Conformal welding of LQG surfaces and multiple SLE

Pu Yu

Massachusetts Institute of Technology
PKU probability summer school
joint works with Morris Ang, Nina Holden and Xin Sun
July 14, 2023

Outline

(1) LQG, LCFT and SLE
(2) Multiple SLE and partition functions
(3) Multiple SLE and conformal welding: $\kappa \in(0,4)$ case

Relation with $\kappa \in(0,4)$ multiple SLE
Relation with imaginary geometry
Relation with SLE Green's function
(4) Multiple SLE and conformal welding: $\kappa \in(4,8)$ case

The Gaussian Free Field

- The GFF on the upper half plane \mathbb{H} : The Gaussian random field on \mathbb{H} with mean 0 and covariance

$$
\operatorname{Cov}(h(z), h(w))=G_{\mathbb{H}}(z, w)
$$

where $G_{\mathbb{H}}(z, w)$ is the Green's function

$$
G_{\mathbb{H}}(z, w)=-\log |z-w|-\log |z-\bar{w}|+2 \log |z|_{+}+2 \log |w|_{+}
$$

with $|z|_{+}=\max \{|z|, 1\}$.

- h is a well-defined generalized function.

Liouville quantum gravity (LQG)

- Let $\gamma \in(0,2), Q=\frac{2}{\gamma}+\frac{\gamma}{2}$ and ϕ be a variant of the GFF, e.g., $\phi=h+f$ where f is a continuous function.
- Area measure: $\mu_{\phi}\left(d^{2} z\right)=" e^{\gamma \phi(z)} d^{2} z^{\prime \prime}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{\gamma^{2}}{2}} e^{\gamma \phi_{\varepsilon}(z)} d^{2} z$.
- Length measure: $\nu_{\phi}(d x)=" e^{\frac{\gamma}{2} \phi(x)} d x^{"}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{\gamma^{2}}{4}} e^{\frac{\gamma}{2} \phi_{\varepsilon}(x) "} d x$.

Liouville conformal field theory on \mathbb{H}

- Start with the GFF h on \mathbb{H}.
- Sample (h, \mathbf{c}) from $P_{\mathbb{H}} \times\left[e^{-Q c} d c\right]$, and set $\phi(z)=h(z)-2 Q \log |z|_{+}+\mathbf{c}$. Let $\mathrm{LF}_{\mathbb{H}}$ be the law of ϕ [David-Kupiainen-Rhodes-Vargas '14].
- Let $\beta_{j} \in \mathbb{R}$ and $x_{j} \in \partial \mathbb{H}$. Liouville field with boundary insertions: $\mathrm{LF}_{\mathbb{H}}^{\left(\beta_{j}, x_{j}\right)}(d \phi)=\prod_{j} e^{\frac{\beta_{j}}{2} \phi\left(x_{j}\right)} \mathrm{LF}_{\mathbb{H}}(d \phi)$.

LQG surfaces

- Let $\gamma \in(0,2), Q=\frac{2}{\gamma}+\frac{\gamma}{2}$.
- Say $\left(D_{1}, \phi_{1}\right) \sim_{\gamma}\left(D_{2}, \phi_{2}\right)$, if there exists $f: D_{1} \rightarrow D_{2}$ conformal with $\phi_{2}=\phi_{1} \circ f^{-1}+Q \log \left|\left(f^{-1}\right)^{\prime}\right|$.
- A quantum surface is an equivalence class over the relation \sim_{γ}.

Quantum disks

- Let $W>0$ be the weight parameter. Let $\beta=\gamma+\frac{2-W}{\gamma}$.
- Weight W (thick) quantum disks: $W>\frac{\gamma^{2}}{2}$, and near each marked point z_{0} the field looks like $h-\beta \log \left|\cdot-z_{0}\right|$. Can be viewed as uniform embedding of $\operatorname{LF}_{\mathbb{H}}^{(\beta, 0),(\beta, \infty)}$ (Ang-Holden-Sun'21).
- Thick-thin duality: Weight $W \in\left(0, \frac{\gamma^{2}}{2}\right)$ quantum disk is a Poissonian chain of weight $\gamma^{2}-W$ quantum disks.
- Special weight $W=2$: the two marked points can be resampled from the boundary length measure, which defines $\mathrm{QD}_{0,2}$.
- $\mathrm{QD}_{0, n}$: starting from $\mathrm{QD}_{0,2}$ and sample $n-2$ marked points from the boundary length measure.

Quantum triangles

- Let $W_{1}, W_{2}, W_{3}>0$ be the weight parameters, and $\beta_{j}=\gamma+\frac{2-W_{j}}{\gamma}$.
- Weight $\left(W_{1}, W_{2}, W_{3}\right)$ (thick) quantum triangles:
$(\mathbb{H}, \phi, 0, \infty, 1) / \sim_{\gamma}$ with ϕ sampled from
$\frac{1}{\left(Q-\beta_{1}\right)\left(Q-\beta_{2}\right)\left(Q-\beta_{3}\right)} \operatorname{LF}_{\mathbb{H}}^{\left(\beta_{1}, 0\right),\left(\beta_{2}, \infty\right),\left(\beta_{3}, 1\right)}$.
- Thick-thin duality: when $W_{1}<\frac{\gamma^{2}}{2}$, a weight $\left(W_{1}, W_{2}, W_{3}\right)$ quantum triangle is the concatenation of a weight $\left(\gamma^{2}-W_{1}, W_{2}, W_{3}\right)$ quantum triangle (core) with a weight W_{1} quantum disk. Similar extension to the case where one or more $W_{j}<\frac{\gamma^{2}}{2}$.
- Special limiting argument to define $\frac{\gamma^{2}}{2}$ weights.

The SLE $_{\kappa}$ processes

- Fix $\kappa>0$, and let $\left\{B_{t}\right\}_{t \geq 0}$ be the standard Brownian motion.
- The SLE $_{\kappa}$ curve η from 0 to ∞ on the upper half plane \mathbb{H} can be characterized by

$$
\begin{equation*}
\frac{d g_{t}(z)}{d t}=\frac{2}{g_{t}(z)-W_{t}} ; \quad g_{0}(z)=z \tag{1}
\end{equation*}
$$

where $W_{t}=\sqrt{\kappa} B_{t}$ and g_{t} is the conformal map from $\mathbb{H} \backslash \eta([0, t])$ to \mathbb{H} with $\lim _{|z| \rightarrow \infty}\left|g_{t}(z)-z\right|=0$.

- The definition is extended to other domains via conformal invariance.

$\operatorname{SLE}_{\kappa}(\underline{\rho})$ processes

- Fix the weights $\rho^{0, L}, \ldots, \rho^{k, L} ; \rho^{0, R}, \ldots, \rho^{\ell, R} \in \mathbb{R}$ and the force points $x^{k, L}<\ldots<x^{0, L}=0^{-}<0^{+}=x^{0, R}<\ldots<x^{\ell, R}$.
- The $\operatorname{SLE}_{\kappa}(\underline{\rho})$ curve η from 0 to ∞ on the upper half plane \mathbb{H} with force points \underline{x} can be characterized by the Loewner equation (1) with

$$
\begin{equation*}
d W_{t}=\sum_{q \in\{L, R\}} \sum_{i} \frac{\rho^{i, q}}{W_{t}-g_{t}\left(x^{i, q}\right)} d t+\sqrt{\kappa} d B_{t} \tag{2}
\end{equation*}
$$

$\operatorname{SLE}_{\kappa}\left(\rho_{-} ; \rho_{+}, \rho_{1} ; \alpha\right)$ processes

- Let η be an $\operatorname{SLE}_{\kappa}\left(\rho_{-} ; \rho_{+}, \rho_{1}\right)$ process with force points $0^{-} ; 0^{+}, 1$.
- Let D_{η} be the connected component of $\mathbb{H} \backslash \eta$ containing 1 , and $\sigma_{\eta}, \xi_{\eta}$ be the first and the last point on ∂D_{η} traced by η.
- Consider the conformal map $\psi_{\eta}: D_{\eta} \rightarrow \mathbb{H}$ sending $\left(\sigma_{\eta}, 1, \xi_{\eta}\right)$ to $(0,1, \infty)$.
- Define $\widetilde{\operatorname{SLE}}_{\kappa}\left(\rho_{-} ; \rho_{+}, \rho_{1} ; \alpha\right)$ by

$$
\begin{equation*}
\frac{d \widetilde{\operatorname{SLE}}_{\kappa}\left(\rho_{-} ; \rho_{+}, \rho_{1} ; \alpha\right)}{d \operatorname{SLE}_{\kappa}\left(\rho_{-} ; \rho_{+}, \rho_{1}\right)}(\eta)=\left|\psi_{\eta}^{\prime}(1)\right|^{\alpha} . \tag{3}
\end{equation*}
$$

- Such processes have close relation with hypergeometric SLE processes and time reversal of $\operatorname{SLE}_{\kappa}(\underline{\rho})$ processes (Y.'22).

SLE pure partition function

Let $b=\frac{6-\kappa}{2 \kappa}$ be the boundary scaling exponent, and α be a link pattern. The pure partition function \mathcal{Z}_{α} satisfies the following:

- PDE: $\left[\frac{\kappa}{2} \partial_{i}^{2}+\sum_{j \neq i}\left(\frac{2}{x_{j}-x_{i}} \partial_{j}-\frac{2 b}{\left(x_{j}-x_{i}\right)^{2}}\right)\right] \mathcal{Z}_{\alpha}\left(\mathbb{H} ; x_{1}, \ldots, x_{2 N}\right)=0 ;$
- Conformal covariance: for $f: \mathbb{H} \rightarrow \mathbb{H}$ conformal, $\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)=\prod f^{\prime}\left(x_{i}\right)^{b} \mathcal{Z}_{\alpha}\left(f\left(x_{1}\right), \ldots, f\left(x_{2 N}\right)\right) ;$
- Asymptotic: $\lim _{x_{j}, x_{j+1} \rightarrow \xi}\left(x_{j+1}-x_{j}\right)^{2 b} \mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)=$ $\mathcal{Z}_{\alpha \backslash\{j, j+1\}}\left(x_{1}, \ldots, x_{j-1}, x_{j+2}, \ldots, x_{2 N}\right)$ if $\{j, j+1\} \in \alpha$ and else 0.

Existence and uniqueness

- Uniqueness (Flores-Kleban '15): For $\kappa \in(0,8)$, functions satisfying the three properties are essentially unique.
- Exact solution for $N=1,2$.
- Existence: $\kappa \in(0,8) \backslash \mathbb{Q}$ (Kytölä-Peltola'16): Coulumb gas techniques;
$\kappa \in(0,4]$ (Peltola-Wu'19; Beffara-Peltola-Wu'21): global multiple SLE;
$\kappa \in(0,6]$ (Wu'20): hypergeometric SLE.

Characterizations of multiple SLE $_{k}$

- Local construction via Loewner flow (e.g. Dubédat'07, Graham'07, Kytölä-Peltola'16);
- Global construction by weighting the law of N independent SLE $_{\kappa}$ curves for $\kappa \in(0,4]$ (e.g. Kozdron-Lawler'06, Peltola-Wu'19);
- Recursive construction by weighting the law of SLE $_{\kappa}$ by pure partition functions for $\kappa \in(0,6]$ or $\kappa \in(6,8), N=2$ (Wu'20);
- Resampling property: given $N-1$ curves, the conditional law of the remaining curve is the $\operatorname{SLE}_{\kappa} .(\kappa \in(0,8)$ for $N=2$ (Miller-Werner'18) and $\kappa \in(0,4]$ for $N \geq 3$ (Beffara-Peltola-Wu'18)).

Conformal welding of quantum wedges

Let $\kappa=\gamma^{2} \in(0,4)$.
Theorem (Duplantier-Miller-Sheffield '14)

$$
\begin{align*}
& \mathcal{M}^{\text {wedge }}\left(W^{L}+W^{R}\right) \otimes \operatorname{SLE}_{\kappa}\left(W^{L}-2, W^{R}-2\right) \\
& =\mathcal{M}^{\text {wedge }}\left(W^{L}\right) \times \mathcal{M}^{\text {wedge }}\left(W^{R}\right) \tag{4}
\end{align*}
$$

Conformal welding of quantum disks

Theorem (Ang-Holden-Sun '20)

Let $\kappa=\gamma^{2} \in(0,4)$.

$$
\begin{align*}
& \mathcal{M}_{2}^{\text {disk }}\left(W^{L}+W^{R}\right) \otimes \operatorname{SLE}_{\kappa}\left(W^{L}-2, W^{R}-2\right) \\
& =c \int_{0}^{\infty} \operatorname{Weld}\left(\mathcal{M}_{2}^{\text {disk }}\left(W^{L} ; \ell\right), \mathcal{M}_{2}^{\text {disk }}\left(W^{R} ; \ell\right) d \ell\right. \tag{5}
\end{align*}
$$

Conformal welding of quantum triangles

Theorem (Ang-Sun-Y.' 22)

$$
\begin{align*}
& \mathrm{QT}\left(W+W_{1}, W+W_{2}, W_{3}\right) \otimes \widetilde{\operatorname{SLE}}_{\kappa}\left(W-2 ; W_{2}-2, W_{1}-W_{2} ; \alpha\right) \\
& =c \int_{0}^{\infty} \operatorname{Weld}\left(\mathcal{M}_{2}^{\text {disk }}(W ; \ell), \mathrm{QT}\left(W_{1}, W_{2}, W_{3} ; \ell\right)\right) d \ell \tag{6}
\end{align*}
$$

where $\alpha=\frac{W_{3}+W_{2}-W_{1}-2}{4 \kappa}\left(W_{3}+W_{1}+2-W_{2}-\kappa\right)$.

Conformal welding of LQG disks by link pattern

$\alpha=\{\{1,6\},\{2,5\},\{3,4\}\}$, with $\operatorname{Weld}_{\alpha}(Q D)$ written as
$\int_{\mathbb{R}_{+}^{3}} \operatorname{Weld}\left(\mathrm{QD}_{0,2}\left(\ell_{1}\right), \mathrm{QD}_{0,4}\left(\ell_{1}, \ell_{2}\right), \mathrm{QD}_{0,4}\left(\ell_{2}, \ell_{3}\right), \mathrm{QD}_{0,2}\left(\ell_{3}\right)\right) d \ell_{1} d \ell_{2} d \ell_{3}$.

Conformal welding of LQG disks by link pattern

$\alpha=\{\{1,6\},\{2,3\},\{4,5\}\}$, with $\operatorname{Weld}_{\alpha}(Q D)$ written as
$\int_{\mathbb{R}_{+}^{3}} \operatorname{Weld}\left(\mathrm{QD}_{0,2}\left(\ell_{1}\right), \mathrm{QD}_{0,2}\left(\ell_{2}\right), \mathrm{QD}_{0,2}\left(\ell_{3}\right), \mathrm{QD}_{0,6}\left(\ell_{1}, \ell_{2}, \ell_{3}\right)\right) d \ell_{1} d \ell_{2} d \ell_{3}$

Conformal welding of LQG disks by link pattern

Theorem (Ang-Sun-Y. '23+)

Let $\gamma \in(0,2), \kappa=\gamma^{2}$ and $\beta=\gamma-\frac{2}{\gamma}$. Let $N \geq 2$ and $\alpha \in \operatorname{LP}_{N}$ be a link pattern. Then there exists a constant $c \in(0, \infty)$ such that

$$
\begin{align*}
& \int_{0<y_{1}<\ldots<y_{2 N-3}<1}\left[\operatorname{LF}_{\mathbb{H}}^{(\beta, 0),(\beta, 1),(\beta, \infty),\left(\beta, y_{1}\right), \ldots,\left(\beta, y_{2 N-3}\right) \times}\right. \tag{7}\\
& \left.\operatorname{mSLE}_{\kappa, \alpha}\left(\mathbb{H}, 0, y_{1}, \ldots, y_{2 N-3}, 1, \infty\right)\right] d y_{1} \ldots d y_{2 N-3}=c \operatorname{Weld}_{\alpha}(\mathrm{QD})
\end{align*}
$$

where the left hand side is understood as the law of a curve-decorated quantum surface.

Random modulus = partition function

- The above theorem implies that the random location of the marked points under conformal welding is encoded by multiple SLE pure partition function.
- This implication also works for other settings.

Imaginary Geometry flow lines

- Let h be a GFF on \mathbb{H} with piecewise boundary conditions and $\kappa \in(0,4)$.
- (Miller-Sheffield'12) Heuristically, $\eta(t)$ is a flow line of angle θ if

$$
\begin{equation*}
\eta^{\prime}(t)=e^{i\left(\frac{h(\eta(t))}{\chi}+\theta\right)} \text { for } t>0, \text { where } \chi=\frac{2}{\sqrt{\kappa}}-\frac{\sqrt{\kappa}}{2} . \tag{8}
\end{equation*}
$$

- Such η are $\operatorname{SLE}_{\kappa}(\underline{\rho})$ processes.

Conformal welding and Imaginary geometry

Theorem (Ang-Sun-Y'23+)

Let $W_{0}, W_{n}>0$, and $W_{1}^{1}, W_{1}^{2}, W_{1}^{3}, \ldots, W_{n-1}^{1}, W_{n-1}^{2}, W_{n-1}^{3}>0$, such that for each $1 \leq j \leq n-1, W_{j}^{1}+2=W_{j}^{2}+W_{j}^{3}$. Also assume that for every $0 \leq i<j \leq n, W_{i}^{3}+\sum_{i<k<j} W_{k}^{1}+W_{j}^{2}>\frac{\gamma^{2}}{2}$. The conformal welding of $\mathcal{M}_{2}^{\text {disk }}\left(W_{0}\right), \mathrm{QT}\left(W_{1}^{1}, W_{1}^{2}, W_{1}^{3}\right), \ldots, \mathrm{QT}\left(W_{n-1}^{1}, W_{n-1}^{2}, W_{n-1}^{3}\right), \mathcal{M}_{2}^{\text {disk }}\left(W_{n}\right)$ in the previous picture is given by

$$
\begin{align*}
& c \cdot \int_{0<x_{2}<\ldots<x_{n-1}<1} \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)^{\frac{\rho_{i} \rho_{j}}{2 \kappa}} \mathrm{LF}_{\mathbb{H}}^{\left(\beta_{j}, x_{j}\right)_{1 \leq j \leq n}\left(\beta_{\infty}, \infty\right)}(d \phi) \tag{9}\\
& \times \mathrm{IG}_{\underline{X}, \underline{\lambda}, \boldsymbol{\theta}}\left(d \eta_{1} \ldots d \eta_{n}\right) d x_{2} \ldots d x_{n-1}
\end{align*}
$$

where $x_{1}=0, x_{n}=1$, and $\mathrm{IG}_{\underline{x}, \underline{\lambda}, \underline{\theta}}$ denote the flow lines of the Imaginary Geometry field with marked points x_{0}, \ldots, x_{N-1} with boundary values and angles determined by W.

Random modulus = partition function

- The value $\prod_{1 \leq i<i \leq n}\left(x_{j}-x_{i} \frac{\rho^{p, p_{j}}}{\sigma_{k}}\right.$ can be viewed as the partition function of the Imaginary Geometry field (Dubédat).

SLE boundary Green's function

- Let $b_{2}=\frac{8}{\kappa}-1, x_{j} \in \mathbb{R} \backslash\{0\}$, and η be an SLE $_{\kappa}$ curve. The n-point SLE boundary Green's function is defined by the limit

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{n}\right)=\lim _{r_{1}, \ldots, r_{n} \rightarrow 0^{+}} r_{1}^{-b_{2}} \ldots r_{n}^{-b_{2}} \mathbb{P}\left(\operatorname{dist}\left(\eta, x_{j}\right)<r_{j}, 1 \leq j \leq n\right) \tag{10}
\end{equation*}
$$

- The existence of the limit is proved by [Lawler'15] for $n=1$ or $n=2$ with $x_{2}>x_{1}>0$ and [Fakhry-Zhan'22] for general case.

SLE boundary Green's function

- For $0<x_{1}<\ldots<x_{n}$, one can recursively define a measure $M\left(x_{1}, \ldots, x_{n}\right)$ on $n+1$ curves whose size is $G\left(x_{1}, \ldots, x_{n}\right)$, and can be interpreted as SLE_{κ} conditioned on hitting x_{1}, \ldots, x_{n}.

Relation with SLE boundary Green's function

Theorem (Ang-Sun-Y.'23+)

Let $n \geq 2, x_{1}=1, \beta=\gamma-\frac{2}{\gamma}$ and $\beta_{2}=\gamma-\frac{4}{\gamma}$. Consider the conformal welding of QD induced by the previous picture. Then the output curve-decorated surface we get can be embedded as $\left(x_{1}=1\right)$

$$
c \cdot \int_{0<x_{1}<\ldots<x_{n}}\left[\operatorname{LF}_{\mathbb{H}}^{(\beta, 0),(\beta, \infty),\left(\beta_{2}, x_{1}\right), \ldots,\left(\beta_{2}, x_{n}\right)} \times M\left(x_{1}, \ldots, x_{n}\right)\right] d x_{2} \ldots d x_{n}
$$

Following [Zhan'21] on 2-point boundary Green's function for $\operatorname{SLE}_{\kappa}(\underline{\rho})$, a similar result also holds for $n=2$ and $\operatorname{SLE}_{\kappa}(\rho)$ process.

Relation with SLE boundary Green's function

Theorem (Ang-Sun-Y.'23+)

Let $\rho>-2$ and $W=\rho+2$. Let $\beta_{\rho}=\gamma-\frac{2+\rho}{\gamma}$ and $\beta_{2, \rho}=\gamma-\frac{2+2 \rho}{\gamma}$.
Consider the conformal welding below. Then for some constant $c \in(0, \infty)$, the output curve-decorated quantum surface can be embedded as ($\left.\mathbb{H}, \phi, 0,1, x, \infty, \eta_{1}, \eta_{2}, \eta_{3}\right)$ where ($\phi, x, \eta_{1}, \eta_{2}, \eta_{3}$) has law

$$
c \int_{1}^{\infty} \operatorname{LF}_{\mathbb{H}}^{\left(\beta_{\rho}, 0\right),\left(\beta_{2, \rho}, 1\right),\left(\beta_{2, \rho}, x\right),\left(\beta_{\rho}, \infty\right)}(d \phi) \times M(\rho ; 1, x)\left(d \eta_{1} d \eta_{2} d \eta_{3}\right) d x
$$

Forested line

- Sample a stable Lévy process $\left(X_{t}\right)_{t>0}$ of index $\frac{\kappa}{4}=\frac{4}{\gamma^{2}}$ with upward jumps.
- Add a curve for each jump and identify the points on the same green horizontal line.
- For each blue disk, assign a sample from QD with boundary length according to the jump.

Forested line

- Points on the horizontal line: record minima of $\left(X_{t}\right)_{t>0}$. Parameterized by quantum length.
- Lévy tree of disks: quantum natural parametrization, i.e., $Y_{t}=\inf \left\{s>0: X_{s} \leq-t\right\}$.

Conformal welding of forested lines

Theorem (Duplantier-Miller-Sheffield'14)

Let $\gamma=4 / \sqrt{\kappa}$. If we draw an independent $\operatorname{SLE}_{\kappa}(\kappa / 2-4 ; \kappa / 2-4)$ process on a weight $2-\gamma^{2} / 2$ quantum wedge, then we obtain the conformal welding of two independent forested lines.

Conformal welding of forested quantum disks

Theorem (Ang-Holden-Sun-Y.'23+)

Let $W_{1}, W_{2}>0$ and $\rho_{j}=\frac{4}{\gamma^{2}}\left(2+\gamma^{2}-W_{j}\right)$ for $j=1,2$.

$$
\begin{aligned}
\mathcal{M}_{2}^{\text {disk }}\left(W_{1}\right. & \left.+W_{2}+2-\frac{\gamma^{2}}{2}\right) \otimes \operatorname{SLE}_{\kappa}\left(\rho_{1} ; \rho_{2}\right) \\
& =c \int_{0}^{\infty} \operatorname{Weld}\left(\mathcal{M}_{2}^{\text {f.d. }}\left(W_{1} ; \ell\right), \mathcal{M}_{2}^{\text {f.d. }}\left(W_{2} ; \ell\right)\right) d \ell
\end{aligned}
$$

Conformal welding of forested quantum disks

- The weight $\gamma^{2}-2$ forested quantum disk $\mathcal{M}_{2}^{\text {f.d. }}\left(\gamma^{2}-2\right)$ shares similar property as $\mathcal{M}_{2}^{\text {disk }}(2)$ in $\kappa<4$ regime. This allows us to define $\mathrm{GQD}_{0, n}$ analogously.
- We can consider the similar conformal welding problem of GQD according to a given link pattern.

Conformal welding of forested disks by link pattern

Theorem (Ang-Holden-Sun-Y. '23+)

Let $\gamma \in(\sqrt{2}, 2)$, $\kappa=16 / \gamma^{2}$ and $\beta=\frac{4}{\gamma}-\frac{\gamma}{2}$. Let $N \geq 2$ and $\alpha \in \mathrm{LP}_{N}$ be a link pattern. Then there exists a constant $c \in(0, \infty)$ such that

$$
\begin{aligned}
& \int_{0<y_{1}<\ldots<y_{2 N-3}<1}\left[\operatorname{LF}_{\mathbb{H}}^{(\beta, 0),(\beta, 1),(\beta, \infty),\left(\beta, y_{1}\right), \ldots,\left(\beta, y_{2 N-3}\right) \times}\right. \\
& \left.\operatorname{mSLE}_{\kappa, \alpha}\left(\mathbb{H}, 0, y_{1}, \ldots, y_{2 N-3}, 1, \infty\right)\right] d y_{1} \ldots d y_{2 N-3}=\left.c \operatorname{Weld}_{\alpha}(\mathrm{GQD})\right|_{E}
\end{aligned}
$$

where E is the event that the welding output is simply connected, and the left hand side is understood as the law of a curve-decorated quantum surface.

Conformal welding of forested disks by link pattern

- The measure $\operatorname{mSLE}_{\kappa, \alpha}$ is constructed in an iterative way as [Wu'20], and for $\kappa \in(6,8)$ we are able to show that when weighting by the partition function, the measure we get is still finite.
- Following the arguments from [Peltola'19], one can show that the partition function for $\operatorname{mSLE}_{\kappa, \alpha}$ when $\kappa \in(6,8)$ is conformally covariant and solves the PDE.
- The resampling properties also uniquely characterizes the measure $\operatorname{mSLE}_{\kappa, \alpha}$ for $\kappa \in(4,8)$.

Thanks for listening!

