Uniform boundedness of rational points

Bjorn Poonen

MIT
CNTA XII, Lethbridge
June 21, 2012

PART 1: RATIONAL POINTS

Example

The equation

$$
y^{2}=x^{6}+8 x^{5}+22 x^{4}+22 x^{3}+5 x^{2}+6 x+1
$$

has 4 rational solutions.

Example

The equation

$$
y^{2}=-x^{6}-x^{5}-x^{4}-x^{3}-x^{2}-x-1
$$

has 0 rational solutions.

Example

The equation

$$
y^{2}=x^{6}+2 x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+4 x+1
$$

has 4 rational solutions.

Example

The equation

$$
y^{2}=x^{6}+2 x^{5}+x^{4}+2 x^{3}+6 x^{2}+4 x+1
$$

has 4 rational solutions.

Example

The equation

$$
y^{2}=x^{6}-2 x^{4}+2 x^{3}+5 x^{2}+2 x+1
$$

has 6 rational solutions.

Example (Stoll, found by searching in a family constructed by Elkies)
The equation

$$
\begin{aligned}
y^{2}= & 82342800 x^{6}-470135160 x^{5}+52485681 x^{4}+2396040466 x^{3} \\
& +567207969 x^{2}-985905640 x+247747600
\end{aligned}
$$

has at least 642 rational solutions.

Finiteness and uniform boundedness

Theorem (special case of Faltings 1983)
If $f(x) \in \mathbb{Q}[x]$ is squarefree of degree 6 , then the number of rational solutions to $y^{2}=f(x)$ is finite.

```
Question (special case of Caporaso, Harris, and Mazur 1997)
Is there a number B such that
for any squarefree }f(x)\in\mathbb{Q}[x]\mathrm{ of degree 6,
the number of rational solutions to }\mp@subsup{y}{}{2}=f(x)\mathrm{ is at most B?
```

$$
\left\{\begin{array}{c}
\text { (smooth projective models of) } \\
\text { the curves } y^{2}=f(x): \\
f(x) \in \mathbb{Q}[x] \text { squarefree } \\
\operatorname{deg} f=6
\end{array}\right\}=\left\{\begin{array}{c}
\text { genus } 2 \text { curves } \\
\text { over } \mathbb{Q}
\end{array}\right\}
$$

Theorem (Faltings 1983)

If $f(x) \in \mathbb{Q}[x]$ is squarefree of degree 6 , then the number of rational solutions to $y^{2} \equiv f(x)$ is finite. If X is a curve of genus ≥ 2 over a number field k, then $X(k)$ is finite.

Question (Caporaso, Harris, and Mazur 1997)

Is there a number B such that
for each squarefree $f(x) \in \mathbb{Q}[x]$ of degree 6 , the number of rational solutions to $y^{2}=f(x)$ is at most B ? Given $g \geq 2$ and a number field k, is there $B_{g, k}$ such that for each curve X of genus g over k, $\# X(k) \leq B_{g, k} ?$

Question (Caporaso, Harris, and Mazur 1997, again)

Given $g \geq 2$ and a number field k, is there $B_{g, k}$ such that for each curve X of genus g over k, $\# X(k) \leq B_{g, k}$?

Example

- $B_{2, \mathbb{Q}} \geq 642$ (Stoll, building on work of Elkies).
- $B_{g, \mathbb{Q}} \geq 8 g+16$ (Mestre).
- Caporaso, Harris, and Mazur showed that a conjecture of Lang would imply a positive answer to their question.
- Pacelli showed that Lang's conjecture would imply also that $B_{g, k}$ could be chosen to depend only on g and $[k: \mathbb{Q}]$.
- Abramovich and Voloch generalized to higher-dimensional varieties for which all subvarieties are of general type ("Lang implies uniform Lang").

Uniform boundedness for arbitrary families

Is it true that in any algebraic family of varieties, the number of rational points of the varieties is uniformly bounded after discarding the varieties with infinitely many rational points? More precisely:

Main Question

k: number field
$\pi: X \rightarrow S$ a morphism of finite-type k-schemes
For $s \in X(k)$, let X_{s} be the fiber $\pi^{-1}(s)$.
Must $\left\{\# X_{s}(k): s \in S(k)\right\}$ be finite?

Example

Let X be $y^{2}=x^{3}+a x+b$ in $\mathbb{A}^{4}=\operatorname{Spec} \mathbb{Q}[x, y, a, b]$ mapping to $S=\mathbb{A}^{2}=\operatorname{Spec} \mathbb{Q}[a, b]$ by projection onto the (a, b)-coordinates. For most $s=\left(a_{0}, b_{0}\right) \in S(\mathbb{Q})$, the fiber X_{s} is an elliptic curve over \mathbb{Q} (minus the point at infinity). By Mazur's theorem,

$$
\left\{\# X_{s}(\mathbb{Q}): s \in S(\mathbb{Q})\right\}=\left\{0,1,2,3,4,5,6,7,8,9,11,15, \aleph_{0}\right\}
$$

which is a finite set.

Main Question

k : number field
$\pi: X \rightarrow S$ a morphism of finite-type k-schemes
Must $\left\{\# X_{s}(k): s \in S(k)\right\}$ be finite?

By reducing to the case where X and S are affine, one gets:

Main Question (equivalent version)

k : number field
$f_{1}, \ldots, f_{m} \in k\left[s_{1}, \ldots, s_{r}, x_{1}, \ldots, x_{n}\right]$
For $\vec{a} \in k^{r}$, let $N_{\vec{a}}=$ number of solutions to $\vec{f}(\vec{a}, \vec{x})=0$ in k^{n}.
Is there a bound $B=B(k, \vec{f})$ such that

$$
N_{\vec{a}} \leq B \quad \text { for all } \vec{a} \text { for which } N_{\vec{a}} \text { is finite? }
$$

The case $k=\mathbb{Q}$ is equivalent to the case of a general number field. Why?

Restriction of scalars

The case $k=\mathbb{Q}$ is equivalent to the case of a general number field. Why?

Any polynomial equation over a number field can be converted to a system of polynomial equations over \mathbb{Q}.

Example (copied from Filip Najman's talk)

The solutions to

$$
y^{2}=x^{3}+i
$$

in $\mathbb{Q}(i)$ are in bijection with the solutions to

$$
\left(y_{0}+y_{1} i\right)^{2}=\left(x_{0}+x_{1} i\right)^{3}+i
$$

in \mathbb{Q}, and the latter can be expanded into real and imaginary parts

$$
\begin{aligned}
y_{0}^{2}-y_{1}^{2} & =x_{0}^{3}-3 x_{0} x_{1}^{2} \\
2 y_{0} y_{1} & =3 x_{0}^{2} x_{1}-x_{1}^{3}+1
\end{aligned}
$$

"Restriction of scalars" lets one show also that it is no more general if one asks for uniform boundedness as L ranges over extensions of k of bounded degree:

Main Question (equivalent version)

k : number field
$\pi: X \rightarrow S$ a morphism of finite-type k-schemes
$d \geq 1$
Must $\left\{\# X_{s}(L):[L: k] \leq d, s \in S(L)\right\}$ be finite?
(Introduce the coefficients of the equation defining L / k as additional parameters, and consider the giant family consisting of all restrictions of scalars obtained.)

Combining many equations into one of degree 4
(Skolem's trick)

Example

The equation $y^{2}=x^{5}+7$ over \mathbb{Q} is equivalent to the system

$$
u=x^{2}, \quad v=u^{2}, \quad y^{2}=x v+7
$$

of equations of degree 2 , which is equivalent to the equation

$$
\left(u-x^{2}\right)^{2}+\left(v-u^{2}\right)^{2}+\left(y^{2}-x v-7\right)^{2}=0
$$

of degree 4.

Main Question (equivalent version)
 For each $n \geq 1$, is there a number B_{n} such that for every $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ of total degree 4 such that $f(\vec{x})=0$ has finitely many rational solutions, the number of solutions is $\leq B_{n}$?

Other fields

Main Question for the field k

$\pi: X \rightarrow S$ a morphism of finite-type k-schemes.
Must $\left\{\# X_{s}(k): s \in S(k)\right\}$ be finite?

- If $k=\mathbb{F}_{p}(t)$ for some $p>2$, the answer is NO :

The curve

$$
X_{a}: x-a x^{p}=y^{p}
$$

has finitely many k-points for each $a \in k-k^{p}$, but $\# X_{a}(k)$ is unbounded as a varies in this set (Abramovich and Voloch 1996).

- If k is a finitely generated extension of \mathbb{Q}, the answer might still be YES.
- For $\mathbb{C}, \mathbb{R}, \mathbb{Q}_{p}$, the answer is YES.
- There exists an (artificial) field of characteristic 0 for which the answer is NO.

Stronger variant 1: Zariski closures

Question

k : number field (or finitely generated extension of \mathbb{Q})
$\pi: X \rightarrow S$ a morphism of finite-type k-schemes
For $s \in S(k)$, let z_{s} be the number of irreducible components of the Zariski closure of $X_{s}(k)$ in X_{s}. Must $\left\{z_{s}: s \in S(k)\right\}$ be bounded?

This is at least as strong as the Main Question.

Stronger variant 2: Topology of rational points

X : finite-type \mathbb{Q}-scheme
Define
$\overline{X(\mathbb{Q})}:=$ closure of $X(\mathbb{Q})$ in $X(\mathbb{R})$ in Euclidean topology.

Conjecture (Mazur 1992)

$\overline{X(\mathbb{Q})}$ has at most finitely many connected components.

Question

$\pi: X \rightarrow S$ a morphism of finite-type \mathbb{Q}-schemes For $s \in S(\mathbb{Q})$, let c_{s} be the number of connected components of $\overline{X_{s}(\mathbb{Q})}$. Must $\left\{c_{s}: s \in S(\mathbb{Q})\right\}$ be finite?

This is at least as strong as the Main Question.

Example

For families of curves over \mathbb{Q}, this new question is equivalent to the Caporaso-Harris-Mazur question. (Use boundedness of $E(\mathbb{Q})_{\text {tors }}$ to handle families of genus 1 curves.)

PART 2: PREPERIODIC POINTS

Definition

Given $f: X \rightarrow X$ and $x \in X(k)$,
x is preperiodic \Longleftrightarrow its forward trajectory is finite

$$
\Longleftrightarrow f^{n}(x)=f^{m}(x) \text { for some } m>n .
$$

Let $\operatorname{PrePer}(f, k)$ be the set of such points.

Example

Fix $c \in \mathbb{Q}$ and consider

$$
\begin{aligned}
f: \mathbb{A}^{1} & \rightarrow \mathbb{A}^{1} \\
z & \mapsto z^{2}+c .
\end{aligned}
$$

For $z \in \mathbb{Q}$, the heights satisfy $h\left(z^{2}+c\right)=2 h(z)+O(1)$.
So if z has sufficiently large height, then $z, f(z), f(f(z)), \ldots$ will have strictly increasing height, so z will not be preperiodic.
Thus $\operatorname{PrePer}(f, \mathbb{Q})$ is of bounded height, hence finite (Northcott).
c=1

Figure 1. Finite Rational Preperiodic Points of $z^{\wedge} 2+c$.

Finiteness and uniform boundedness

Theorem (Northcott 1950)

k : number field
$f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ a morphism of degree $d \geq 2$ over k
Then $\operatorname{PrePer}(f, k)$ is finite.

Morton-Silverman conjecture (1994)

For k and f as above, \# $\operatorname{PrePer}(f, k)$ is bounded by a constant depending only on n, d, and $[k: \mathbb{Q}]$.

Although the Morton-Silverman conjecture is only for self-maps of \mathbb{P}^{n}, it implies boundedness for self-maps of some other varieties.

Example

A : abelian variety over a number field k
[2]: $A \rightarrow A$ the multiplication-by-2 map
Then $\operatorname{PrePer}([2], k)=A(k)_{\text {tors }}$.
Fakhruddin: one can find maps i and f completing the diagram

Corollary: The Morton-Silverman conjecture would imply the following generalization of the Mazur-Kamienny-Merel theorem:

Uniform boundedness conjecture for torsion of abelian varieties $\# A(k)_{\text {tors }}$ is bounded by a constant depending only on $\operatorname{dim} A$ and $[k: \mathbb{Q}]$.

Uniform boundedness for preperiodic points

k : number field (or finitely generated extension of \mathbb{Q})
$\pi: X \rightarrow S$ a morphism of finite-type k-schemes
$f: X \rightarrow X$ an S-morphism

The data above define a family of dynamical systems: for each $s \in S(k)$, one gets $f_{s}: X_{s} \rightarrow X_{s}$ over k.

Main Question for preperiodic points

For k, π, f as above, must $\left\{\# \operatorname{PrePer}\left(f_{s}, k\right): s \in S(k)\right\}$ be finite?

Example

If f is the identity morphism, then $\operatorname{PrePer}\left(f_{s}, k\right)=X_{s}(k)$, so this special case is the Main Question for rational points.

Uniform boundedness for preperiodic points: variants

Main Question for preperiodic points (again)

k : number field (or finitely generated extension of \mathbb{Q})
$\pi: X \rightarrow S$ a morphism of finite-type k-schemes
$f: X \rightarrow X$ an S-morphism
Must $\left\{\# \operatorname{PrePer}\left(f_{s}, k\right): s \in S(k)\right\}$ be finite?
As with the Main Question for rational points, there are stronger variants for

- preperiodic points over L with $[L: k]$ bounded (equivalent question, if X is quasi-projective over S)
Taking the universal family of degree d self-maps of \mathbb{P}^{n} yields the Morton-Silverman conjecture.
- the Zariski closure of $\operatorname{PrePer}\left(f_{s}, k\right)$
- the connected components of $\overline{\operatorname{PrePer}\left(f_{s}, \mathbb{Q}\right)}$ in $X_{s}(\mathbb{R})$.

