Reversibility of chordal $SLE_{\kappa}(\rho)$

Pu Yu

Massachusetts Institute of Technology

Random Geometry and Statistical Physics workshop joint work with Xin Sun March 4, 2023

1 The chordal SLE process and its reversibility

2 Conformal welding of LQG surfaces

2/18

(4) E (4) (4) E (4)

Image: A matrix

- Fix $\kappa > 0$, and let $\{B_t\}_{t \ge 0}$ be the standard Brownian motion.
- The ${\rm SLE}_\kappa$ curve η from 0 to ∞ on the upper half plane ${\mathbb H}$ can be characterized by

$$rac{dg_t(z)}{dt} = rac{2}{g_t(z) - W_t}; \ g_0(z) = z$$
 (1)

where $W_t = \sqrt{\kappa}B_t$ and g_t is the conformal map from $\mathbb{H}\setminus\eta([0, t])$ to \mathbb{H} with $\lim_{|z|\to\infty} |g_t(z) - z| = 0$.

• The definition is extended to other domains via *conformal invariance.*

イロト (雪) (ヨ) (ヨ)

$SLE_{\kappa}(\underline{\rho})$ processes

- Fix the weights $\rho^{0,L}, ..., \rho^{k,L}; \rho^{0,R}, ..., \rho^{\ell,R} \in \mathbb{R}$ and the force points $x^{k,L} < ... < x^{0,L} = 0^- < 0^+ = x^{0,R} < ... < x^{\ell,R}$.
- The $SLE_{\kappa}(\underline{\rho})$ curve η from 0 to ∞ on the upper half plane \mathbb{H} with force points \underline{x} can be characterized by the Loewner equation (1) with

$$dW_t = \sum_{q \in \{L,R\}} \sum_i \frac{\rho^{i,q}}{W_t - g_t(x^{i,q})} dt + \sqrt{\kappa} dB_t$$
(2)

くロ とく 御 とく ヨ とく ヨ とう

- Continuation threshold: If for any *j* ≥ 0 and *q* ∈ {*L*, *R*}, ∑^{*j*}_{*i*=0} ρ^{*i*,*q*} > −2, then the SLE_κ(<u>ρ</u>) process η exists all the way to the infinity.
- Boundary hitting: If for any $j \ge 0$ and $q \in \{L, R\}$, $\sum_{i=0}^{j} \rho^{i,q} \ge \frac{\kappa}{2} - 2$, then η a.s. does not hit the boundaries.
- Boundary filling: For $\kappa > 4$, if for any $j \ge 0$ and $q \in \{L, R\}$, $\sum_{i=0}^{j} \rho^{i,q} \ge \frac{\kappa}{2} - 4$, then η is non-boundary filling.
- η is a.s. simple when $\kappa \leq$ 4 and space-filling when $\kappa \geq$ 8.

5/18

イロト イポト イヨト 一日

The reversibility of $SLE_{\kappa}(\rho)$ processes

- For κ ∈ (0, 4], Zhan'08 proved that the time reversal of an SLE_κ process is an SLE_κ.
- For κ ∈ (0, 8], Miller-Sheffield'12 have proved that the time reversal of an SLE_κ(ρ^L; ρ^R) process with force points at 0⁻, 0⁺ (i.e., k = ℓ = 0) is an SLE_κ(ρ^R; ρ^L), provided ρ^L, ρ^R > -2 ∨ (^κ/₂ 4). They also showed that when κ > 8, SLE_κ curve is not reversible.
- When the force points are all on the same side, Zhan'19 gave a description of the time reversal of $SLE_{\kappa}(\underline{\rho})$ when (i) $\kappa \in (0, 4]$ $\sum_{i=0}^{j} \rho^{i,q} > -2$ for any $j \ge 0$ and $q \in \{L, R\}$ (ii) $\kappa \in (4, 8]$ $\sum_{i=0}^{j} \rho^{i,q} \ge \frac{\kappa}{2} - 2$ for any $j \ge 0$ and $q \in \{L, R\}$.
- $\kappa = 4$, SLE_{κ}($\underline{\rho}$) is reversible as proved in Wang-Wu'17 via GFF level lines.

くロ とくぼ とくほ とく しょう

3

The time reversal of $SLE_{\kappa}(\rho)$ processes

Let
$$x^{k+1,L} = -\infty$$
, $x^{\ell+1,R} = +\infty$, $\rho^{k+1,L} = -\sum_{i=0}^{k} \rho^{i,L}$,
 $\rho^{\ell+1,R} = -\sum_{i=0}^{\ell} \rho^{i,R}$. Let $J(z) = -1/z$. For $0 \le i \le \ell$, let
 $\hat{x}^{i,L} = J(x^{\ell+1-i,R})$, $\hat{\rho}^{i,L} = -\rho^{\ell+1-i,R}$. For $0 \le i \le k$, let
 $\hat{x}^{i,R} = J(x^{k+1-i,L})$, $\hat{\rho}^{i,R} = -\rho^{k+1-i,R}$. For $i \ge 1$ and $q \in \{L, R\}$, let
 $\hat{\alpha}^{i,q} = \frac{\hat{\rho}^{i,q}(\kappa-4)}{2\kappa}$.

Theorem (Sun-Y. 22')

Up to reparametrization, the law of the time reversal of $J \circ \eta$ is the probability measure proportional to $\widetilde{SLE}_{\kappa}(\hat{\rho}; \hat{\alpha})$ with force points \hat{x} .

$\widetilde{\operatorname{SLE}}_{\kappa}(\underline{\rho};\underline{\alpha})$ processes

- Let η be an $SLE_{\kappa}(\underline{\rho})$ process with force points \underline{x} .
- For each $i \ge 1$ and $q \in \{L, R\}$, let $D_{\eta}^{i,q}$ be the connected component of $\mathbb{H} \setminus \eta$ containing $x^{i,q}$, and $\sigma_{\eta}^{i,q}, \xi_{\eta}^{i,q}$ be the first and the last point on $\partial D_{\eta}^{i,q}$ traced by η .
- Consider the conformal map $\psi_{\eta}^{i,q} : D_{\eta}^{i,q} \to \mathbb{H}$ sending $(\sigma_{\eta}^{i,q}, \mathbf{x}_{\eta}^{i,q}, \xi_{\eta}^{i,q})$ to $(0, \pm 1, \infty)$ where we take the + sign when q = R and take the sign when q = L.

8/18

$\widetilde{\text{SLE}}_{\kappa}(\underline{\rho};\underline{\alpha})$ processes

- We associate a power parameter $\alpha^{i,q} \in \mathbb{R}$ for each $x^{i,q}$ with $\alpha^{0,L} = \alpha^{0,R} = 0$.
- Define $\widetilde{\operatorname{SLE}}_{\kappa}(\underline{\rho};\underline{\alpha})$ by

$$\frac{d\widetilde{\operatorname{SLE}}_{\kappa}(\underline{\rho};\underline{\alpha})}{d\operatorname{SLE}_{\kappa}(\underline{\rho})}(\eta) = \prod_{q \in \{L,R\}} \prod_{i} |x^{i,q} \cdot (\psi_{\eta}^{i,q})'(x^{i,q})|^{\alpha^{i,q}}.$$
 (3)

イロト イボト イヨト イヨト

Liouville quantum gravity (LQG) surfaces

- Let γ ∈ (0,2), Q = ²/_γ + ^γ/₂ and φ be a variant of the Gaussian free field on some domain D.
- Area measure: $\mu_{\phi}(d^2z) = "e^{\gamma\phi(z)}d^2z"$ and length measure: $\nu_{\phi}(dx) = "e^{\frac{\gamma}{2}\phi(x)}dx"$.
- Two canonical perspectives: scaling limits of random planar maps/Liouville conformal field theory.
- Liouville field on \mathbb{H} : sample (h, \mathbf{c}) from $P_{\mathbb{H}} \times [e^{-Qc} dc]$, and set $\phi(z) = h(z) 2Q \log |z|_+ + \mathbf{c}$. Let $LF_{\mathbb{H}}$ be the law of ϕ [David-Kupiainen-Rhodes-Vargas '14].

くロ とくぼ とくほ とく しょう

LQG surfaces via LCFT

- Let $x_j \in \mathbb{R}, \beta_j < Q$. Liouville field with boundary insertions: $LF_{\mathbb{H}}^{(\beta_j, x_j)}(d\phi) = \prod_j e^{\frac{\beta_j}{2}\phi(x_j)} LF_{\mathbb{H}}(d\phi).$
- Weight *W* quantum disks: (Duplantier-Miller-Sheffield '14) can be viewed as *uniform embedding of* $LF_{\mathbb{H}}^{(\beta,0),(\beta,\infty)}$ (Ang-Holden-Sun'21).
- Weight (W_1 , W_2 , W_3) quantum triangles: defined in [Ang-Sun-Y. '22] via $LF_{\mathbb{H}}^{(\beta_1,0),(\beta_2,\infty),(\beta_3,1)}$.

• Relation:
$$\beta = \gamma + \frac{2-W}{\gamma}$$
.

• Thick-thin duality: when $W < \frac{\gamma^2}{2}$, a weight W (thin) quantum disk is the concatenation of weight $\gamma^2 - W$ (thick) quantum disks.

くロ とく 御 とく ヨ とく ヨ とう

Conformal welding of quantum disks

Theorem (Ang-Holden-Sun '20)

$$\mathcal{M}_{2}^{\text{disk}}(W^{L}+W^{R}) \otimes \text{SLE}_{\kappa}(W^{L}-2, W^{R}-2) \\ = \int_{0}^{\infty} \text{Weld}(\mathcal{M}_{2}^{\text{disk}}(W^{L}; \ell), \mathcal{M}_{2}^{\text{disk}}(W^{R}; \ell)d\ell.$$
(4)

		/B :	
PL	1 Y I I		11 1

Conformal welding of quantum triangles

Theorem (Ang-Sun-Y.' 22)

$$QT(W + W_1, W + W_2, W_3) \otimes \widetilde{SLE}_{\kappa}(W - 2; W_2 - 2, W_1 - W_2; \alpha)$$

= $c \int_0^\infty Weld(\mathcal{M}_2^{disk}(W; \ell), QT(W_1, W_2, W_3; \ell)).$ (5)

where
$$lpha=rac{W_3+W_2-W_1-2}{4\kappa}(W_3+W_1+2-W_2-\kappa).$$

$SLE_{\kappa}(\rho)$ reversibility via conformal welding

- In the above two welding pictures, one can immediately read off the law of the time reversal of SLE_κ(ρ⁻; ρ⁺) and SLE_κ(ρ⁻; ρ⁺, ρ₁) processes by looking at the welding picture in the reverse direction.
- In [Sun-Y. '22], we extend this welding result to the welding of multiple quantum disks and quantum triangles. The output surface is an LCFT type surface, with interface being ${\rm SLE}_{\kappa}(\underline{\rho})$ conditioned on hitting the boundaries.
- This justifies the reversibility of boundary-hitting $SLE_{\kappa}(\rho)$.

くロ とく 御 とく ヨ とく ヨ とう

An example

Figure: The welding of two quantum triangles with two quantum disks. The interface η is an $\widetilde{SLE}_{\kappa}(\bar{W}_0^L - 2; \bar{W}_0^R - 2, \bar{W}_1^R - \bar{W}_0^R, \bar{W}_2^R - \bar{W}_1^R; \alpha^{1,R}, \alpha^{2,R})$ process from x to y conditioned hitting the arc between $x^{1,R}$ and $x^{2,R}$, and its time reversal can be figured out by looking from the other direction.

March 4, 2023

Non-boundary-hitting case

Let η be an $SLE_{\kappa}(\underline{\rho})$ process, and $\tilde{\rho}^{i,q} \in \mathbb{R}$. Let $f_t(z) = g_t(z) - W_t$ be the centered Loewner flow.

Theorem (Schramm-Wilson '05)

If one weight the law of η by

$$M_{t} := \prod_{i,q} |f_{t}'(x^{i,q})|^{\frac{(\tilde{\rho}^{i,q}-\rho^{i,q})(\tilde{\rho}^{i,q}+\rho^{i,q}+4-\kappa)}{4\kappa}} |f_{t}(x^{i,q})|^{\frac{\tilde{\rho}^{i,q}-\rho^{i,q}}{\kappa}}$$

$$\cdot \prod |f_{t}(x^{i,q}) - f_{t}(x^{i',q'})|^{\frac{\tilde{\rho}^{i,q}\tilde{\rho}^{i',q'}-\rho^{i,q}\rho^{i',q'}}{2\kappa}}$$
(6)

(with an appropriate stopping time), the law of η is an $SLE_{\kappa}(\underline{\tilde{\rho}})$ process under the reweighted measure.

When η is non-boundary hitting, M_t tends to product of powers of conformal derivatives and Poisson kernels, allowing us to obtain the reversal of $SLE_{\kappa}(\underline{\tilde{\rho}})$ from that of $SLE_{\kappa}(\underline{\rho})$.

- Solve the problem by theory of Imaginary Geometry and traditional methods;
- Extension to radial/annulus SLE.

17/18

A ►

Thanks for listening!

◆□> ◆□> ◆三> ◆三> 三三 のへで