Hilbert's Tenth Problem

Bjorn Poonen

University of California at Berkeley

MSRI Introductory Workshop on Rational and Integral Points on Higher-dimensional Varieties

January 18, 2006

Hilbert's Tenth Problem

Bjorn Poonen

eral

ings of integers

2

Subrings of Q

The original problem

H10: Find an algorithm that solves the following problem:

input: $f(x_1, ..., x_n) \in \mathbb{Z}[x_1, ..., x_n]$ output: YES or NO, according to whether there exists $\vec{a} \in \mathbb{Z}^n$ with $f(\vec{a}) = 0$.

(More generally, one could ask for an algorithm for solving a system of polynomial equations, but this would be equivalent, since

$$f_1 = \cdots = f_m = 0 \iff f_1^2 + \cdots + f_m^2 = 0.$$

Theorem (Davis-Putnam-Robinson 1961 + Matijasevič 1970)

No such algorithm exists.

In fact they proved something stronger...

Hilbert's Tenth Problem

Bjorn Poonen

Z

Diophantine, listable, recursive sets

• $A \subseteq \mathbb{Z}$ is called diophantine if there exists

 $p(t, \vec{x}) \in \mathbb{Z}[t, x_1, \dots, x_m]$

such that

$$A = \{ a \in \mathbb{Z} : (\exists \vec{x} \in \mathbb{Z}^m) \ p(a, \vec{x}) = 0 \}.$$

Example: The subset $\mathbb{N} := \{0, 1, 2, ...\}$ of \mathbb{Z} is diophantine, since for $a \in \mathbb{Z}$,

$$\mathsf{a} \in \mathbb{N} \iff (\exists x_1, x_2, x_3, x_4 \in \mathbb{Z}) \ x_1^2 + x_2^2 + x_3^2 + x_4^2 = \mathsf{a}$$

- A ⊆ Z is listable (recursively enumerable) if there is a Turing machine such that A is the set of integers that it prints out when left running forever.
- A ⊆ Z is recursive if there is an algorithm for deciding membership in A:

input: $a \in \mathbb{Z}$ output: YES if $a \in A$, NO otherwise

Hilbert's Tenth Problem

Bjorn Poonen

Z

Negative answer

- ▶ Recursive ⇒ listable: A computer program can loop through all integers a ∈ Z, and check each one for membership in A, printing YES if so.
- Diophantine ⇒ listable: A computer program can loop through all (a, x) ∈ Z^{1+m} and print out a if p(a, x) = 0.
- Listable #> recursive: This is equivalent to the undecidability of the Halting Problem of computer science.
- ► Listable ⇒ diophantine: This is what Davis-Putnam-Robinson-Matijasevič really proved.

Corollary (negative answer to H10)

There exists a diophantine set that is not recursive. In other words, there is a polynomial equation depending on a parameter for which no algorithm can decide for which values of the parameter the equation has a solution.

Hilbert's Tenth Problem

Bjorn Poonen

Z

Generalizing H10 to other rings

Let R be a ring (commutative, associative, with 1).

H10/R: Is there an algorithm with

input:
$$f(x_1, ..., x_n) \in R[x_1, ..., x_n]$$

output: YES or NO, according to whether there exists
 $\vec{a} \in R^n$ with $f(\vec{a}) = 0$?

Technicality:

- The question presumes that an encoding of the elements of R suitable for input into a Turing machine has been fixed.
- ► For many *R*, there exist several obvious encodings and it does not matter which one we select, because algorithms exist for converting from one encoding to another.
- ► For other rings (e.g. uncountable rings like C), one should restrict the input to polynomials with coefficients in a subring R₀ (like Q) whose elements admit an encoding.

Hilbert's Tenth Problem Bjorn Poonen Z General rings Rings of integers Q Subrings of Q Other rings

Examples of H10 over other rings

- Z: NO by D.-P.-R.-Matijasevič
- \mathbb{C} : YES, by elimination theory
- R: YES, by Tarski's elimination theory for semialgebraic sets (sets defined by polynomial equations and inequalities)
- \mathbb{Q}_p : YES, again because of an elimination theory
- \mathbb{F}_q : YES, trivially!

In the last four examples, there is even an algorithm for the following more general problem:

input: *First order sentence* in the language of rings, such as

$$(\exists x)(\forall y)(\exists z)(\exists w) \quad (x \cdot z + 3 = y^2) \lor \neg(z = x + w)$$

output: YES or NO, according to whether it holds when the variables are considered to run over elements of R Hilbert's Tenth Problem

Bjorn Poonen

H10 over rings of integers

k: number field (finite extension of \mathbb{Q}). \mathcal{O}_k : the ring of integers of k (the set of $\alpha \in k$ such that $p(\alpha) = 0$ for some monic $p \in \mathbb{Z}[x]$)

Examples:

▶ $k = \mathbb{Q}, \quad \mathcal{O}_k = \mathbb{Z}$ ▶ $k = \mathbb{Q}(i), \quad \mathcal{O}_k = \mathbb{Z}[i]$ ▶ $k = \mathbb{Q}(\sqrt{5}), \quad \mathcal{O}_k = \mathbb{Z}[\frac{1+\sqrt{5}}{2}].$

Conjecture

 $H10/\mathcal{O}_k$ has a negative answer for every number field k.

Hilbert's Tenth Problem Bjorn Poonen

H10 over rings of integers, continued

The negative answer for Z used properties of the Pell equation x² − dy² = 1 (where d ∈ Z_{>0} is a fixed non-square). Its integer solutions form a finitely generated abelian group related to O^{*}_{D(√d)}.

The same ideas give a negative answer for H10/O_k, provided that certain conditions on the rank of groups like this (integral points on tori) are satisfied. But they are satisfied only for special k, such as totally real k and a few other classes of number fields.

Theorem (P., Shlapentokh 2003)

If there is an elliptic curve E/\mathbb{Q} with

```
\operatorname{rank} E(k) = \operatorname{rank} E(\mathbb{Q}) > 0,
```

then $H10/\mathcal{O}_k$ has a negative answer.

Hilbert's Tenth Problem

Bjorn Poonen

General rings Rings of integers Q Subrings of Q

H10 over \mathbb{Q}

 $H10/\mathbb{Q}$ is equivalent to the existence of an algorithm for deciding whether an algebraic variety over \mathbb{Q} has a rational point.

Does the negative answer for $H10/\mathbb{Z}$ imply a negative answer for $H10/\mathbb{Q}?$

- ► Given a polynomial system over Q, one can construct a polynomial system over Z that has a solution (over Z) if and only if the original system has a solution over Q: namely, replace each original variable by a ratio of variables, clear denominators, and add additional equations that imply that the denominator variables are nonzero.
- Thus $H10/\mathbb{Q}$ is embedded as a subproblem of $H10/\mathbb{Z}$.
- ► Unfortunately, this goes the wrong way, if we are trying to use the non-existence of an algorithm for H10/Z to deduce the non-existence of an algorithm for H10/Q.

Hilbert's Tenth Problem

Bjorn Poonen

Z

Conjectural approaches to H10 over ${\mathbb Q}$

- If the subset Z ⊆ Q were diophantine/Q, then we could deduce a negative answer for H10/Q.
 (*Proof:* If there were an algorithm for Q, then to solve an equation over Z, consider the same equation over Q with auxiliary equations saying that the rational variables take integer values.)
- More generally, it would suffice to have a diophantine model of Z over Q: a diophantine subset A ⊆ Q^m equipped with a bijection φ: A → Z such that the graphs of addition and multiplication (subsets of Z³) correspond to diophantine subsets of A³ ⊆ Q^{3m}.

It is not known whether \mathbb{Z} is diophantine over \mathbb{Q} , or whether a diophantine model of \mathbb{Z} over \mathbb{Q} exists. (Can $E(\mathbb{Q})$ for an elliptic curve of rank 1 serve as a diophantine model?)

Hilbert's Tenth Problem

Bjorn Poonen

Rational points in the real topology

If X is a variety over \mathbb{Q} , then $X(\mathbb{Q})$ is a subset of $X(\mathbb{R})$, and $X(\mathbb{R})$ has a topology coming from the topology of \mathbb{R} .

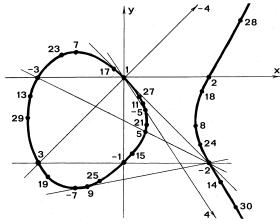


Figure 17. Rational points on the curve $y^2 + y = x^3 - x$.

(The figure is from Hartshorne, Algebraic geometry.)

Hilbert's Tenth Problem

Bjorn Poonen

Z

General rings Rings of integers **Q** Subrings of Q

Mazur's conjecture

Conjecture (Mazur 1992)

The closure of $X(\mathbb{Q})$ in $X(\mathbb{R})$ has at most finitely many connected components.

- This conjecture is true for curves.
- There is very little evidence for or against the conjecture in the higher-dimensional case.

The next two frames will discuss the connection between Mazur's conjecture and $H10/\mathbb{Q}.$

Hilbert's Tenth Problem

Bjorn Poonen

Z

General rings Rings of integers **Q**

Proposition

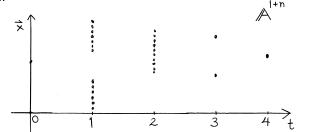
If $\mathbb Z$ is diophantine over $\mathbb Q,$ then Mazur's conjecture is false.

Proof.

Suppose \mathbb{Z} is diophantine over \mathbb{Q} ; this means that there exists a polynomial $p(t, \vec{x})$ such that

$$\mathbb{Z} = \{ a \in \mathbb{Q} : (\exists \vec{x} \in \mathbb{Q}^m) \ p(a, \vec{x}) = 0 \}.$$

Let X be the variety $p(t, \vec{x}) = 0$ in \mathbb{A}^{1+n} . Then $\overline{X(\mathbb{Q})}$ has infinitely many components, at least one above each $t \in \mathbb{Z}$.



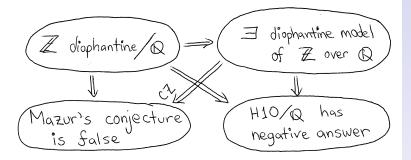
Hilbert's Tenth Problem

Bjorn Poonen

General rings Rings of integers **Q**

Mazur's conjecture and diophantine models

- We just showed that Mazur's conjecture is incompatible with the statement that Z is diophantine over Q.
- Cornelissen and Zahidi have shown that Mazur's conjecture is incompatible also with the existence of a diophantine model of Z over Q.



Hilbert's Tenth Problem

Bjorn Poonen

General rings Rings of integers D Subrings of Q

H10 over subrings of ${\mathbb Q}$

Let $\mathcal{P} = \{2, 3, 5, \ldots\}$. There is a bijection

$$\{ \text{subsets of } \mathcal{P} \} \leftrightarrow \{ \text{subrings of } \mathbb{Q} \}$$
$$S \mapsto \mathbb{Z}[S^{-1}].$$

- ▶ What happens for *S* in between?
- ► How large can we make S (in the sense of density) and still prove a negative answer for H10 over Z[S⁻¹]?
- For finite S, a negative answer follows from work of Robinson, who used the Hasse-Minkowski theorem (local-global principle) for quadratic forms.

Hilbert's Tenth Problem

Bjorn Poonen

2 General rings Rings of integers Q Subrings of Q

H10 over subrings of \mathbb{Q} , continued

Theorem (P., 2003)

There exists a recursive set of primes $S \subset \mathcal{P}$ of density 1 such that

- There exists a curve E such that E(ℤ[S⁻¹]) is an infinite discrete subset of E(ℝ). (So the analogue of Mazur's conjecture for ℤ[S⁻¹] is false.)
- 2. There is a diophantine model of \mathbb{Z} over $\mathbb{Z}[S^{-1}]$.
- 3. H10 over $\mathbb{Z}[S^{-1}]$ has a negative answer.

The proof takes E to be an elliptic curve (minus ∞), and uses properties of integral points on elliptic curves.

Hilbert's Tenth Problem

Bjorn Poonen

eneral rings ings of integers

Subrings of Q

Ring	H10	1st order theory
		<u>,</u>
C	YES	YES
\mathbb{R}	YES	YES
\mathbb{F}_{q}	YES	YES
<i>p</i> -adic fields	YES	YES
$\mathbb{F}_q((t))$?	?
number field	?	NO
Q	?	NO
global function field	NO	NO
$\mathbb{F}_q(t)$	NO	NO
$\mathbb{C}(t)$?	?
$\mathbb{C}(t_1,\ldots,t_n), n\geq 2$	NO	NO
$\mathbb{R}(t)$	NO	NO
\mathcal{O}_k	?	NO
\mathbb{Z}	NO	NO

increasing arithmetic complexity

Hilbert's Tenth Problem

Bjorn Poonen

Z

ieneral rings lings of integers

Subrings of Q