Conformal welding of LQG surfaces and multiple SLE

Pu Yu

Massachusetts Institute of Technology

PKU probability summer school joint works with Morris Ang, Nina Holden and Xin Sun July 14, 2023

D	\/	/ N / A I T \
PIL	YII I	11/1111
1 U	iu i	(I V I I I J

Outline

1 LQG, LCFT and SLE

- **2** Multiple SLE and partition functions
- 3 Multiple SLE and conformal welding: $\kappa \in (0, 4)$ case Relation with $\kappa \in (0, 4)$ multiple SLE Relation with imaginary geometry Relation with SLE Green's function

4 Multiple SLE and conformal welding: $\kappa \in (4, 8)$ case

					T١
Р	YL.	1 (IN	/11	

• The GFF on the upper half plane \mathbb{H} : The Gaussian random field on \mathbb{H} with mean 0 and covariance

$$\operatorname{Cov}(h(z), h(w)) = G_{\mathbb{H}}(z, w)$$

where $G_{\mathbb{H}}(z, w)$ is the Green's function

$$G_{\mathbb{H}}(z,w) = -\log|z-w| - \log|z-\bar{w}| + 2\log|z|_{+} + 2\log|w|_{+}$$

with $|z|_{+} = \max\{|z|, 1\}$.

• *h* is a well-defined generalized function.

Liouville quantum gravity (LQG)

- Let $\gamma \in (0, 2)$, $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$ and ϕ be a variant of the GFF, e.g., $\phi = h + f$ where *f* is a continuous function.
- Area measure: $\mu_{\phi}(d^2z) = "e^{\gamma\phi(z)}d^2z" = \lim_{\varepsilon \to 0} \varepsilon^{\frac{\gamma^2}{2}}e^{\gamma\phi_{\varepsilon}(z)}d^2z.$
- Length measure: $\nu_{\phi}(dx) = "e^{\frac{\gamma}{2}\phi(x)}dx" = \lim_{\epsilon \to 0} \epsilon^{\frac{\gamma^2}{4}}e^{\frac{\gamma}{2}\phi_{\epsilon}(x)}dx.$

Liouville conformal field theory on $\mathbb H$

- Start with the GFF h on \mathbb{H} .
- Sample (h, \mathbf{c}) from $P_{\mathbb{H}} \times [e^{-Qc}dc]$, and set $\phi(z) = h(z) 2Q\log|z|_+ + \mathbf{c}$. Let $LF_{\mathbb{H}}$ be the law of ϕ [David-Kupiainen-Rhodes-Vargas '14].
- Let $\beta_j \in \mathbb{R}$ and $x_j \in \partial \mathbb{H}$. Liouville field with boundary insertions: $LF_{\mathbb{H}}^{(\beta_j, x_j)}(d\phi) = \prod_j e^{\frac{\beta_j}{2}\phi(x_j)} LF_{\mathbb{H}}(d\phi).$

- Let $\gamma \in (0, 2)$, $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$.
- Say $(D_1, \phi_1) \sim_{\gamma} (D_2, \phi_2)$, if there exists $f : D_1 \to D_2$ conformal with $\phi_2 = \phi_1 \circ f^{-1} + Q \log |(f^{-1})'|$.
- A quantum surface is an equivalence class over the relation \sim_{γ} .

Quantum disks

- Let W > 0 be the *weight* parameter. Let $\beta = \gamma + \frac{2-W}{\gamma}$.
- Weight *W* (thick) quantum disks: $W > \frac{\gamma^2}{2}$, and near each marked point z_0 the field looks like $h \beta \log |\cdot -z_0|$. Can be viewed as *uniform embedding of* $LF_{\mathbb{H}}^{(\beta,0),(\beta,\infty)}$ (Ang-Holden-Sun'21).
- Thick-thin duality: Weight $W \in (0, \frac{\gamma^2}{2})$ quantum disk is a Poissonian chain of weight $\gamma^2 W$ quantum disks.
- Special weight W = 2: the two marked points can be resampled from the boundary length measure, which defines $QD_{0,2}$.
- $QD_{0,n}$: starting from $QD_{0,2}$ and sample n 2 marked points from the boundary length measure.

イロト イポト イヨト イヨト 二日

Quantum triangles

- Let $W_1, W_2, W_3 > 0$ be the *weight* parameters, and $\beta_j = \gamma + \frac{2-W_j}{\gamma}$.
- Weight (W_1, W_2, W_3) (thick) quantum triangles: $(\mathbb{H}, \phi, 0, \infty, 1) / \sim_{\gamma}$ with ϕ sampled from $\frac{1}{(Q-\beta_1)(Q-\beta_2)(Q-\beta_3)} LF_{\mathbb{H}}^{(\beta_1,0),(\beta_2,\infty),(\beta_3,1)}$.
- Thick-thin duality: when $W_1 < \frac{\gamma^2}{2}$, a weight (W_1, W_2, W_3) quantum triangle is the concatenation of a weight $(\gamma^2 W_1, W_2, W_3)$ quantum triangle (core) with a weight W_1 quantum disk. Similar extension to the case where one or more $W_j < \frac{\gamma^2}{2}$.
- Special limiting argument to define $\frac{\gamma^2}{2}$ weights.

イロト イポト イヨト イヨト 三日

- Fix $\kappa > 0$, and let $\{B_t\}_{t \ge 0}$ be the standard Brownian motion.
- The ${\rm SLE}_\kappa$ curve η from 0 to ∞ on the upper half plane ${\mathbb H}$ can be characterized by

$$rac{dg_t(z)}{dt} = rac{2}{g_t(z) - W_t}; \ g_0(z) = z$$
 (1)

where $W_t = \sqrt{\kappa}B_t$ and g_t is the conformal map from $\mathbb{H}\setminus\eta([0, t])$ to \mathbb{H} with $\lim_{|z|\to\infty} |g_t(z) - z| = 0$.

• The definition is extended to other domains via *conformal invariance.*

イロト イポト イヨト イヨト 三日

$SLE_{\kappa}(\underline{\rho})$ processes

- Fix the weights $\rho^{0,L}, ..., \rho^{k,L}; \rho^{0,R}, ..., \rho^{\ell,R} \in \mathbb{R}$ and the force points $x^{k,L} < ... < x^{0,L} = 0^- < 0^+ = x^{0,R} < ... < x^{\ell,R}$.
- The $SLE_{\kappa}(\underline{\rho})$ curve η from 0 to ∞ on the upper half plane \mathbb{H} with force points \underline{x} can be characterized by the Loewner equation (1) with

$$dW_t = \sum_{q \in \{L,R\}} \sum_i \frac{\rho^{i,q}}{W_t - g_t(x^{i,q})} dt + \sqrt{\kappa} dB_t$$
(2)

		18	
011		1 1 1	111
гч	1 U		

くロ とく 御 とく ヨ とく ヨ とう

$\widetilde{\operatorname{SLE}}_{\kappa}(\rho_{-};\rho_{+},\rho_{1};\alpha)$ processes

- Let η be an SLE_{κ}(ρ_- ; ρ_+ , ρ_1) process with force points 0⁻; 0⁺, 1.
- Let D_{η} be the connected component of $\mathbb{H}\setminus\eta$ containing 1, and $\sigma_{\eta}, \xi_{\eta}$ be the first and the last point on ∂D_{η} traced by η .
- Consider the conformal map $\psi_{\eta} : D_{\eta} \to \mathbb{H}$ sending $(\sigma_{\eta}, \mathbf{1}, \xi_{\eta})$ to $(0, 1, \infty)$.

• Define
$$\widetilde{\operatorname{SLE}}_{\kappa}(\rho_{-};\rho_{+},\rho_{1};\alpha)$$
 by

$$\frac{d \widetilde{\operatorname{SLE}}_{\kappa}(\rho_{-};\rho_{+},\rho_{1};\alpha)}{d \operatorname{SLE}_{\kappa}(\rho_{-};\rho_{+},\rho_{1})}(\eta) = |\psi_{\eta}'(1)|^{\alpha}.$$
(3)

• Such processes have close relation with hypergeometric SLE processes and time reversal of $SLE_{\kappa}(\rho)$ processes (Y.'22).

	4		= *) < (*
Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	11/36

Let $b = \frac{6-\kappa}{2\kappa}$ be the boundary scaling exponent, and α be a link pattern. The pure partition function \mathcal{Z}_{α} satisfies the following:

• PDE:
$$\left\lfloor \frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{2b}{(x_j - x_i)^2} \right) \right\rfloor \mathcal{Z}_{\alpha}(\mathbb{H}; x_1, ..., x_{2N}) = 0;$$

- Conformal covariance: for $f : \mathbb{H} \to \mathbb{H}$ conformal, $\mathcal{Z}_{\alpha}(x_1, ..., x_{2N}) = \prod f'(x_i)^b \mathcal{Z}_{\alpha}(f(x_1), ..., f(x_{2N}));$
- Asymptotic: $\lim_{x_j, x_{j+1} \to \xi} (x_{j+1} x_j)^{2b} \mathcal{Z}_{\alpha}(x_1, ..., x_{2N}) = \mathcal{Z}_{\alpha \setminus \{j, j+1\}}(x_1, ..., x_{j-1}, x_{j+2}, ..., x_{2N})$ if $\{j, j+1\} \in \alpha$ and else 0.

(本語) (本語) (二)

Existence and uniqueness

- Uniqueness (Flores-Kleban '15): For $\kappa \in (0, 8)$, functions satisfying the three properties are essentially unique.
- Exact solution for N = 1, 2.
- Existence: κ ∈ (0,8)\Q (Kytölä-Peltola'16): Coulumb gas techniques;

 $\kappa \in (0, 4]$ (Peltola-Wu'19; Beffara-Peltola-Wu'21): global multiple SLE;

 $\kappa \in (0, 6]$ (Wu'20): hypergeometric SLE.

Characterizations of multiple SLE_{κ}

- Local construction via Loewner flow (e.g. Dubédať07, Graham'07, Kytölä-Peltola'16);
- Global construction by weighting the law of *N* independent SLE_{κ} curves for $\kappa \in (0, 4]$ (e.g. Kozdron-Lawler'06, Peltola-Wu'19);
- Recursive construction by weighting the law of SLE_κ by pure partition functions for κ ∈ (0,6] or κ ∈ (6,8), N = 2 (Wu'20);
- Resampling property: given N 1 curves, the conditional law of the remaining curve is the SLE_{κ}. ($\kappa \in (0, 8)$ for N = 2(Miller-Werner'18) and $\kappa \in (0, 4]$ for $N \ge 3$ (Beffara-Peltola-Wu'18)).

くロ とくぼ とくほ とく ひょう

Conformal welding of quantum wedges

Let $\kappa = \gamma^2 \in (0, 4)$.

Theorem (Duplantier-Miller-Sheffield '14)

$$egin{aligned} \mathcal{M}^{\mathsf{wedge}}(\mathcal{W}^L+\mathcal{W}^R)\otimes \mathrm{SLE}_\kappa(\mathcal{W}^L-2,\mathcal{W}^R-2)\ &=\mathcal{M}^{\mathsf{wedge}}(\mathcal{W}^L) imes\mathcal{M}^{\mathsf{wedge}}(\mathcal{W}^R). \end{aligned}$$

(4)

			= +) < (+
Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	15/36

Conformal welding of quantum disks

Theorem (Ang-Holden-Sun '20)

Let $\kappa = \gamma^2 \in (0, 4)$.

$$\mathcal{M}_{2}^{\text{disk}}(W^{L}+W^{R}) \otimes \text{SLE}_{\kappa}(W^{L}-2,W^{R}-2) = c \int_{0}^{\infty} \text{Weld}(\mathcal{M}_{2}^{\text{disk}}(W^{L};\ell),\mathcal{M}_{2}^{\text{disk}}(W^{R};\ell)d\ell.$$
(5)

Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	16/36

イロト イポト イヨト イヨト

Conformal welding of quantum triangles

Theorem (Ang-Sun-Y.' 22)

$$QT(W + W_1, W + W_2, W_3) \otimes \widetilde{SLE}_{\kappa}(W - 2; W_2 - 2, W_1 - W_2; \alpha)$$

= $c \int_0^\infty Weld(\mathcal{M}_2^{disk}(W; \ell), QT(W_1, W_2, W_3; \ell)) d\ell.$ (6)

where
$$lpha=rac{W_3+W_2-W_1-2}{4\kappa}(W_3+W_1+2-W_2-\kappa).$$

Conformal welding of LQG disks by link pattern

 $\alpha = \{\{1, 6\}, \{2, 5\}, \{3, 4\}\}, \text{ with Weld}_{\alpha}(QD) \text{ written as}$ $\int_{\mathbb{R}^{3}_{+}} \text{Weld}(\text{QD}_{0,2}(\ell_{1}), \text{QD}_{0,4}(\ell_{1}, \ell_{2}), \text{QD}_{0,4}(\ell_{2}, \ell_{3}), \text{QD}_{0,2}(\ell_{3}))d\ell_{1} d\ell_{2} d\ell_{3}.$

Conformal welding of LQG disks by link pattern

 $\alpha = \{\{1, 6\}, \{2, 3\}, \{4, 5\}\}, \text{ with Weld}_{\alpha}(QD) \text{ written as}$ $\int_{\mathbb{R}^{3}_{+}} \text{Weld}(\text{QD}_{0,2}(\ell_{1}), \text{QD}_{0,2}(\ell_{2}), \text{QD}_{0,2}(\ell_{3}), \text{QD}_{0,6}(\ell_{1}, \ell_{2}, \ell_{3}))d\ell_{1} d\ell_{2} d\ell_{3}.$

			= +) < (+
Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	19/36

Conformal welding of LQG disks by link pattern

Theorem (Ang-Sun-Y. '23+)

Let $\gamma \in (0, 2)$, $\kappa = \gamma^2$ and $\beta = \gamma - \frac{2}{\gamma}$. Let $N \ge 2$ and $\alpha \in LP_N$ be a link pattern. Then there exists a constant $c \in (0, \infty)$ such that

$$\int_{0 < y_{1} < ... < y_{2N-3} < 1} \left[LF_{\mathbb{H}}^{(\beta,0),(\beta,1),(\beta,\infty),(\beta,y_{1}),...,(\beta,y_{2N-3})} \times mSLE_{\kappa,\alpha}(\mathbb{H},0,y_{1},...,y_{2N-3},1,\infty) \right] dy_{1}...dy_{2N-3} = c \operatorname{Weld}_{\alpha}(\mathrm{QD})$$
(7)

where the left hand side is understood as the law of a curve-decorated quantum surface.

	•		≣ *)Q(*
Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	20/36

Random modulus = partition function

- The above theorem implies that the random location of the marked points under conformal welding is encoded by multiple SLE pure partition function.
- This implication also works for other settings.

Imaginary Geometry flow lines

- Let *h* be a GFF on \mathbb{H} with piecewise boundary conditions and $\kappa \in (0, 4)$.
- (Miller-Sheffield'12) Heuristically, $\eta(t)$ is a flow line of angle θ if

$$\eta'(t) = e^{i(rac{h(\eta(t))}{\chi} + heta)}$$
 for $t > 0$, where $\chi = rac{2}{\sqrt{\kappa}} - rac{\sqrt{\kappa}}{2}$. (8)

• Such η are $SLE_{\kappa}(\underline{\rho})$ processes.

Theorem (Ang-Sun-Y '23+)

Let W_0 , $W_n > 0$, and W_1^1 , W_1^2 , W_1^3 , ..., W_{n-1}^1 , W_{n-1}^2 , $W_{n-1}^3 > 0$, such that for each $1 \le j \le n-1$, $W_j^1 + 2 = W_j^2 + W_j^3$. Also assume that for every $0 \le i < j \le n$, $W_i^3 + \sum_{i < k < j} W_k^1 + W_j^2 > \frac{\gamma^2}{2}$. The conformal welding of $\mathcal{M}_2^{\text{disk}}(W_0)$, $QT(W_1^1, W_1^2, W_1^3)$,..., $QT(W_{n-1}^1, W_{n-1}^2, W_{n-1}^3)$, $\mathcal{M}_2^{\text{disk}}(W_n)$ in the previous picture is given by

$$c \cdot \int_{0 < x_{2} < \ldots < x_{n-1} < 1} \prod_{1 \le i < j \le n} (x_{j} - x_{i})^{\frac{\rho_{i}\rho_{j}}{2\kappa}} \mathrm{LF}_{\mathbb{H}}^{(\beta_{j}, x_{j})_{1} \le j \le n, (\beta_{\infty}, \infty)}(d\phi)$$

$$\times \mathrm{IG}_{\underline{x}, \underline{\lambda}, \underline{\theta}}(d\eta_{1} \ldots d\eta_{n}) dx_{2} \ldots dx_{n-1}$$
(9)

where $x_1 = 0$, $x_n = 1$, and $IG_{\underline{x},\underline{\lambda},\underline{\theta}}$ denote the flow lines of the Imaginary Geometry field with marked points $x_0, ..., x_{N-1}$ with boundary values and angles determined by \underline{W} .

(日)

23/36

3

Random modulus = partition function

• The value $\prod_{1 \le i < j \le n} (x_j - x_i)^{\frac{\rho_i \rho_j}{2\kappa}}$ can be viewed as the partition function of the Imaginary Geometry field (Dubédat).

• Let $b_2 = \frac{8}{\kappa} - 1$, $x_j \in \mathbb{R} \setminus \{0\}$, and η be an SLE_{κ} curve. The *n*-point SLE boundary Green's function is defined by the limit

$$G(x_1, ..., x_n) = \lim_{r_1, ..., r_n \to 0^+} r_1^{-b_2} ... r_n^{-b_2} \mathbb{P}(\operatorname{dist}(\eta, x_j) < r_j, \ 1 \le j \le n)$$
(10)

• The existence of the limit is proved by [Lawler'15] for n = 1 or n = 2 with $x_2 > x_1 > 0$ and [Fakhry-Zhan'22] for general case.

SLE boundary Green's function

 For 0 < x₁ < ... < x_n, one can recursively define a measure M(x₁,...,x_n) on n + 1 curves whose size is G(x₁,...,x_n), and can be interpreted as SLE_κ conditioned on hitting x₁,...,x_n.

Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	26/36

Relation with SLE boundary Green's function

Theorem (Ang-Sun-Y.'23+)

Let $n \ge 2$, $x_1 = 1$, $\beta = \gamma - \frac{2}{\gamma}$ and $\beta_2 = \gamma - \frac{4}{\gamma}$. Consider the conformal welding of QD induced by the previous picture. Then the output curve-decorated surface we get can be embedded as $(x_1 = 1)$

$$c \cdot \int_{0 < x_1 < \ldots < x_n} \left[\mathrm{LF}_{\mathbb{H}}^{(\beta,0),(\beta,\infty),(\beta_2,x_1),\ldots,(\beta_2,x_n)} \times M(x_1,\ldots,x_n) \right] dx_2 \ldots dx_n.$$

Following [Zhan'21] on 2-point boundary Green's function for $SLE_{\kappa}(\underline{\rho})$, a similar result also holds for n = 2 and $SLE_{\kappa}(\rho)$ process.

	VI.			л	
u	I L	4 1	(1)		

Relation with SLE boundary Green's function

Theorem (Ang-Sun-Y.'23+)

Let $\rho > -2$ and $W = \rho + 2$. Let $\beta_{\rho} = \gamma - \frac{2+\rho}{\gamma}$ and $\beta_{2,\rho} = \gamma - \frac{2+2\rho}{\gamma}$. Consider the conformal welding below. Then for some constant $c \in (0, \infty)$, the output curve-decorated quantum surface can be embedded as $(\mathbb{H}, \phi, 0, 1, x, \infty, \eta_1, \eta_2, \eta_3)$ where $(\phi, x, \eta_1, \eta_2, \eta_3)$ has law

$$c\int_{1}^{\infty}\mathrm{LF}_{\mathbb{H}}^{(\beta_{\rho},0),(\beta_{2,\rho},1),(\beta_{2,\rho},x),(\beta_{\rho},\infty)}(d\phi)\times M(\rho;1,x)(d\eta_{1}d\eta_{2}d\eta_{3})dx.$$

k	July 14, 2023	28
k	July 14, 2023	2

/36

ヘロア ヘロア ヘビア ヘ

Forested line

- Sample a stable Lévy process $(X_t)_{t>0}$ of index $\frac{\kappa}{4} = \frac{4}{\gamma^2}$ with upward jumps.
- Add a curve for each jump and identify the points on the same green horizontal line.
- For each blue disk, assign a sample from QD with boundary length according to the jump.

Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	29/36

イロト イポト イラト イラト

Forested line

- Points on the horizontal line: record minima of $(X_t)_{t>0}$. Parameterized by quantum length.
- Lévy tree of disks: quantum natural parametrization, i.e., $Y_t = \inf\{s > 0 : X_s \le -t\}.$

		< D > < 团 > < 豆 > < 豆 > < 豆 > :	E ~~~
Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	30/36

Conformal welding of forested lines

Theorem (Duplantier-Miller-Sheffield'14)

Let $\gamma = 4/\sqrt{\kappa}$. If we draw an independent SLE_{κ}($\kappa/2 - 4$; $\kappa/2 - 4$) process on a weight $2 - \gamma^2/2$ quantum wedge, then we obtain the conformal welding of two independent forested lines.

Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	31/36

・ロト ・ 同ト ・ ヨト ・ ヨト

Conformal welding of forested quantum disks

Theorem (Ang-Holden-Sun-Y.'23+)

Let
$$W_1$$
, $W_2 > 0$ and $\rho_j = \frac{4}{\gamma^2} (2 + \gamma^2 - W_j)$ for $j = 1, 2$.

$$\mathcal{M}_{2}^{\text{disk}}(W_{1}+W_{2}+2-\frac{\gamma^{2}}{2})\otimes \text{SLE}_{\kappa}(\rho_{1};\rho_{2})$$
$$=c\int_{0}^{\infty} \text{Weld}(\mathcal{M}_{2}^{\text{f.d.}}(W_{1};\ell),\mathcal{M}_{2}^{\text{f.d.}}(W_{2};\ell))d\ell.$$

Conformal welding of forested quantum disks

- The weight $\gamma^2 2$ forested quantum disk $\mathcal{M}_2^{\text{f.d.}}(\gamma^2 2)$ shares similar property as $\mathcal{M}_2^{\text{disk}}(2)$ in $\kappa < 4$ regime. This allows us to define GQD_{0,n} analogously.
- We can consider the similar conformal welding problem of GQD according to a given link pattern.

くロ とく 御 とく ヨ とく ヨ とう

Conformal welding of forested disks by link pattern

Theorem (Ang-Holden-Sun-Y. '23+)

Let $\gamma \in (\sqrt{2}, 2)$, $\kappa = 16/\gamma^2$ and $\beta = \frac{4}{\gamma} - \frac{\gamma}{2}$. Let $N \ge 2$ and $\alpha \in LP_N$ be a link pattern. Then there exists a constant $c \in (0, \infty)$ such that

$$\int_{0 < y_1 < ... < y_{2N-3} < 1} \left[LF_{\mathbb{H}}^{(\beta,0),(\beta,1),(\beta,\infty),(\beta,y_1),...,(\beta,y_{2N-3})} \times mSLE_{\kappa,\alpha}(\mathbb{H},0,y_1,...,y_{2N-3},1,\infty) \right] dy_1 ... dy_{2N-3} = c \operatorname{Weld}_{\alpha}(\operatorname{GQD})|_E$$

where *E* is the event that the welding output is simply connected, and the left hand side is understood as the law of a curve-decorated quantum surface.

	•	日本《國本《副本《副本	E nac
Pu Yu (MIT)	Multiple SLE and LQG disk	July 14, 2023	34/36

Conformal welding of forested disks by link pattern

- The measure $mSLE_{\kappa,\alpha}$ is constructed in an iterative way as [Wu'20], and for $\kappa \in (6, 8)$ we are able to show that when weighting by the partition function, the measure we get is still finite.
- Following the arguments from [Peltola'19], one can show that the partition function for $mSLE_{\kappa,\alpha}$ when $\kappa \in (6, 8)$ is conformally covariant and solves the PDE.
- The resampling properties also uniquely characterizes the measure $mSLE_{\kappa,\alpha}$ for $\kappa \in (4, 8)$.

くロ とく 御 とく ヨ とく ヨ とう

Thanks for listening!

◆□> ◆□> ◆三> ◆三> 三三 のへで