Radial mating-of-trees and reversibility of whole plane SLE $_{\kappa}$ for $\kappa \geq 8$

Pu Yu

Massachusetts Institute of Technology

Workshop on Schramm-Loewner Evolution joint work with Morris Ang
March 4, 2023

Outline

(1) Radial and whole plane SLE processes
(2) Liouville Quantum Gravity surfaces
(3) Chordal and radial mating-of-trees
(4) Reversibility of whole plane SLE $_{\kappa}$ via radial mating-of-trees

The radial SLE $_{\kappa}$ processes

- Fix $\kappa>0$, and let $\left\{B_{t}\right\}_{t \geq 0}$ be the standard Brownian motion.
- The radial SLE $_{\kappa}$ curve η from 1 to 0 in the unit disk \mathbb{D} can be characterized by

$$
\begin{equation*}
\frac{d g_{t}(z)}{d t}=g_{t}(z) \frac{U_{t}+g_{t}(z)}{U_{t}-g_{t}(z)} ; \quad g_{0}(z)=z \tag{1}
\end{equation*}
$$

where $U_{t}=e^{i \sqrt{\kappa} B_{t}}$ and g_{t} is the conformal map from $\mathbb{D} \backslash \eta([0, t])$ to \mathbb{D} with $g_{t}(0)=0$ and $g_{t}^{\prime}(0)>0$.

- Can be extended to other domains via conformal mapping.

Whole plane SLE $_{\kappa}$ processes

- Let $\kappa>0$ and $\left(B_{t}\right)_{t \in \mathbb{R}}$ be a standard two-sided Brownian motion.
- The whole plane SLE $_{\kappa}$ curve η from 0 to ∞ in \mathbb{C} can be characterized by

$$
\begin{equation*}
\frac{d g_{t}(z)}{d t}=g_{t}(z) \frac{U_{t}+g_{t}(z)}{U_{t}-g_{t}(z)} ; \quad g_{-\infty}(z)=z \tag{2}
\end{equation*}
$$

where $U_{t}=e^{i \sqrt{\kappa} B_{t}}$ and g_{t} is the conformal map from $\mathbb{C} \backslash \eta((-\infty, t])$ to $\mathbb{C} \backslash \mathbb{D}$ with $g_{t}(\infty)=\infty$ and $g_{t}^{\prime}(\infty)>0$.

Radial and whole plane SLE $_{\kappa}$ processes

- Whole plane SLE_{κ} can be viewed as bi-infinite version of radial SLE $_{\kappa}$: If η is a whole plane $\operatorname{SLE}_{\kappa}$, then $1 / g_{s}(\eta([s, s+t]))_{t \geq 0}$ is a radial SLE $_{\kappa}$.
- The Lowener pair of radial SLE_{κ} in $\mathbb{C} \backslash \varepsilon \mathbb{D}$ from ε to ∞ converges (in local uniform topology) to that of whole plane SLE $_{\kappa}$.

The reversibility of whole plane SLE $_{\kappa}$ processes

- For $\kappa \in(0,4]$, Zhan'10 proved that whole plane SLE $_{\kappa}$ processes are reversible, where a description of the time reversal of radial SLE_{κ} was also given.
- For $\kappa \in(0,8]$, Miller-Sheffield'13 have proved the reversibility of whole plane SLE $_{\kappa}$ via SLE/GFF coupling.
- For $\kappa>8$, reversibility does not hold for chordal SLE $_{\kappa}$, yet the reversibility of whole plane SLE $_{\kappa}$ has been conjectured in Viklund-Wang'20 by studying the Loewner energy.

Liouville quantum gravity (LQG) surfaces

- Let $\gamma \in(0,2), Q=\frac{2}{\gamma}+\frac{\gamma}{2}$ and ϕ be a variant of the Gaussian free field on some domain D.
- Area measure: $\mu_{\phi}\left(d^{2} z\right)=" e^{\gamma \phi(z)} d^{2} z "$ and length measure: $\nu_{\phi}(d x)=" e^{\frac{\gamma}{2} \phi(x)} d x$ ".
- Typical LQG surfaces (Duplantier-Miller-Sheffield '14): quantum wedges, quantum cones, quantum disks, quantum spheres with a weight parameter $W>0$.
- Two canonical perspectives: scaling limits of random planar maps/Liouville conformal field theory.

LQG surfaces via LCFT

- Start with the GFF on \mathbb{D} with average on $\partial \mathbb{D}$ being 0 .
- Liouville field on \mathbb{D} : sample (h, \mathbf{c}) from $P_{\mathbb{D}} \times\left[e^{-Q c} d c\right]$, and set $\phi(z)=h(z)+\mathbf{c}$. Let $\mathrm{LF}_{\mathbb{D}}$ be the law of ϕ [David-Kupiainen-Rhodes-Vargas '14].
- Let $\beta_{j}, \alpha_{k} \in \mathbb{R}, z_{k} \in \mathbb{D}$ and $x_{j} \in \partial \mathbb{D}$. Liouville field with insertions: $\mathrm{LF}_{\mathbb{D}}^{\left(\alpha_{k}, z_{k}\right),\left(\beta_{j}, x_{j}\right)}(d \phi)=\prod_{j} e^{\frac{\beta_{j}}{2} \phi\left(x_{j}\right)} e^{\alpha_{k} \phi\left(z_{k}\right)} \mathrm{LF}_{\mathbb{D}}(d \phi)$.
- The quantum wedges/cones/disks/spheres can be viewed as uniform embedding of Liouville fields with two insertions. (Ang-Holden-Sun'21).

SLE/LQG couplings: $\kappa<4$ case

Let $\kappa=\gamma^{2} \in(0,4)$.
Theorem (Duplantier-Miller-Sheffield '14)

$$
\begin{align*}
& \mathcal{M}^{\text {wedge }}\left(W^{L}+W^{R}\right) \otimes \operatorname{SLE}_{\kappa}\left(W^{L}-2, W^{R}-2\right) \\
& =\mathcal{M}^{\text {wedge }}\left(W^{L}\right) \times \mathcal{M}^{\text {wedge }}\left(W^{R}\right) . \tag{3}
\end{align*}
$$

SLE/LQG couplings: $\kappa<4$ case

Theorem (Ang-Holden-Sun '20)

$$
\begin{align*}
& \mathcal{M}_{2}^{\text {disk }}\left(W^{L}+W^{R}\right) \otimes \operatorname{SLE}_{\kappa}\left(W^{L}-2, W^{R}-2\right) \\
& =c \int_{0}^{\infty} \operatorname{Weld}\left(\mathcal{M}_{2}^{\text {disk }}\left(W^{L} ; \ell\right), \mathcal{M}_{2}^{\text {disk }}\left(W^{R} ; \ell\right) d \ell\right. \tag{4}
\end{align*}
$$

$\kappa \geq 8$ case: (Duplantier-Miller-Sheffield '14)

- Let $\gamma \in(0, \sqrt{2}]$ and $\kappa=16 / \gamma^{2} \geq 8$.
- Let $(\mathbb{H}, \phi, 0, \infty)$ be a weight $2-\frac{\gamma^{2}}{2}$ quantum wedge decorated with an independent space-filling chordal SLE $_{\kappa}$ processes η^{\prime} from 0 to ∞. Parameterize η^{\prime} by quantum area.
- Let $\left(X_{t}, Y_{t}\right)$ be the change in boundary length. Then $\left(X_{t}, Y_{t}\right)_{t \geq 0}$ evolves as planar Brownian motions with correlation $-\cos (4 \pi / \kappa)$.
- $\left(X_{t}, Y_{t}\right)_{t \geq 0}$ a.s. determines the pair $\left(\phi, \eta^{\prime}\right)$.

Chordal mating-of-trees

$\gamma \in(0, \sqrt{2}]:$

- $X_{t}=$ blue - orange; $Y_{t}=$ green - red;
- $-\inf _{0 \leq s \leq t} X_{s}=$ orange; $-\inf _{0 \leq s \leq t} Y_{s}=$ red.

Mating of Continuum Random Trees

- Given the Brownian motion $\left(X_{t}, Y_{t}\right)$, identifying points on the same horizontal segment gives a pair of correlated continuum random trees.
- The chordal mating-of-trees theorem suggests that there is a way to glue the two trees to obtain an SLE $_{\kappa}$ decorated weight $2-\frac{\gamma^{2}}{2}$ quantum wedge.

Radial Mating-of-trees

Theorem (Ang-Y.23')

Let $\gamma \in(0, \sqrt{2}]$ and $\kappa=16 / \gamma^{2}$. Consider a disk $(\mathbb{D}, \phi, 0,1)$ sampled from $\mathrm{LF}_{\mathbb{D}}^{\left(\frac{\gamma}{4}+\frac{2}{\gamma}, 0\right),\left(\frac{3 \gamma}{2}, 1\right)}$ conditioned on having unit boundary length. Sample an independent radial SLE $_{\kappa}$ process η^{\prime} in \mathbb{D} from 1 to 0 parameterized by quantum area. Then the boundary length process $\left(X_{t}, Y_{t}\right)_{t \geq 0}$ associated with $\left(\phi, \eta^{\prime}\right)$ evolves as the correlated Brownian motion as in the chordal case and stopped at time $\tau=\inf \left\{t>0: X_{t}+Y_{t}+1=0\right\}$. Moreover, the pair $\left(\phi, \eta^{\prime}\right)$ is measurable w.r.t. $\left(X_{t}, Y_{t}\right)_{0 \leq t \leq \tau}$.

Boundary length process

$$
\begin{aligned}
& X_{\tau_{1}}=-\ell_{6} ; Y_{\tau_{1}}=\ell_{1}+\ell_{2}+\ell_{5}-\ell_{7} . \\
& X_{t}-X_{\tau_{1}}=\ell_{4}-\ell_{5} ; Y_{t}-Y_{\tau_{1}}=\ell_{3}-\ell_{1}
\end{aligned}
$$

Boundary length process

Boundary length of $(\mathbb{D}, \phi)=\ell_{6}+\ell_{7}=1$; Boundary length of $\eta^{\prime}([t, \tau))=\ell_{2}+\ell_{3}+\ell_{4}=1+X_{t}+Y_{t}$.

Reverse SLE processes

The chordal reverse $\operatorname{SLE}_{\kappa}(\underline{\rho})$ process with force points $z_{1}, \ldots, z_{n} \in \overline{\mathbb{H}}$ is characterized by

$$
\begin{align*}
& d \tilde{W}_{t}=\sum_{j=1}^{n} \operatorname{Re}\left(\frac{-\rho_{j}}{\tilde{g}_{t}\left(z_{j}\right)-\tilde{W}_{t}}\right) d t+\sqrt{\kappa} d B_{t} ; \tag{5}\\
& d \tilde{g}_{t}\left(z_{j}\right)=-\frac{2}{\tilde{g}_{t}\left(z_{j}\right)-\tilde{W}_{t}} d t, \quad \tilde{g}_{0}(z)=z
\end{align*}
$$

where \tilde{g}_{t} maps \mathbb{H} to $\mathbb{H} \backslash \eta([0, t])$ and fixes ∞. The radial reverse SLE $_{\kappa}$ in \mathbb{D} is defined by

$$
\begin{equation*}
\frac{d \tilde{g}_{t}(z)}{d t}=-\tilde{g}_{t}(z) \frac{e^{i \sqrt{\kappa} B_{t}}+\tilde{g}_{t}(z)}{e^{i \sqrt{\kappa} B_{t}}-\tilde{g}_{t}(z)} ; g_{0}(z)=z, \tag{6}
\end{equation*}
$$

where \tilde{g}_{t} maps \mathbb{D} to $\mathbb{D} \backslash \eta([0, t])$ and fixes 0 .

Coordinate change for reverse SLE processes

When conformally mapped to \mathbb{D}, reverse chordal $\operatorname{SLE}_{\kappa}(\kappa+6)$ agrees with reverse radial SLE_{κ}.

The mating-of-trees cells

(Duplantier-Miller-Sheffield '14) Consider the pairing of two Brownian CRTs. Run until the total quantum area is s. Denote the law of resulting surface by \mathcal{P}_{s}.

This also agrees with running an SLE_{κ} on weight $2-\frac{\gamma^{2}}{2}$ quantum wedge and stop when the quantum area is s.

Proof Outline

Step 1. The capacity zipper.

- Using the martingale in [Theorem 5.5, DMS14], one can construct a process $\left(\phi_{t}, \eta_{t}\right)_{t \geq 0}$, where (ϕ_{t}, η_{t}) has the law $\operatorname{LF}_{\mathbb{D}}^{\left(Q+\frac{\pi}{4}, 0\right),\left(-\frac{\gamma}{2}, \eta_{t}(0)\right)} \times \operatorname{rrSLE}_{k}^{t}$.
- $\phi_{t_{1}}=\phi_{t_{2}} \circ \tilde{g}_{t_{1}, t_{2}}+Q \log \left|\tilde{g}_{t_{1}, t_{2}}^{\prime}\right|$.

Proof Outline

Step 2. The quantum zipper.

- For each fixed capacity time T, centered reverse SLE $_{\kappa}$ stopped at time T agrees with forward SLE $_{\kappa}$ stopped at time T.
- For each $A>0$, let τ be the first time when the quantum area of $\eta_{t}([0, t])$ is A. Then $\left(\phi_{\tau}, \eta_{\tau}\right)$ (when centered) has law $\mathrm{LF}_{\mathbb{D}}^{\left(\frac{3 \gamma}{2}, 1\right),\left(Q+\frac{\gamma}{4}, 0\right)} \times$ radial SLE $_{\kappa}^{\tau}$.
- Can be understood as the conformal welding of partially mated CRT with LF.

Proof Outline

Step 3. The Brownian motions.

- By comparing to the chordal case via the coordinate change, before wrapping around, the parts discovered by the forward radial SLE_{κ} curve is a quantum cell.
- Then the boundary length process $\left(X_{t}, Y_{t}\right)$ becomes Brownian motion weighted by $\left(1+X_{t}+Y_{t}\right)$ before wrapping around time.
- Weighting by field circle average near 0 produces
$\mathrm{LF}_{\mathbb{D}}^{\left(\frac{3 \gamma}{2}, 1\right),\left(Q-\frac{\gamma}{4}, 0\right)} \times$ radial SLE_{κ}, and there is no weighting on the BM.
- Using self-similarity to recursively extend to all time $t>0$.

Mating-of-trees on weight $\frac{\gamma^{2}}{2}$ quantum sphere

- Using GFF tail estimates, disks from $\mathrm{LF}_{\mathbb{D}}^{\left(\frac{3 \gamma}{2}, 1\right),\left(Q-\frac{\gamma}{4}, 0\right)}$ conditioned on having quantum area 1 and boundary length ε converges weakly to weight $\frac{\gamma^{2}}{2}$ quantum sphere with area 1 as $\varepsilon \rightarrow 0$.
- Under suitable embedding, one deduce that for a weight $\frac{\gamma^{2}}{2}$ quantum sphere decorated with whole plane SLE_{κ}, the boundary length $\left(X_{t}+Y_{t}\right)$ evolves as a Brownian excursion from 0 to 0 , with duration being the quantum area of the sphere.
- Then there is a matrix \wedge determined by κ, such that $\left(X_{t}, Y_{t}\right)=\Lambda\left(W^{1}, W^{2}\right)$, where W^{1} is a Brownian excursion and W^{2} is a Brownian motion independent of W^{1}.

Reversibility of whole plane SLE $_{\kappa}$

- By considering the chordal mating-of-trees on weight $4-\gamma^{2}$ quantum sphere decorated with SLE $_{\kappa}$ loop, the mating-of-trees cells are reversible.
- The pair $\left(\phi, \eta^{\prime}\right)$ can be decomposed into a welding of countably many cells, each of which being reversible.
- This allows us to deduce the reversibility of the whole plane SLE $_{\kappa}$ via the reversibility of the boundary length process $\left(X_{t}, Y_{t}\right)$.

Thanks for listening!

