if W C V is a linear subspace of V' we define a relation on V' — remember
this is just a subset of V' x V with certain properties — by

(1.51) vewt e v—veW = FJweWst v=0 +w.
This satisfies the three conditions for an equivalence relation:
(1) vew v
(2) vow V=V~ v
3) vew V',V ~w W = v~y v
which means that we can regard it as a ‘coarser notion of equality.’
Then V/W is the set of equivalence classes with respect to ~y . You can think
of the elements of V/W as being of the form v + W — a particular element of V
plus an arbitrary element of W. Then of course v’ € v+ W if and only if v/ —v € W
meaning v ~y v'.
The crucial point here is that

(1.52) V/W is a vector space.

You should check the details — see ProblemXXX. Note that the ‘is’ in (1.52) should
really be expanded to ‘is in a natural way’ since as usual the linear structure is
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inherited from V :
(1.53) Aov+W) =X v+W, (v1 + W)+ (va+ W) = (v1 +v2) + W.
The subspace W appears as the origin in V/W.

Now, two cases of this are of special interest to us.

PROPOSITION 5. If || - || is a seminorm on V then
(1.54) E={veV;|v|=0}CV
is a linear subspace and
(1.55) v+ Ellv/g = vl
defines a norm on V/E.

PrROOF. That FE is linear follows from the properties of a seminorm, since
M|l = |Alllv|| shows that Av € E if v € E and A € K. Similarly the triangle
inequality shows that vy +vo € E if vy, vo € E.

To check that (1.55) defines a norm, first we need to check that it makes sense
as a function || - [|y/g — [0,00). This amounts to the statement that [[v|| is the

same for all elements v/ = v+ e € v + E for a fixed v. This however follows from
the triangle inequality applied twice:

(1.56) [0 < ol + llell = llvll < 'l + 1] = el = [[v/]].
Now, I leave you the exercise of checking that [ - ||y, is a norm, see ProblemXXX.
O

The second application is more serious, but in fact we will not use it for some
time so I usually do not do this in lectures at this stage.

ProOPOSITION 6. If W C V is a closed subspace of a normed space then

(157) o+ Wil = it flo+wly

defines a norm on V/W; if V is a Banach space then so is V/W.
For the proof see ProblemsXXX and XXX.

6. Completion

A normed space not being complete, not being a Banach space, is considered
to be a defect which we might, indeed will, wish to rectify.

Let V be a normed space with norm || - ||v. A completion of V is a Banach
space B with the following properties:-
(1) There is an injective (i.e. 1-1) linear map I : V — B
(2) The norms satisfy
)
(3

(1.58 II(v)||B = |lv||v VveV.
) The range I(V) C B is dense in B.

Notice that if V is itself a Banach space then we can take B = V with I the
identity map.
So, the main result is:

THEOREM 1. Fach normed space has a completion.
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There are several ways to prove this, we will come across a more sophisticated one
(using the Hahn-Banach Theorem) later. In the meantime I will give two proofs.
In the first the fact that any metric space has a completion in a similar sense is
recalled and then it is shown that the linear structure extends to the completion. A
second, ‘hands-on’, proof is also given with the idea of motivating the construction
of the Lebesgue integral — which is in our near future.

PROOF 1. One of the neater proofs that any metric space has a completion is
to use Lemma 2. Pick a point in the metric space of interest, p € M, and then
define a map

(1.59) M>gr— f,€Co(M), fo(x)=d(z,q) —d(z,p) ¥z € M.

That f; € Coo (M) is straightforward to check. It is bounded (because of the second
term) by the reverse triangle inequality

and is continuous, as the difference of two continuous functions. Moreover the
distance between two functions in the image is

(1.60) sup |fq(x) = for (x)| = sup |d(z,q) — d(z,q")| = d(q,q")
xeM zeM

using the reverse triangle inequality (and evaluating at z = ¢). Thus the map (1.59)
is well-defined, injective and even distance-preserving. Since C% (M) is complete,
the closure of the image of (1.59) is a complete metric space, X, in which M can
be identified as a dense subset.

Now, in case that M = V is a normed space this all goes through. The
disconcerting thing is that the map ¢ — f; is not linear. Nevertheless, we can
give X a linear structure so that it becomes a Banach space in which V is a dense
linear subspace. Namely for any two elements f; € X, i = 1,2, define

(1.61) Aufv+Aefe = lm faip,+aaq,

where p,, and ¢, are sequences in V such that f,, — fi1 and f,, — f2. Such
sequences exist by the construction of X and the result does not depend on the
choice of sequence — since if p;, is another choice in place of p,, then f, — f, — 0
in X (and similarly for g,). So the element of the left in (1.61) is well-defined. All
of the properties of a linear space and normed space now follow by continuity from
V C X and it also follows that X is a Banach space (since a closed subset of a
complete space is complete). Unfortunately there are quite a few annoying details
to check! O

‘PROOF2’ (THE LAST BIT IS LEFT TO YOU). Let V be a normed space. First
we introduce the rather large space

o
(1.62) V= {{uk},;“il,uk €V and Z lukll < oo}

k=1
the elements of which, if you recall, are said to be absolutely summable. Notice that
the elements of V are sequences, valued in V' so two sequences are equal, are the
same, only when each entry in one is equal to the corresponding entry in the other
— no shifting around or anything is permitted as far as equality is concerned. We
think of these as series (remember this means nothing except changing the name, a
series is a sequence and a sequence is a series), the only difference is that we ‘think’
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of taking the limit of a sequence but we ‘think’ of summing the elements of a series,
whether we can do so or not being a different matter.
Now, each element of V is a Cauchy sequence — meaning the corresponding

N
sequence of partial sums vy = > uy is Cauchy if {uy} is absolutely summable. As

k=1
noted earlier, this is simply because if M > N then

M M
(1.63) losr —onl =11 D wil < D Null < > gl
j=N+1 j=N+1 j>N+1

gets small with NV by the assumption that ) [Ju;|| < cc.
J

Moreover, V is a linear space, where we add sequences, and multiply by con-
stants, by doing the operations on each component:-

(1.64) tr{ur} + to{up} = {t1ug + touy, }.

This always gives an absolutely summable series by the triangle inequality:
(1.65) DMtk + o] < [t Dl + [t2] D el
k k k

Within V consider the linear subspace

(1.66) S = {{uk};z k]l < 00, Y ugp = o}
k k

of those which sum to 0. As discussed in Section 5 above, we can form the quotient
(1.67) B=V/S

the elements of which are the ‘cosets’ of the form {uz} + S C V where {u,} € V.
This is our completion, we proceed to check the following properties of this B.

(1) A norm on B is defined by

(1.68) o]z = lim_| > ull, b={w}+S € B.
k=1

(2) The original space V is imbedded in B by
(1.69) Vovr— IWw)={ug}+ S, vy =v, uu, =0V k>1

and the norm satisfies (1.58).
(3) I(V) C B is dense.
(4) B is a Banach space with the norm (1.68).

So, first that (1.68) is a norm. The limit on the right does exist since the limit
of the norm of a Cauchy sequence always exists — namely the sequence of norms
is itself Cauchy but now in R. Moreover, adding an element of S to {uj} does not
change the norm of the sequence of partial sums, since the additional term tends
to zero in norm. Thus ||b||p is well-defined for each element b € B and ||b||p = 0
means exactly that the sequence {u} used to define it tends to 0 in norm, hence is
in S hence b = 0 in B. The other two properties of norm are reasonably clear, since
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if b, b’ € B are represented by {uy}, {u}} in V then tb and b + b are represented
by {tuy} and {ug + u}} and
(1.70)

n n
i 3 ol = b Jim 3 el = ] =l

n
. ’ o
im || ;(we +up)l| = A=
n

fore>03 Nst. Yn>N, A—e§|\2(uk+u;€)||:>
k=1

A—e<| D wl+ 1D u)Vn=N=A—e<|blls+|V|ls Ve>0=

k=1 k=1
16+ 015 < [[bll5 + [16']] 5-
Now the norm of the element I(v) = v,0,0,-- , is the limit of the norms of the
sequence of partial sums and hence is ||v||y so |[I(v)|lz = |v|]lv and I(v) = 0

therefore implies v = 0 and hence [ is also injective.

We need to check that B is complete, and also that I(V) is dense. Here is
an extended discussion of the difficulty — of course maybe you can see it directly
yourself (or have a better scheme). Note that I ask you to write out your own
version of it carefully in ProblemXXX.

Okay, what does it mean for B to be a Banach space, as discussed above it
means that every absolutely summable series in B is convergent. Such a series {b,}
is given by b, = {u,(cn)} + S where {u,(cn)} € V and the summability condition is
that

N
(1.71) 00> lballz =Y tim || uf v
n n k=1

So, we want to show that > b, = b converges, and to do so we need to find the

n
limit b. It is supposed to be given by an absolutely summable series. The ‘problem’
is that this series should look like > Y uén) in some sense — because it is supposed
n k

to represent the sum of the b,’s. Now, it would be very nice if we had the estimate
(1.72) Y3 v < oo
n k

since this should allow us to break up the double sum in some nice way so as to get
an absolutely summable series out of the whole thing. The trouble is that (1.72)
need not hold. We know that each of the sums over k — for given n — converges,
but not the sum of the sums. All we know here is that the sum of the ‘limits of the
norms’ in (1.71) converges.

So, that is the problem! One way to see the solution is to note that we do not

have to choose the original {ufgn)} to ‘represent’ b,, — we can add to it any element

(n)
k

of S. One idea is to rearrange the u; ' — I am thinking here of fixed n — so that it
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‘converges even faster.” Given € > 0 we can choose p; so that for all p > pq,
(1.73) 11" w v = ballsl < & S luflly <.
k<p k>p

Then in fact we can choose successive p; > p;j_1 (remember that little n is fixed
here) so that

W)Y v = lballsl <2776 3 My <277
k<p; k>p;
() _ &5 (m)  (n) M
Now, ‘resum the series’ defining instead vy = > wy’, v;” = > wu,~ and
k=1 k=p;_1+1

do this setting e = 27" for the nth series. Check that now
(1.75) >l < oo
n k

Of course, you should also check that b, = {v](c")

series work just as well as the old ones.
After this fiddling you can now try to find a limit for the sequence as

(1.76) b={wi}+ S, wy = Z vl(p) ev.
I+p=k+1

} 48 so that these new summable

So, you need to check that this {wy} is absolutely summable in V' and that b, — b
as n — 0o.

Finally then there is the question of showing that I(V) is dense in B. You can
do this using the same idea as above — in fact it might be better to do it first. Given
an element b € B we need to find elements in V, vy such that ||I(vg) — bl|p — 0 as

NJ
k — oo. Take an absolutely summable series uj, representing b and take v; = > ug
k=1

where the p;’s are constructed as above and check that I(v;) — b by computing

(1.77) 11(v) = bl = lim | > uklly <> lluxllv

k>p; k>p;

7. More examples

Let me collect some examples of normed and Banach spaces. Those mentioned
above and in the problems include:

e ¢( the space of convergent sequences in C with supremum norm, a Banach
space.

e [P one space for each real number 1 < p < oo; the space of p-summable
series with corresponding norm; all Banach spaces. The most important
of these for us is the case p = 2, which is (a) Hilbert space.

e [ the space of bounded sequences with supremum norm, a Banach space
with ¢y C [*° as a closed subspace with the same norm.

e C([a,b]) or more generally C°(M) for any compact metric space M — the
Banach space of continuous functions with supremum norm.

e C»(R), or more generally Co. (M) for any metric space M — the Banach
space of bounded continuous functions with supremum norm.
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Co(R), or more generally Co(M) for any metric space M — the Banach
space of continuous functions which ‘vanish at infinity’ (see ProblemXXX
with supremum norm. A closed subspace, with the same norm, in C%_ (M).
C*([a, b]) the space of k times continuously differentiable (so k € N) func-
tions on [a, b] with norm the sum of the supremum norms on the function
and its derivatives. Each is a Banach space — see ProblemXXX.

The space C([0,1]) with norm

1
Julles = [ lulde
0

given by the Riemann integral of the absolute value. A normed space, but
not a Banach space. We will construct the concrete completion, L*(]0, 1])
of Lebesgue integrable ‘functions’.

The space R([a,b]) of Riemann integrable functions on [a,b] with [|ul|
defined by (1.78). This is only a seminorm, since there are Riemann
integrable functions (note that u Riemann integrable does imply that |ul is
Riemann integrable) with |u| having vanishing Riemann integral but which
are not identically zero. This cannot happen for continuous functions. So
the quotient is a normed space, but it is not complete.

The same spaces — either of continuous or of Riemann integrable functions
but with the (semi- in the second case) norm

b 1
p
Jullr = ( / |u|p) .
a

Not complete in either case even after passing to the quotient to get a norm
for Riemann integrable functions. We can, and inideed will, define L?(a, b)
as the completion of C([a,b]) with respect to the L? norm. However we
will get a concrete realization of it soon.

Suppose 0 < « < 1 and consider the subspace of C([a, b]) consisting of the
‘Holder continuous functions’ with exponent «, that is those v : [a,b] —
C which satisfy

lu(z) — u(y)| < Clz — y|* for some C > 0.

Note that this already implies the continuity of u. As norm one can take
the sum of the supremum norm and the ‘best constant’ which is the same
as

|u(z) —u(y)l

b

llullce = sup |u(xz)|+ sup
2€lab]] etyelat) 1T —Yl*

it is a Banach space usually denoted C*([a, b]).

Note the previous example works for &« = 1 as well, then it is not de-
noted C*([a, b)), since that is the space of once continuously differentiable
functions; this is the space of Lipschitz functions — again it is a Banach
space.

We will also talk about Sobolev spaces later. These are functions with
‘Lebesgue integrable derivatives’. It is perhaps not easy to see how to
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define these, but if one take the norm on C*([a, b])

d 2
(152) fulln = (el + 15213 )

and completes it, one gets the Sobolev space H!([a,b]) — it is a Banach
space (and a Hilbert space). In fact it is a subspace of C([a, b]) = C°([a, b]).
Here is an example to see that the space of continuous functions on [0, 1] with
norm (1.78) is not complete; things are even worse than this example indicates! It
is a bit harder to show that the quotient of the Riemann integrable functions is not
complete, feel free to give it a try.
Take a simple non-negative continuous function on R for instance

1-— if 1
(1.83) f(x)={0 = if:jil’

Then f_ll f(x) = 1. Now scale it up and in by setting
(1.84) fn(z) = Nf(N3z) =0 if |[z| > N3,

So it vanishes outside [~ N~%, N=3] and has [, fy(z)dz = N~2. Tt follows that the

sequence {fn} is absolutely summable with respect to the integral norm in (1.78)

n [—1,1]. The pointwise series > fn () converges everywhere except at = 0 —
N

since at each point z # 0, fy(x) = 0 if N3|z| > 1. The resulting function, even if we
ignore the problem at x = 0, is not Riemann integrable because it is not bounded.
You might respond that the sum of the series is ‘improperly Riemann inte-
grable’. This is true but does not help much.
It is at this point that I start doing Lebesgue integration in the lectures. The
following material is from later in the course but fits here quite reasonably.

8. Baire’s theorem

At least once I wrote a version of the following material on the blackboard
during the first mid-term test, in an an attempt to distract people. It did not work
very well — its seems that MIT students have already been toughened up by this
stage. Baire’s theorem will be used later (it is also known as ‘Baire category theory’
although it has nothing to do with categories in the modern sense).

This is a theorem about complete metric spaces — it could be included in the
earlier course ‘Real Analysis’ but the main applications are in Functional Analysis.

THEOREM 2 (Baire). If M is a non-empty complete metric space and C,, C M,
n € N, are closed subsets such that

(1.85) M = U(jn

then at least one of the Cy’s has an interior point.

PROOF. We can assume that the first set C; # () since they cannot all be
empty and dropping any empty sets does no harm. Let’s assume the contrary of
the desired conclusion, namely that each of the C,,’s has empty interior, hoping to
arrive at a contradiction to (1.85) using the other properties. This means that an
open ball B(p,¢) around a point of M (so it isn’t empty) cannot be contained in
any one of the C,.
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So, choose p € C;. Now, there must be a point p; € B(p,1/3) which is not
in C;. Since C1 is closed there exists €; > 0, and we can take ¢; < 1/3, such that
B(pi,e1) N Cy = . Continue in this way, choose ps € B(p1, €1/3) which is not in
Cy and ez > 0, €2 < €1/3 such that B(pa,e2) N Cy = (. Here we use both the fact
that Cs has empty interior and the fact that it is closed. So, inductively there is a
sequence p;, i = 1,...,k and positive numbers 0 < ¢, < €x_1/3 < €x_2/3? <--- <
€1/3*71 < 37% such that p; € B(p;j—_1,€j-1/3) and B(pj,¢;) NC; = (. Then we can
add another py1 by using the properties of Cj, — it has non-empty interior so there is
some point in B(pg, €;/3) which is not in Ci41 and then B(pg+1,€x+1) N Cri1 =0
where €11 > 0 but exy1 < €;/3. Thus, we have a sequence {p;} in M. Since
d(pr+1,pr) < €/3 this is a Cauchy sequence, in fact

(1.86) d(pk,pk_,_l) < Ek/3+"'+€k+l_1/3<3_k.

Since M is complete the sequence converges to a limit, ¢ € M. Notice however that
o € B(pg,2€,/3) for all k > 1 so d(pk,q) < 2¢,/3 which implies that ¢ ¢ Cj for
any k. This is the desired contradiction to (1.85).

Thus, at least one of the C,, must have non-empty interior. (]

In applications one might get a complete mentric space written as a countable
union of subsets

(1.87) M = UEn E,cM

where the £, are not necessarily closed. We can still apply Baire’s theorem however,
just take C,, = E,, to be the closures — then of course (1.85) holds since E,, C C,,.
The conclusion of course is then that

(1.88) For at least one n the closure of E,, has non-empty interior.

9. Uniform boundedness

One application of this is often called the uniform boundedness principle or
Banach-Steinhaus Theorem.

THEOREM 3 (Uniform boundedness). Let B be a Banach space and suppose
that T,, is a sequence of bounded (i.e. continuous) linear operators T,, : B — V
where V is a normed space. Suppose that for each b € B the set {T,(b)} C V is
bounded (in norm of course) then sup,, || T || < co.

PRrROOF. This follows from a pretty direct application of Baire’s theorem to B.
Consider the sets

(1.89) S, ={be B, bl <1, |Tublly <pVn}, peN.

Each S, is closed because T, is continuous, so if by — b is a convergent sequence
then [|b]] <1 and ||T5,(b)|| < p. The union of the S, is the whole of the closed ball
of radius one around the origin in B :

(1.90) {beB;d(b,0) <1} =S,

because of the assumption of ‘pointwise boundedness’ — each b with ||b]| < 1 must
be in one of the Sp’s.
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So, by Baire’s theorem one of the sets S, has non-empty interior, it therefore
contains a closed ball of positive radius around some point. Thus for some p, some
v € Sp, and some § > 0,

(1.91) we B, |w|p <= ||Th(v+w)||v <pVn.

Since v € ), is fixed it follows that | T,w|| < ||T,v||+p < 2p for all w with [|w]| < 6.
Moving v to (1 — §/2)v and halving § as necessary it follows that this ball

B(v,6) is contained in the open ball around the origin of radius 1. Thus, using the

triangle inequality, and the fact that ||T),(v)|v < p this implies

(1.92) w e B, |wlp <6 = |Ta(w)llv <2p = |Tnll < 2p/6.

The norm of the operator is sup{||Twl|v;||w||p = 1} = 5 sup{||Tw|v; |lw|s = &}

so the norms are uniformly bounded:

(1.93) 1Tl < 2p/6

as claimed. O

10. Open mapping theorem
The second major application of Baire’s theorem is to

THEOREM 4 (Open Mapping). If T : By — Bs is a bounded and surjective
linear map between two Banach spaces then T is open:

(1.94) T(O) C Bq is open if O C By is open.

This is ‘wrong way continuity’ and as such can be used to prove the continuity of
inverse maps as we shall see. The proof uses Baire’s theorem pretty directly, but
then another similar sort of argument is needed to complete the proof. There are
more direct but more computational proofs, see ProblemXXX. I prefer this one
because I have a reasonable chance of remembering the steps.

PrROOF. What we will try to show is that the image under T of the unit open
ball around the origin, B(0,1) C Bj contains an open ball around the origin in Bs.
The first part, of the proof, using Baire’s theorem shows that the closure of the
image, so in Bs, has 0 as an interior point — i.e. it contains an open ball around
the origin in B :

(1.95) T(B(0,1) D B(0,6), § > 0.
To see this we apply Baire’s theorem to the sets
(1.96) C, = clp, T(B(0,p))
the closure of the image of the ball in By of radius p. We know that

(1.97) B, = | JT(B(0,p))

since that is what surjectivity means — every point is the image of something. Thus
one of the closed sets C}, has an interior point, v. Since T is surjective, v = T'u for
some u € By. The sets €}, increase with p so we can take a larger p and v is still
an interior point, from which it follows that 0 = v — Tu is an interior point as well.
Thus indeed

(1.98) C, > B(0,4)
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for some § > 0. Rescaling by p, using the linearity of T, it follows that with
replaced by ¢/p, we get (1.95).

Having applied Baire’s thereom, consider now what (1.95) means. It follows
that each v € Bg, with ||v|| = 4, is the limit of a sequence Tu,, where |ju,| < 1.
What we want to find is such a sequence which converges. To do so we need to
choose the sequence more carefully. Certainly we can stop somewhere along the
way and see that

5 1
(1.99) vVE By, |v|=0= FuebBy, |u| <1, |[v-Tu|]| < 5= §||U||

where of course we could replace g by any positive constant but the point is the
last inequality is now relative to the norm of v. Scaling again, if we take any v # 0
in By and apply (1.99) to v/|lv|| we conclude that (for C' = p/J a fixed constant)

1
(1.100) v € By= Jue By, |u| ||, |[v-Tu| < §||’UH

where the size of u only depends on the size of v; of course this is also true for v =0
by taking u = 0.

Using this we construct the desired better approximating sequence. Given
w € By, choose u; = u according to (1.100) for v = w = wy. Thus |Jui|] < C,
and wy = wy — T'uy satisfies ||wz| < 3|lw||. Now proceed by induction, supposing
that we have constructed a sequence uj, j < n, in By with ||u;|| < C277!p and
|lw;|| < 279wl for j < n, where w; = w;j_1 — Tuj—1 — which we have for
n = 1. Then we can choose u,, using (1.100), so ||u,|| < C|lw,| < C27"F1||w||
and such that w,11 = w, — Tuy, has |w,i1| < 3flw,| < 277wl to extend the
induction. Thus we get a sequence u,, which is absolutely summable in Bj, since
S lunll < 2C|w||, and hence converges by the assumed completeness of B; this

n
time. Moreover

(1.101) w—T(Zuj) = w1 —Z(wj —wj+1) = Wnp+1
j=1 j=1

so Tu = w and ||ul| < 2C|w].

Thus finally we have shown that each w € B(0,1) in By is the image of some
u € By with |Ju]| < 2C. Thus T'(B(0,3C)) D> B(0,1). By scaling it follows that the
image of any open ball around the origin contains an open ball around the origin.

Now, the linearity of 7' shows that the image T'(O) of any open set is open,
since if w € T'(O) then w = T for some u € O and hence u+ B(0,¢) C O for e > 0
and then w + B(0,d) C T(O) for ¢ > 0 sufficiently small. O

One important corollary of this is something that seems like it should be obvi-
ous, but definitely needs the completeness to be true.

COROLLARY 2. IfT : By — By is a bounded linear map between Banach
spaces which is 1-1 and onto, i.e. is a bijection, then it is a homeomorphism —
meaning its tnverse, which is necessarily linear, is also bounded.

PRrROOF. The only confusing thing is the notation. Note that T~ is generally
used both for the inverse, when it exists, and also to denote the inverse maps on
sets even when there is no true invers. The inverse of T, let’s call it S : Bo — By,
is certainly linear. If O C By is open then S~1(0) = T(0), since to say v € S~1(0)
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means S(v) € O which is just v € T(O), is open by the Open Mapping theorem, so
S is continuous. [l

11. Closed graph theorem

For the next application you should check, it is one of the problems, that the
product of two Banach spaces, By X By, — which is just the linear space of all pairs
(u,v), u € By and v € Ba, is a Banach space with respect to the sum of the norms

(1.102) [(w, o) = [lulls + [[v]l2-

THEOREM 5 (Closed Graph). IfT : By — Bs is a linear map between Banach
spaces then it is bounded if and only if its graph

(1.103) Gr(T) = {(u,v) € B1 x By;v =Tu}
s a closed subset of the Banach space By X Bs.

PROOF. Suppose first that T' is bounded, i.e. continuous. A sequence (uy,v,) €
B; X By is in Gr(T) if and only if v,, = T'u,,. So, if it converges, then u,, — u and
v = Tu, — To by the continuity of T, so the limit is in Gr(T") which is therefore
closed.

Conversely, suppose the graph is closed. This means that viewed as a normed
space in its own right it is complete. Given the graph we can reconstruct the map
it comes from (whether linear or not) in a little diagram. From B; x Bs consider
the two projections, m1(u,v) = w and ma(u,v) = v. Both of them are continuous
since the norm of either u or v is less than the norm in (1.102). Restricting them
to Gr(T) C By X Bs gives

(1.104) Gr(T)

By

This little diagram commutes. Indeed there are two ways to map a point (u,v) €
Gr(T) to Ba, either directly, sending it to v or first sending it to u € By and then
to T'u. Since v = T'u these are the same.

Now, as already noted, Gr(T') C By x B is a closed subspace, so it too is a
Banach space and m; and 7 remain continuous when restricted to it. The map m
is 1-1 and onto, because each u occurs as the first element of precisely one pair,
namely (u,Tu) € Gr(T). Thus the Corollary above applies to 71 to show that its
inverse, S is continuous. But then T = 75 o S, from the commutativity, is also
continuous proving the theorem. O

12. Hahn-Banach theorem

Now, there is always a little pressure to state and prove the Hahn-Banach
Theorem. This is about extension of functionals. Stately starkly, the basic question
is: Does a normed space have any non-trivial continuous linear functionals on it?
That is, is the dual space always non-trivial (of course there is always the zero linear
functional but that is not very amusing). We do not really encounter this problem
since for a Hilbert space, or even a pre-Hilbert space, there is always the space itself,
giving continuous linear functionals through the pairing — Riesz’ Theorem says that
in the case of a Hilbert space that is all there is. If you are following the course
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then at this point you should also see that the only continuous linear functionals
on a pre-Hilbert space correspond to points in the completion. I could have used
the Hahn-Banach Theorem to show that any normed space has a completion, but
I gave a more direct argument for this, which was in any case much more relevant
for the cases of L'(R) and L?(R) for which we wanted concrete completions.

THEOREM 6 (Hahn-Banach). If M C V is a linear subspace of a normed space
and u : M — C is a linear map such that

(1.105) lu(®)| < Clltlly Vte M

then there ezists a bounded linear functional U : V. — C with ||U|| < C and
U’M = u.

First, by computation, we show that we can extend any continuous linear func-
tional ‘a little bit’ without increasing the norm.

LEMMA 5. Suppose M C V is a subspace of a normed linear space, x ¢ M
and u : M — C is a bounded linear functional as in (1.105) then there exists
u' : M — C, where M' = {t' e V;t' =t + ax}, a € C, such that

(1.106) =u, |u'(t+ax)| < C|t+azx|y, Vte M, acC.

ProOF. Note that the decompositon ¢ = t + ax of a point in M’ is unique,
since t + ax = t + ax implies (@ — a)z € M so a = a, since © ¢ M and hence t = ¢
as well. Thus

(1.107) u(t+ax) = u'(t) + au(x) = u(t) + Xa, A =u/(z)

and all we have at our disposal is the choice of A\. Any choice will give a linear
functional extending u, the problem of course is to arrange the continuity estimate
without increasing the constant C. In fact if C' = 0 then v = 0 and we can take
the zero extension. So we might as well assume that C' = 1 since dividing u by C
arranges this and if u’ extends u/C then Cu' extends u and the norm estimate in
(1.106) follows. So we now assume that

“/|M

(1.108) lu(t)] < ||t|lv V t € M.
We want to choose A so that
(1.109) |u(t) + aX| < ||t + az||lvy YVt € M, a € C.

Certainly when a = 0 this represents no restriction on A. For a # 0 we can divide
through by —a and (1.109) becomes
t t

(1.110) lallu(=2) = Al = |u(t) + aA| < [t + azlly = |al| = — —2llv
and since —t/a € M we only need to arrange that
(1.111) lu(®) = A < |It—zlly YueM
and the general case will follow.

We will choose A to be real. A complex linear functional such as u can be
recovered from its real part, as we see below, so set
(1.112) w(t) =Re(u(t)) Vte M
and just try to extend w to a real functional — it is not linear over the complex
numbers of course, just over the reals — satisfying the anaogue of (1.111):

(1.113) lw(t) — N <[t —z|y VteM
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which anyway does not involve linearity. What we know about w is the norm
estimate (1.108) which (using linearity) implies
(L114) - Jw(ty) —w(t2)| < |u(ty) —ult)] < ([t — tofl < [t —zllv + [tz — [|v.
Writing this out using the reality we find
(1.115) w(tr) —w(tz) < [[tr — zflv + [[t2 — 2|y =

w(ty) — |[t1 — x| S w(te) + ||ta — z||v V t1, t2 € M.

We can then take the sup on the right and the inf on the left and choose A in
between — namely we have shown that there exists A € R with

(1116) w(t) — [[t — z]lv < sup (w(t1) — [[tn —=[]) <A
to€M

< inf (w(t) + ||t —zf)) w(@) + ||t —=z||v Vie M.
toEM

This in turn implies that
(L117) |t —z|ly < —w({@) + A<t —z||ly = |w(t) = A < |t —z||v YVt € M.

This is what we wanted — we have extended the real part of u to

(1.118) w'(t + ar) = w(t) — (Rea)\ and |[w'(t + ax)| < ||t + az|v.
Now, finally we get the extension of u itself by ‘complexifying’ — defining
(1.119) W (t+az) = W' (t + ax) —iw'(i(t + ax)).

This is linear over the complex numbers since
(1.120) o' (2(t + ax)) = w'(2(t + ax)) — iw'(iz(t + ax)

=w'(Rez(t + ax) +ilm2(t + ax)) — iw' (i Re z(t + az)) + iw’(Im 2(t + az))

= (Rez +ilmz)w'(t + az) —i(Rez + iIm2)(w'(i(t + az)) = 2zu'(t + ax).

It certainly extends u from M — since the same identity gives u in terms of its real
part w.

Finally then, to see the norm estimate note that (as we did long ago) there
exists a uniqge 6 € [0, 27) such that

[u'(t + ax)| = Re e (t + ax) = Rew' (et + e ax)

(1.121) Do "
=w'(eu+eax) < || (t + ax)|v = ||t + az||v.

This completes the proof of the Lemma. O

PrROOF OF HAHN-BANACH. This is an application of Zorn’s Lemma. I am not
going to get into the derivation of Zorn’s Lemma from the Axiom of Choice, but if
you believe the latter — and you are advised to do so, at least before lunchtime —
you should believe the former.

So, Zorn’s Lemma is a statement about partially ordered sets. A partial order
on a set E is a subset of E x E, so a relation, where the condition that (e, f) be in
the relation is written e < f and it must satisfy

(1.122) e<e,e<fand f<e=e=f e<fand f<<g=—=¢e~<g.

So, the missing ingredient between this and an order is that two elements need not
be related at all, either way.

A subsets of a partially ordered set inherits the partial order and such a subset
is said to be a chain if each pair of its elements is related one way or the other.
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An upper bound on a subset D C E is an element e € E such that d < e for all
d € D. A maximal element of E is one which is not majorized, thatise < f, f € E,
implies e = f.

LEMMA 6 (Zorn). If every chain in a (non-empty) partially ordered set has an
upper bound then the set contains at least one mazimal element.

Now, we are given a functional u : M — C defined on some linear subspace
M C V of a normed space where u is bounded with respect to the induced norm
on M. We will apply Zorn’s Lemma to the set E consisting of all extensions (v, N)
of u with the same norm. That is, V. > N D M, v|,, = u and |[v||x = [Jul|5;. This
is certainly non-empty since it contains (u, M) and has the natural partial order
that (v1, N1) < (v2, Na) if Ny C Ny and vy N, = V1 You should check that this is
a partial order.

Let C be a chain in this set of extensions. Thus for any two elements (v;, N1) €
C, either (v1, N1) < (v, N2) or the other way around. This means that

(1.123) N = U{N; (v,N) e C for some v} CV

is a linear space. Note that this union need not be countable, or anything like that,
but any two elements of N are each in one of the N’s and one of these must be
contained in the other by the chain condition. Thus each pair of elements of N is
actually in a common N and hence so is their linear span. Similarly we can define
an extension

(1.124) o: N —C, o(z) =v(z)ifz € N, (v,N) eC.

There may be many pairs (v, N) satisfying z € N for a given z but the chain
condition implies that v(x) is the same for all of them. Thus ¢ is well defined, and
is clearly also linear, extends u and satisfies the norm condition |9(z)| < ||ul|ar||v]|v-
Thus (3, N) is an upper bound for the chain C.

So, the set of all extension E, with the norm condition, satisfies the hypothesis
of Zorn’s Lemma, so must — at least in the mornings — have a maximal element
(ﬁ,]\;[) If M = V then we are done. However, in the contary case there exists
zeV\ M. This means we can apply our little lemma and construct an extension
(u', M') of (@i, M) which is therefore also an element of E and satisfies (@, M) <
(u', M'). This however contradicts the condition that (&, M) be maximal, so is
forbidden by Zorn. O

There are many applications of the Hahn-Banach Theorem. As remarked ear-
lier, one significant one is that the dual space of a non-trivial normed space is itself
non-trivial.

PROPOSITION 7. For any normed space V' and element 0 # v € V there is a
continuous linear functional f:V — C with f(v) =1 and || f]| = 1/|v|v.

PROOF. Start with the one-dimensional space, M, spanned by v and define
u(zv) = z. This has norm 1/||v||y. Extend it using the Hahn-Banach Theorem and
you will get a continuous functional f as desired. O
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13. Double dual

Let me give another application of the Hahn-Banach theorem, although I have
never covered this in lectures. If V is a normed space, we know its dual space, V”’,
to be a Banach space. Let V" = (V') be the dual of the dual.

PROPOSITION 8. Ifv € V then the linear map on V' :
(1.125) T,: V' — C, T,(v") =v'(v)
is continuous and this defines an isometric linear injection V.— V"' ||T,| = ||v|.
PROOF. The definition of T, is ‘tautologous’, meaning it is almost the definition
of V'. First check T, in (1.125) is linear. Indeed, if v}, vj € V' and A1, Ag € C then
Ty (A1) + Avh) = (A1) + Aavh)(v) = Mvf(v) + Aovh(v) = M T, (V) + AT, (vh).
That T, € V", i.e. is bounded, follows too since |T,(v)] = [v'(v)| < ||v'|lv/||[vlv;
this also shows that ||T,||v» < ||v||. On the other hand, by Proposition 7 above,
if ||v]] = 1 then there exists v' € V' such that v'(v) = 1 and |[v'||y» = 1. Then

T,(v") = v/(v) = 1 shows that ||T|| = 1 so in general |T,|| = ||v||. It also needs
to be checked that V' > v — T, € V" is a linear map — this is clear from the
definition. It is necessarily 1-1 since ||T,| = ||v]|. O

Now, it is definitely not the case in general that V" = V in the sense that this
injection is also a surjection. Since V" is always a Banach space, one necessary
condition is that V itself should be a Banach space. In fact the closure of the image
of V in V" is a completion of V. If the map to V" is a bijection then V is said
to be reflexive. It is pretty easy to find examples of non-reflexive Banach spaces,
the most familiar is ¢y — the space of infinite sequences converging to 0. Its dual
can be identified with [!, the space of summable sequences. Its dual in turn, the
bidual of ¢y, is the space [* of bounded sequences, into which the embedding is the
obvious one, so0 ¢g is not reflexive. In fact I! is not reflexive either. There are useful
characterizations of reflexive Banach spaces. You may be interested enough to look
up James’ Theorem:- A Banach space is reflexive if and only if every continuous
linear functional on it attains its supremum on the unit ball.

14. Axioms of a vector space

In case you missed out on one of the basic linear algebra courses, or have a
poor memory, here are the axioms of a vector space over a field K (either R or C

for us).
A wvector space structure on a set V is a pair of maps
(1.126) +:VxV —V - :KxV —V

satisfying the conditions listed below. These maps are written +(v1,vs) = v1 + v9
and -(A\,v) = Av, A€ K, V, vy, vy € V.
additive commutativity vy + vo = v + vo for all vy, vo € V.
additive associativity v; + (v + v3) = (v1 + v2) + vs for all vy, ve, v3 € V.
existence of zero There is an element 0 € V such that v + 0 =v for all v € V.
additive invertibility For each v € V' there exists w € V such that v + w = 0.
distributivity of scalar additivity (A1+A2)v = A+ Aqv forall A;, Ao € Kand v € V.
multiplicativity Aj(A2v) = (A A2)v for all Aj, Ay € K and v € V.
action of multiplicative identity 1v = v for all v € V.
distributivity of space additivity A(vy; +ve) = Avy + Avg for all A € K vy, vg € V.



