Radial mating-of-trees and reversibility of whole plane ${\rm SLE}_\kappa$ for $\kappa\geq 8$

Pu Yu

Massachusetts Institute of Technology

Workshop on Schramm-Loewner Evolution joint work with Morris Ang March 4, 2023

	1 V I	 ١л	
- E U			

- Radial and whole plane SLE processes
- 2 Liouville Quantum Gravity surfaces
- **3** Chordal and radial mating-of-trees
- **4** Reversibility of whole plane SLE_{κ} via radial mating-of-trees

Ρu	i Yu	(N	1IT)

- Fix $\kappa > 0$, and let $\{B_t\}_{t \ge 0}$ be the standard Brownian motion.
- The radial ${\rm SLE}_\kappa$ curve η from 1 to 0 in the unit disk $\mathbb D$ can be characterized by

$$\frac{dg_t(z)}{dt} = g_t(z)\frac{U_t + g_t(z)}{U_t - g_t(z)}; \quad g_0(z) = z \tag{1}$$

where $U_t = e^{i\sqrt{\kappa}B_t}$ and g_t is the conformal map from $\mathbb{D}\setminus\eta([0, t])$ to \mathbb{D} with $g_t(0) = 0$ and $g'_t(0) > 0$.

• Can be extended to other domains via conformal mapping.

- Let $\kappa > 0$ and $(B_t)_{t \in \mathbb{R}}$ be a standard two-sided Brownian motion.
- The whole plane ${\rm SLE}_\kappa$ curve η from 0 to ∞ in $\mathbb C$ can be characterized by

$$\frac{dg_t(z)}{dt} = g_t(z)\frac{U_t + g_t(z)}{U_t - g_t(z)}; \quad g_{-\infty}(z) = z$$

$$(2)$$

where $U_t = e^{i\sqrt{\kappa}B_t}$ and g_t is the conformal map from $\mathbb{C}\setminus\eta((-\infty, t])$ to $\mathbb{C}\setminus\mathbb{D}$ with $g_t(\infty) = \infty$ and $g'_t(\infty) > 0$.

イロト (雪) (ヨ) (ヨ)

3

Radial and whole plane SLE_{κ} processes

- Whole plane SLE_{κ} can be viewed as bi-infinite version of radial SLE_{κ} : If η is a whole plane SLE_{κ} , then $1/g_s(\eta([s, s+t]))_{t\geq 0}$ is a radial SLE_{κ} .
- The Lowener pair of radial SLE_{κ} in $\mathbb{C}\setminus \varepsilon \mathbb{D}$ from ε to ∞ converges (in local uniform topology) to that of whole plane SLE_{κ} .

The reversibility of whole plane SLE_{κ} processes

- For $\kappa \in (0, 4]$, Zhan'10 proved that whole plane SLE_{κ} processes are reversible, where a description of the time reversal of radial SLE_{κ} was also given.
- For $\kappa \in (0, 8]$, Miller-Sheffield'13 have proved the reversibility of whole plane SLE_{κ} via SLE/GFF coupling.
- For $\kappa > 8$, reversibility does not hold for chordal SLE_{κ}, yet the reversibility of whole plane SLE_{κ} has been conjectured in Viklund-Wang'20 by studying the Loewner energy.

Liouville quantum gravity (LQG) surfaces

- Let γ ∈ (0, 2), Q = ²/_γ + ^γ/₂ and φ be a variant of the Gaussian free field on some domain D.
- Area measure: $\mu_{\phi}(d^2z) = "e^{\gamma\phi(z)}d^2z"$ and length measure: $\nu_{\phi}(dx) = "e^{\frac{\gamma}{2}\phi(x)}dx"$.
- Typical LQG surfaces (Duplantier-Miller-Sheffield '14): quantum wedges, quantum cones, quantum disks, quantum spheres with a weight parameter W > 0.
- Two canonical perspectives: scaling limits of random planar maps/Liouville conformal field theory.

イロト イポト イヨト 一日

LQG surfaces via LCFT

- Start with the GFF on $\mathbb D$ with average on $\partial \mathbb D$ being 0.
- Liouville field on \mathbb{D} : sample (h, \mathbf{c}) from $P_{\mathbb{D}} \times [e^{-Qc}dc]$, and set $\phi(z) = h(z) + \mathbf{c}$. Let $LF_{\mathbb{D}}$ be the law of ϕ [David-Kupiainen-Rhodes-Vargas '14].
- Let $\beta_j, \alpha_k \in \mathbb{R}, z_k \in \mathbb{D}$ and $x_j \in \partial \mathbb{D}$. Liouville field with insertions: $LF_{\mathbb{D}}^{(\alpha_k, z_k), (\beta_j, x_j)}(d\phi) = \prod_j e^{\frac{\beta_j}{2}\phi(x_j)} e^{\alpha_k \phi(z_k)} LF_{\mathbb{D}}(d\phi).$
- The quantum wedges/cones/disks/spheres can be viewed as *uniform embedding* of Liouville fields with two insertions. (Ang-Holden-Sun'21).

Image: A mage: A ma

SLE/LQG couplings: κ < 4 case

Let $\kappa = \gamma^2 \in (0, 4)$.

Theorem (Duplantier-Miller-Sheffield '14)

$$\mathcal{M}^{\mathsf{wedge}}(W^L + W^R) \otimes \mathrm{SLE}_\kappa(W^L - 2, W^R - 2) = \mathcal{M}^{\mathsf{wedge}}(W^L) imes \mathcal{M}^{\mathsf{wedge}}(W^R).$$

(3)

			-	*) 4 (*
Pu Yu (MIT)	Radial mating-of-trees	March 4, 2023		9/25

SLE/LQG couplings: κ < 4 case

Theorem (Ang-Holden-Sun '20)

$$egin{aligned} &\mathcal{M}_2^{ ext{disk}}(\mathcal{W}^L+\mathcal{W}^R)\otimes ext{SLE}_\kappa(\mathcal{W}^L-2,\mathcal{W}^R-2)\ &= c\int_0^\infty ext{Weld}(\mathcal{M}_2^{ ext{disk}}(\mathcal{W}^L;\ell),\mathcal{M}_2^{ ext{disk}}(\mathcal{W}^R;\ell)d\ell. \end{aligned}$$

(4)

Pu Yu (MIT)	Radial mating-of-trees	March 4, 2	2023	10	/25

$\kappa \ge 8$ case: (Duplantier-Miller-Sheffield '14)

- Let $\gamma \in (0, \sqrt{2}]$ and $\kappa = 16/\gamma^2 \ge 8$.
- Let (𝔄, φ, 0, ∞) be a weight 2 ^{γ²}/₂ quantum wedge decorated with an independent space-filling chordal SLE_κ processes η' from 0 to ∞. Parameterize η' by quantum area.
- Let (X_t, Y_t) be the change in boundary length. Then $(X_t, Y_t)_{t \ge 0}$ evolves as planar Brownian motions with correlation $-\cos(4\pi/\kappa)$.
- $(X_t, Y_t)_{t \ge 0}$ a.s. determines the pair (ϕ, η') .

Chordal mating-of-trees

- $X_t = blue orange; Y_t = green red;$
- $-\inf_{0 \le s \le t} X_s = \text{orange}; -\inf_{0 \le s \le t} Y_s = \text{red}.$

< A >

э

Mating of Continuum Random Trees

- Given the Brownian motion (X_t, Y_t) , identifying points on the same horizontal segment gives a pair of correlated continuum random trees.
- The chordal mating-of-trees theorem suggests that there is a way to glue the two trees to obtain an SLE_{κ} decorated weight $2 \frac{\gamma^2}{2}$ quantum wedge.

Theorem (Ang-Y.23')

Let $\gamma \in (0, \sqrt{2}]$ and $\kappa = 16/\gamma^2$. Consider a disk $(\mathbb{D}, \phi, 0, 1)$ sampled from $LF_{\mathbb{D}}^{(\frac{\gamma}{4} + \frac{2}{\gamma}, 0), (\frac{3\gamma}{2}, 1)}$ conditioned on having unit boundary length. Sample an independent radial SLE_{κ} process η' in \mathbb{D} from 1 to 0 parameterized by quantum area. Then the boundary length process $(X_t, Y_t)_{t\geq 0}$ associated with (ϕ, η') evolves as the correlated Brownian motion as in the chordal case and stopped at time $\tau = \inf\{t > 0 : X_t + Y_t + 1 = 0\}$. Moreover, the pair (ϕ, η') is measurable w.r.t. $(X_t, Y_t)_{0\leq t\leq \tau}$.

くロ とく 御 とく ヨ とく ヨ とう

Boundary length process

Boundary length process

Boundary length of $(\mathbb{D}, \phi) = \ell_6 + \ell_7 = 1$; Boundary length of $\eta'([t, \tau)) = \ell_2 + \ell_3 + \ell_4 = 1 + X_t + Y_t$.

Reverse SLE processes

The chordal reverse $SLE_{\kappa}(\underline{\rho})$ process with force points $z_1, ..., z_n \in \overline{\mathbb{H}}$ is characterized by

$$d\tilde{W}_{t} = \sum_{j=1}^{n} \operatorname{Re}(\frac{-\rho_{j}}{\tilde{g}_{t}(z_{j}) - \tilde{W}_{t}})dt + \sqrt{\kappa}dB_{t};$$

$$d\tilde{g}_{t}(z_{j}) = -\frac{2}{\tilde{g}_{t}(z_{j}) - \tilde{W}_{t}}dt, \quad \tilde{g}_{0}(z) = z$$
(5)

where \tilde{g}_t maps \mathbb{H} to $\mathbb{H} \setminus \eta([0, t])$ and fixes ∞ . The radial reverse SLE_{κ} in \mathbb{D} is defined by

$$\frac{d\tilde{g}_t(z)}{dt} = -\tilde{g}_t(z)\frac{e^{i\sqrt{\kappa}B_t} + \tilde{g}_t(z)}{e^{i\sqrt{\kappa}B_t} - \tilde{g}_t(z)}; \quad g_0(z) = z,$$
(6)

where \tilde{g}_t maps \mathbb{D} to $\mathbb{D} \setminus \eta([0, t])$ and fixes 0.

	(A. 61-1-1)
	1 / / / / /
i u i u	

17/25

Coordinate change for reverse SLE processes

When conformally mapped to \mathbb{D} , reverse chordal $SLE_{\kappa}(\kappa + 6)$ agrees with reverse radial SLE_{κ} .

The mating-of-trees cells

(Duplantier-Miller-Sheffield '14) Consider the pairing of two Brownian CRTs. Run until the total quantum area is s. Denote the law of resulting surface by \mathcal{P}_s .

This also agrees with running an SLE_{κ} on weight $2 - \frac{\gamma^2}{2}$ quantum wedge and stop when the quantum area is *s*.

			= •) «(•
Pu Yu (MIT)	Radial mating-of-trees	March 4, 2023	19/25

Proof Outline

Step 1. The capacity zipper.

• Using the martingale in [Theorem 5.5, DMS14], one can construct a process $(\phi_t, \eta_t)_{t\geq 0}$, where (ϕ_t, η_t) has the law $LF_{\mathbb{D}}^{(Q+\frac{\gamma}{4},0),(-\frac{\gamma}{2},\eta_t(0))} \times rrSLE_{\kappa}^t$.

•
$$\phi_{t_1} = \phi_{t_2} \circ \tilde{g}_{t_1, t_2} + Q \log |\tilde{g}'_{t_1, t_2}|.$$

Pu Yu (MIT)	Radial mating-of-trees	March 4, 2023	20/25

化口下 化间下 化压下 化压下

Proof Outline

Step 2. The quantum zipper.

- For each fixed capacity time *T*, centered reverse SLE_κ stopped at time *T* agrees with forward SLE_κ stopped at time *T*.
- For each A > 0, let τ be the first time when the quantum area of $\eta_t([0, t])$ is A. Then $(\phi_{\tau}, \eta_{\tau})$ (when centered) has law $\mathrm{LF}_{\mathbb{Z}}^{(\frac{3\gamma}{2},1),(Q+\frac{\gamma}{4},0)} \times \mathrm{radial SLE}_{\kappa}^{\tau}$.
- Can be understood as the conformal welding of partially mated CRT with LF.

Step 3. The Brownian motions.

- By comparing to the chordal case via the coordinate change, before wrapping around, the parts discovered by the forward radial SLE_{κ} curve is a quantum cell.
- Then the boundary length process (X_t, Y_t) becomes Brownian motion weighted by $(1 + X_t + Y_t)$ before wrapping around time.
- Weighting by field circle average near 0 produces $LF_{\mathbb{D}}^{(\frac{3\gamma}{2},1),(Q-\frac{\gamma}{4},0)} \times radial SLE_{\kappa}$, and there is no weighting on the BM.
- Using self-similarity to recursively extend to all time *t* > 0.

Image: 1 mining the second second

Mating-of-trees on weight $\frac{\gamma^2}{2}$ quantum sphere

- Using GFF tail estimates, disks from $LF_{\mathbb{D}}^{(\frac{3\gamma}{2},1),(Q-\frac{\gamma}{4},0)}$ conditioned on having quantum area 1 and boundary length ε converges weakly to weight $\frac{\gamma^2}{2}$ quantum sphere with area 1 as $\varepsilon \to 0$.
- Under suitable embedding, one deduce that for a weight $\frac{\gamma^2}{2}$ quantum sphere decorated with whole plane SLE_{κ}, the boundary length ($X_t + Y_t$) evolves as a Brownian excursion from 0 to 0, with duration being the quantum area of the sphere.
- Then there is a matrix Λ determined by κ , such that $(X_t, Y_t) = \Lambda(W^1, W^2)$, where W^1 is a Brownian excursion and W^2 is a Brownian motion independent of W^1 .

		/8.4	
		икл	
гч	тu		

くロ とく 御 とく ヨ とく ヨ とう

Reversibility of whole plane SLE_{κ}

- By considering the chordal mating-of-trees on weight $4 \gamma^2$ quantum sphere decorated with SLE_{κ} loop, the mating-of-trees cells are reversible.
- The pair (ϕ, η') can be decomposed into a welding of countably many cells, each of which being reversible.
- This allows us to deduce the reversibility of the whole plane SLE_{κ} via the reversibility of the boundary length process (X_t, Y_t) .

< ロ > < 同 > < 三 > < 三 > 、

Thanks for listening!

◆□> ◆□> ◆三> ◆三> 三三 のへで