The origins of the Tate conjecture

Bjorn Poonen
MIT

March 18, 2025



Motivation I:
T over global function fields
and the Tate conjecture



1. Finiteness of 111

k: global field
A: abelian variety over k

0 — 1T — H(k, A) — [ [ H' (kv A)

Conjecture (Shafarevich? Tate? 1962)
[T is finite.

Later, this was proved in many cases, such as

E/Q with ords—1 L(E,s) < 1 (Rubin 1987, Kolyvagin 1988, ...).

Tate 1994:

“If 111, or at least its £-primary part, were not finite,
then the Galois cohomology of the abelian variety
would be a mess..."”



2. IIT vs. Br

Fibered surface setting:

X B (assume X, B nice! of dimensions 2, 1 over Fy)
X, — Speck: generic fiber (assume X;, is a nice curve over k)
J := Jacobian of X;

Br X := H%(X,G )

Theorem (special case of Artin 1960s, Milne 1982)
III(J) is finite <= BrX is finite.
This suggests. ..

Conjecture

Br X is finite for every nice surface X over F,.

Artin: More generally, is Br X finite for every scheme X proper over Z?

Ysmooth, projective, geometrically integral



3. Br and cycle classes of divisors

X: nice variety over Fg, X := X xp, Fq, G := Gal(Fg/F,)
¢ # charF,
Take étale cohomology of 1 — up — Gy 4 Gm — 1:

0 — (PicX)® é — H3(X, ug) — (BrX)[f] — 0.
Do the same for " and take I(l_m
0 — (Pic X) ® Zy — H*(X, Z¢(1)) — lim (Br X)[¢"] — 0.

torsion-free

Theorem (Artin—Tate, announced 1962, details published 1966)
The following conjectures are equivalent:

(Br X)[¢>°] is finite.

2. lim (Br X)[¢"] = 0.

3. (Pic X) ® Zy — H?(X,Z(1)) is surjective.

4. (PicX) ® Qy — H2(X,Qu(1)) is surjective.
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X, Zy(1)) is surjective.
X,Qe(1)) is surjective.
H2(X, Qy(1))¢.

Why =7 Hochschild—Serre & Frobenius eigenvalues on H'(X, Q,(1)) are # 1.
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Statements:
The Tate conjecture
and related conjectures



The Tate conjecture (1962 for divisors on surface/F,, 1965 in general)
k: finitely generated field, k: separable closure, G := Gal(k/k)
X: nice variety of dimension d over k, X := X xyx k

Z"(X) := free abelian group on
{codimension r closed integral subvarieties of X}
(Example: Z(X) = Div X.)

Conjecture T"

For each ¢ # char k, the cycle class map
Z7(X) ® Q¢ — H¥ (X, Qu(r)¢

Tate classes
IS surjective (onto the Galois-invariant classes).

Compare with the Hodge conjecture: For a nice variety X over C,

Z"(X)®Q — H¥(X,Q) N H""
is surjective.

The integral Hodge conjecture (Z in place of Q) and
integral Tate conjecture (Zy in place of Q) are false for r > 1
(Atiyah—Hirzebruch, Kollar, Totaro, Hassett—Tschinkel, .. .)



Define subgroups

rat C alg C hom; C num C Z"(X):

e rat = rationally equivalent to 0
(coming from rational functions on V C X of codim r — 1)

e alg = algebraically equivalent to 0
(3 family of cycles over a connected base connecting it to 0)

e homy = homologically equivalent to 0
(maps to 0 in H*" (X, Qq(r)))

e num = numerically equivalent to 0
(Y satisfies Y.Z = 0 for all Z € 2977(X))

By rat C alg C homy and the definition of homy,
r cl rfy
Z1(X) == H¥ (X, Qu(r))
factors through any of
Z'(X)/rat, Z'(X)/alg, Z"(X)/homy.
— —

CH"(X) c(2r(X))

When r = 1; Pic X, NS X, NS X /torsion.



Conjecture E"

homy = num for every ¢ # char k.
Elis known.

Conjecture /"

(Z7(X)/homy) ® Qp — H2"(X, Qy(r))C is injective.

I" says: Z-independent elements of cl(Z"(X)) are Q-independent.
Beilinson injectivity conjecture for Fg:
CH"(X) ® Qg — H?" (X, Qq(r))¢ is injective.

Conjecture S”
Let V = H?"(X,Q(r)). Then V¢ — Vg is an isomorphism.

S" is partial semisimplicity: When k = Fg, S” is equivalent to
1-generalized eigenspace of Frob = 1-eigenspace

multiplicity of the eigenvalue 1 = dim H*" (X, Qq(r))®.

Folklore (Tate,Katz,Messing,Jannsen,Milne): T"+E" — ", S".
Proof: Formal consequence of Poincaré duality & hard Lefschetz.



Motivation |l:
BSD over global function fields
and the Tate conjecture



4. Tate conjecture and poles of zeta functions

X: finite type Z-scheme
x: closed point of X
k(x): residue field

Gx 1= #k(x)

()= JI @-a)
closed x € X

The product converges when Res > dim X,
and conjecturally has a meromorphic continuation to all of C.



X is a nice variety of dimension d over .
F: X — X is the relative Frobenius morphism.
Pi(T) :=det(1 — TF*|H'(X,Qy))
Theorem (some of the Weil conjectures; ..., Deligne 1974)

1. P(T)eZ[T]

Pi(q™®%) -+ Pag—1(q™°)
2. s) =
) = Pla ) Pala ) -+ Paala )

3. All complex roots o of P(T) satisfy |a| = q'/2.

Corollary: For r € {0,1,...,d},

—ords—, (x(s) = ords—, P2,(q™°)
=ordr_q-r P2r(T)
= multiplicity of eigenvalue ¢" of F*|H2r(Y, Q)
= multiplicity of eigenvalue 1 of F*\Hzr(Y, Qe(r))
> dimg, H*(X,Qu(r))¢ (equality «= S")

1-eigenspace

> rankz(Z"(X)/num) (equality <= T"+/"+ E").



Summary:
Theorem (Tate 1965, modulo Weil conjectures at the time)

For a nice variety X over Fg, the following are equivalent:
(a) T"+ E" for any one ¢
(b) rankz(Z7(X)/num) = order of the pole of {x(s) at r.

Tate also conjectured a generalization of (b)
for a nice variety over a finitely generated field k instead of IF,.



5. The BSD conjecture (rank part)

k: global field
J: abelian variety over k

BSD conjecture (Birch and Swinnerton-Dyer 1965
for elliptic curves over number fields, Tate 1965 in general)

rank J(k) = ords—1 L(J,s)

The Artin—Tate program:

For a fibered surface X — B over F,
(with irreducible fibers, for simplicity),
express what BSD for J := Jac X, says in terms of X.



6. NS(X) vs. J(k)

Lemma
rank NS(X) = 2+ rank J(k).

Proof.

Algebraic geometry gives an exact sequence

0 —s Pic B ™5 Pic X —s Pic X, — 0.

Ranks are 1, rankNS(X), 1+ rankJ(k).



7. Poles of zeta functions vs. zeros of L-functions

Lemma
—ords—1 (x(s) = 2+ ords—1 L(J,s).
Proof.
For closed b € B, let X, = m1(b).
Take the product over b of (x,(s) = (1 — ':Z X;((qb_) B
to get (x(s) = SB(s )L(J (s) )
Here (g(s) = i A, li(( S) =g

so both (g(s) and (g(s — 1) contribute a simple pole at 1.



Putting 4-7 together: BSD for J <= T! for X

BSD

2 + rank J(k) 24 ords—1 L(J,s)

geometry —ords—1 CX )

Weil conjectures

rank NS(X) T multiplicity of eigenvalue 1 of F*|H2(X,Q,(1))



Artin and Tate also translated
full BSD for J (the leading coefficient statement)

into a conjectural formula about X.
To prove this conditionally on finiteness of III took four decades
(mainly to finish dealing with the power of p in the formula):

Theorem (Tate, Milne, Schneider, Bauer, Kato—Trihan 2003)

For a fibered surface X — B over F, the following are equivalent:
o T for X forall £ (or for one ()
e Br X is finite (or (Br X)[¢>°] is finite for one ¢, possibly p)
o I11(J) is finite  (or III(J)[¢°°] is finite for one ¢, possibly p)
e rank part of BSD holds for J,
e full BSD holds for J.

Moreover, T! for all surfaces = T for all varieties
(de Jong unpublished, Morrow 2019, Kahn 2023).
Also, T! over F, and Q == T* over any f.g. k (Ambrosi 2018).



Motivation Ill:

Hom between abelian varieties
and the Tate conjecture



8. Homomorphisms between abelian varieties

k: finitely generated field
A: abelian variety over k

(#chark, T,A:=lmAR)"], VA= (TA) @z, Q

Theorem (Tate 1966 for I, with an idea from Lichtenbaum;
Zarhin 1974 for char k = p; Faltings 1983-84 for char k = 0)

For any abelian varieties A, B over k,
Hom(A, B) ® Q; — Homg, (V/A, V,B)®

is an isomorphism.

» Theorem for k <= TV for all abelian varieties over k.
» Theorem for k implies that for all nice varieties X, Y over k,

THX xY) < TYX)+ THY).

» Theorem for F; 4+ Honda's construction (taking CM abelian
varieties mod p) yields the Honda—Tate explicit description of
the category of abelian varieties over F “up to isogeny”.

» Theorem for number fields = Mordell conjecture (Faltings).



Proof of Hom theorem (simplified using Zarhin 1974)

Lemma 1
For fixed g and I,

{g-dimensional abelian varieties over [} /isom
is finite.
Sketch of proof.

1. Each g-dimensional abelian variety A is a direct factor of
an 8g-dimensional principally polarized abelian variety P.
(Zarhin's trick: A* x A* has a principal polarization.)

2. There are only finitely many possible P.
(Fg4-points of a finite-type moduli space, up to twists)

3. Each P has only finitely many isom types of direct factors. [



Proof of Hom theorem, page 2
Using Hom(A, B) C End(A x B), reduce to End case.
Let T=T¢Aand V = VA and E = (End A) ® Q.
Lemma 2
Each G-stable subspace V' C V is u(V) for some u € E.

Proof.

1. Let T'=V'NT.
2. Each sublattice T’ +/"T C T corresponds to
an isogeny ¢,: B, — A.
3. By Lemma 1, infinitely many B,, are isomorphic to one B.

4. In the compact group Hom(B, A) ® Zy,
some subsequence of (¢,) converges, say to ¢.

5. Then ¢(TyB) = T', so ¢(V,B) = V'.
6. Let u be the composition of an isogeny A — B with ¢. Ol



Proof of Hom theorem, page 3 (end)
Recall: E = (End A) ® Q; and V = V/A.
Theorem
E < (End V)€ is surjective.

Proof.

Let f € (End V)©.

Lemma 2 produces u € End(A x A) ® Q; = M3(E) such that
u(V x V) = graph(f).

If ¢ € End V commutes with all elements of E, then

° <C 0) commutes with u.
0 c

o (C S) maps graph(f) into itself.

0
e f commutes with c.
That is,

f € (double commutant of E in End V) = E,
since E is semisimple.



Algorithms:

Computing Néron—Severi groups
using the Tate conjecture



Algorithmic aspects

Theorem (P., Testa, van Luijk 2015)

There is an algorithm attempting to compute
NS X as a finitely generated abelian group with G-action;
it terminates with success if and only if T* holds.

» The main challenge is to compute p := rank NS(X).
» Can similarly compute (Z7(X)/num) ® Q if T" + E” holds.

Obstacle to an easy proof:
The image of G — Aut H?(X, Qy(1)) is usually infinite.
What would it mean to compute it?

Let's set up notation for a different approach.

Let HZ,, = U H2(X, Qu(1))". Let 7 = dimHZ,,..
finite-index H < G
Then p < 7, with equality if 7' holds.



Theorem (P., Testa, van Luijk 2015)

There is an algorithm attempting to compute p := rank NS(X);
it terminates with success if and only if T* holds.

Sketch of proof: Use H, := H?(X 7%(1)) instead of H*(X, Qy).
1. H, is computable (PTvL 2015, Madore-Orgogozo 2015)

2. Enlarge k to assume that G acts trivially on Hy (use H, if £ = 2).
Then G acts trivially on H%,,. (Minkowski-type argument).

3. There exist ¢, C > 0 with ¢ computable such that, for all n,
cl™ < H#HE < co.

4. By day, search for divisors and compute intersection numbers,
to get eventually sharp lower bounds on p.

5. By night, compute #HS for larger and larger n
to get eventually sharp upper bounds on 7.

6. If T! holds, the lower and upper bounds eventually match!



