The projective line minus three fractional points

Bjorn Poonen
University of California at Berkeley

$$
\text { July 13, } 2006
$$

(grew out of discussions with many people at the Spring 2006 MSRI program on Rational and Integral Points on Higher-Dimensional Varieties, especially Frédéric Campana, Jordan Ellenberg, and Aaron Levin)

The projective line
(1) 3 kinds of integral points

- Darmon's M-curves
- Campana's orbifolds
- Almost integral points
(2) Counting points of bounded height
- Counting functions
- Heuristics
- Theorems and conjectures
- Consequences

3 kinds of integral

Darmon's M-curves
Campana's orbifolds Almost integral points Counting points of bounded height
Counting functions
Heuristics
Theorems and

Motivation: a generalized Fermat equation

- Let

$$
S(\mathbb{Z}):=\left\{(x, y, z) \in \mathbb{Z}^{3}: \begin{array}{l}
x^{2}+y^{3}=z^{7} \\
\operatorname{gcd}(x, y, z)=1
\end{array}\right\} .
$$

- Then

$$
\begin{gathered}
S(\mathbb{Z}) \rightarrow \mathbb{P}^{1}(\mathbb{Q}):=\mathbb{Q} \cup\left\{\frac{1}{0}\right\} \\
(x, y, z) \mapsto \frac{x^{2}}{z^{7}} \quad\left(=1-\frac{y^{3}}{z^{7}}\right) .
\end{gathered}
$$

induces a bijection

$$
\frac{S(\mathbb{Z})}{\operatorname{sign}} \leftrightarrow\left\{q \in \mathbb{P}^{1}(\mathbb{Q}): \begin{array}{l}
\text { num }(q) \text { is a square } \\
\text { num }(q-1) \text { is a cube } \\
\operatorname{den}(q) \text { is a } 7^{\text {th }} \text { power }
\end{array}\right\} .
$$

- Darmon and Granville applied Faltings' theorem to covers of \mathbb{P}^{1} ramified only over $\{0,1, \infty\}$ to prove that the right hand side is finite, and hence deduce that $S(\mathbb{Z})$ is finite.

Geometric interpretation

- Define a \mathbb{Z}-scheme

$$
S:=\left(x^{2}+y^{3}=z^{7} \text { in } \mathbb{A}^{3}\right)-\{(0,0,0)\} .
$$

- Then the morphism

has multiple fibers above $0,1, \infty$, having multiplicities 2, 3, 7, respectively.
- So $S \rightarrow \mathbb{P}^{1}$ factors through a stack $\tilde{\mathbb{P}}^{1}:=\left[S / \mathbb{G}_{m}\right]$ that looks like \mathbb{P}^{1} except that the points $0,1, \infty$ have been replaced by a $1 / 2$-point, a $1 / 3$-point, and a $1 / 7$-point, respectively. Points in $S(\mathbb{Z})$ map to $\tilde{\mathbb{P}}^{1}(\mathbb{Z}) \subset \mathbb{P}^{1}(\mathbb{Z})=\mathbb{P}^{1}(\mathbb{Q})$.
- Moral: Multiple fibers impose conditions on images of integral points.

The projective line

Numerator with respect to a point

- We saw that a fiber of multiplicity 2 above $0 \in \mathbb{P}^{1}(\mathbb{Q})$ imposes the condition that num (q) be a square.
- What condition is imposed, say, by a fiber of multiplicity 2 above the point $3 / 5 \in \mathbb{P}^{1}(\mathbb{Q})$?
- Answer: The value of $\operatorname{num}_{3 / 5}(a / b):=|5 a-3 b|$ should be a square.

In general:
Definition (Numerator with respect to the point c / d)
For $c / d \in \mathbb{P}^{1}(\mathbb{Q})$, define num $c / d(a / b):=|a d-b c|$.

Examples

- If $c \in \mathbb{Z}$, then $\operatorname{num}_{c}(a / b)=\operatorname{num}(a / b-c)$.
- $\operatorname{num}_{\infty}(q)=\operatorname{den}(q)$.

The projective line

Darmon's M-curves

- M-curve data:
points $P_{1}, \ldots, P_{N} \in \mathbb{P}^{1}(\mathbb{Q})$, with
multiplicities $m_{1}, \ldots, m_{N} \in\{2,3, \ldots\} \cup\{\infty\}$.
- An M-curve may be denoted formally by $\mathbb{P}^{1}-\Delta$, where

$$
\Delta:=\sum_{i=1}^{N}\left(1-\frac{1}{m_{i}}\right)\left[P_{i}\right]
$$

(It is really a kind of stack.)

- Define the Euler characteristic

$$
\begin{aligned}
\chi\left(\mathbb{P}^{1}-\Delta\right) & :=\chi\left(\mathbb{P}^{1}\right)-\operatorname{deg} \Delta \\
& =2-\sum_{i=1}^{\infty}\left(1-\frac{1}{m_{i}}\right)
\end{aligned}
$$

Definition (Integral points in Darmon's sense)
$\left(\mathbb{P}^{1}-\Delta\right)(\mathbb{Z}):=\left\{q \in \mathbb{P}^{1}(\mathbb{Q}): \operatorname{num}_{P_{i}}(q)\right.$ is an m_{i}-th power $\left.\forall i\right\}$ Note: " ∞-th power" means unit (i.e., ± 1).

The projective line

Campana's orbifolds: motivation

- Suppose $\pi: S \rightarrow \mathbb{P}^{1}$ is such that the fiber above 0 consists of two irreducible components, one of multiplicity 2 and one of multiplicity 5 .
- If $s \in S(\mathbb{Z})$, then $\pi(s)$ is again restricted: its numerator is of the form $u^{2} v^{5}$.
- Equivalently, in the prime factorization of num $(\pi(s))$, every exponent is a nonnegative integer combination of 2 and 5.
- In particular (but not equivalently), num $(\pi(s))$ is a squareful integer, i.e., $p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ with all $e_{i} \geq 2$.

More generally:

Definition

An integer a is called m-powerful if in its prime factorization all (nonzero) exponents are $\geq m$.
An integer a is called ∞-powerful if $a= \pm 1$.
Definition (Integral points in Campana's sense)
For an M -curve $\mathbb{P}^{1}-\Delta$, define

$$
\left(\mathbb{P}^{1}-\Delta\right)_{C}(\mathbb{Z}):=\left\{q \in \mathbb{P}^{1}(\mathbb{Q}): \text { num }_{P_{i}}(q) \text { is } m_{i} \text {-powerful } \forall i\right\}
$$

The projective line minus three fractional points

Bjorn Poonen

Darmon's M-curves
Campana's orbifolds Almost integral points

Example

Let $\Delta=\frac{1}{2}[0]+\frac{1}{2}[3]+[\infty]$. Then

$$
\begin{aligned}
\left(\mathbb{P}^{1}-\Delta\right)_{c}(\mathbb{Z}) & =\left\{\begin{array}{l}
a \text { is squareful, } \\
\frac{a}{b} \in \mathbb{P}^{1}(\mathbb{Q}): \begin{array}{l}
a-3 b \text { is squareful, and } \\
b=1
\end{array}
\end{array}\right\} \\
& =\{a \in \mathbb{Z}: a, a-3 \text { are both squareful }\}
\end{aligned}
$$

Almost integral points

Definition (Height and penalty)

For an M-curve $\mathbb{P}^{1}-\Delta$ and $q=a / b \in \mathbb{P}^{1}(\mathbb{Q})$, define

$$
\begin{aligned}
H(q) & :=\max (|a|,|b|) \\
\text { penalty }_{\mathbb{P}^{1}-\Delta}(q) & \left.:=\prod_{i=1}^{N} \prod_{\substack{p \text { such that } \\
m_{i} \nmid v_{p}\left(\text { nump } P_{i}\right.}}(q)\right)
\end{aligned} p^{1-\frac{1}{m_{i}}} .
$$

Remark: If Δ consists of whole points, then log(penalty) is the "truncated counting function" in Vojta's "more general $a b c$ conjecture".
Fix a real number $r \in[0, \operatorname{deg} \Delta]$ ("tolerance level").
Definition (Almost integral points)
$\left(\mathbb{P}^{1}-\Delta+r\right)(\mathbb{Z}):=\left\{q \in \mathbb{P}^{1}(\mathbb{Q}):\right.$ penalty $\left._{\mathbb{P}^{1}-\Delta}(q) \leq H(q)^{r}\right\}$
Also define $\chi\left(\mathbb{P}^{1}-\Delta+r\right):=\chi\left(\mathbb{P}^{1}-\Delta\right)+r$.

Counting points of bounded height

- We will study when the set of integral points (in each of the three senses) is finite.
- When it is infinite, we will measure it by counting points of bounded height.

Definition (Counting functions)

$$
\begin{aligned}
\left(\mathbb{P}^{1}-\Delta\right)(\mathbb{Z})_{\leq B} & :=\left\{q \in\left(\mathbb{P}^{1}-\Delta\right)(\mathbb{Z}): H(q) \leq B\right\} . \\
\left(\mathbb{P}^{1}-\Delta\right)_{C}(\mathbb{Z})_{\leq B} & :=\left\{q \in\left(\mathbb{P}^{1}-\Delta\right)_{C}(\mathbb{Z}): H(q) \leq B\right\} . \\
\left(\mathbb{P}^{1}-\Delta+r\right)(\mathbb{Z})_{\leq B} & :=\left\{q \in\left(\mathbb{P}^{1}-\Delta+r\right)(\mathbb{Z}): H(q) \leq B\right\} .
\end{aligned}
$$

Darmon's M-curves

Heuristics for Darmon's M-curves

The projective line

Darmon's M-curves Campana's orbifolds Almost integral points Counting points of

Counting functions

Heuristics
Theorems and

Heuristic:

- In the case $\Delta=\left(1-\frac{1}{m}\right)[\infty]$, the probability that a point satisfies the condition at ∞ is $\sim \frac{B \cdot B^{1 / m}}{B^{2}}=\frac{1}{B^{1-1 / m}}$.

Heuristics for Darmon's M-curves

The projective line

Darmon's M-curves Campana's orbifolds Almost integral points Counting points

Counting functions

Heuristics
Theorems and

Heuristic:

- In the case $\Delta=\left(1-\frac{1}{m}\right)[\infty]$, the probability that a point satisfies the condition at ∞ is $\sim \frac{B \cdot B^{1 / m}}{B^{2}}=\frac{1}{B^{1 /-1 / m}}$.
- If conditions at different points are independent, the count for $\Delta=\sum\left(1-\frac{1}{m_{i}}\right)\left[P_{i}\right]$ should be

$$
\sim B^{2}\left(\frac{1}{B^{1-1 / m_{1}}}\right) \cdots\left(\frac{1}{B^{1-1 / m_{N}}}\right)=B^{\chi} .
$$

Heuristics for Campana's orbifolds and for almost integral points
We use two facts.

Fact (Erdős-Szekeres 1935)

The number of m-powerful integers in $[1, B]$ is $\sim B^{1 / m}$ as $B \rightarrow \infty$.
(In fact, they proved a more precise asymptotic formula.)
Since the number of m-powerful integers up to B is (up to a constant factor) the same as the number of $m^{\text {th }}$ powers up to B, the asymptotic behavior of $\#\left(\mathbb{P}^{1}-\Delta\right)_{C}(\mathbb{Z})_{\leq B}$ should match that of $\#\left(\mathbb{P}^{1}-\Delta\right)(\mathbb{Z})_{\leq B}$.

Fact

For $r \in[0,1]$, the number of integers in $[1, B]$ whose radical is $<B^{r}$ is $B^{r+o(1)}$ as $B \rightarrow \infty$.

This gives an analogous prediction for $\#\left(\mathbb{P}^{1}-\Delta+r\right)(\mathbb{Z})_{\leq B}$.

The projective line minus three fractional points

Darmon's M-curves Campana's orbifolds Almost integral points Counting points of bounded height

Counting functions

Heuristics

Theorems and

Theorems and conjectures

The projective line minus three
fractional points

Bjorn Poonen

Theorems and conjectures

The projective line minus three
fractional points

Bjorn Poonen

	Darmon $\mathbb{P}^{1}-\Delta$	Campana $\left(\mathbb{P}^{1}-\Delta\right)_{C}$	Almost integral $\mathbb{P}^{1}-\Delta+r$	3 kinds of integral points
$\chi>0$	$\sim B^{\chi}$ (Beukers)	B ${ }^{\text {? }}$	Bro(1)?	Campana's orbifolds Almost integral poin Counting points
$\chi=0$	$\begin{gathered} (\log B)^{O(1)} \\ (\text { Mordell-Weil) } \end{gathered}$			$\begin{aligned} & \text { bounded height } \\ & \text { Counting funcions } \\ & \text { Heuritions and } \\ & \text { Thoierefused } \\ & \text { Coinceruenees } \end{aligned}$
$\chi<0$	finite (Siegel, Faltings, Darmon- Granville)	finite? Campana)		

Theorems and conjectures

	Darmon $\mathbb{P}^{1}-\Delta$	Campana $\left(\mathbb{P}^{1}-\Delta\right)_{C}$	Almost integral $\mathbb{P}^{1}-\Delta+r$	3 kinds of integral points
$\chi>0$	$\sim B^{\chi}$ (Beukers)	$\sim B^{\chi}$?	Bro(1)?	Campana's orbifolds Almost integral poin Counting points
$\chi=0$	$\begin{gathered} (\log B)^{O(1)} \\ (\text { Mordell-Weil) } \end{gathered}$	$(\log B)^{O(1)}$?		$\begin{aligned} & \text { buonded heirgt } \\ & \text { Counting functions } \\ & \text { Henificem ind } \\ & \text { Tonjeretures } \end{aligned}$
$\chi<0$	finite (Siegel, Faltings, Darmon- Granville)	finite? (Campana)		

Theorems and conjectures

	Darmon $\mathbb{P}^{1}-\Delta$	Campana $\left(\mathbb{P}^{1}-\Delta\right)_{C}$	Almost integral $\mathbb{P}^{1}-\Delta+r$	3 kinds of integral points
$\chi>0$	$\sim B^{\chi}$ (Beukers)	$\sim B^{\chi}$?	$B^{\chi+o(1)}$?	- Darmon's M-curves Almost integral poin Counting points
$\chi=0$	$\begin{gathered} (\log B)^{O(1)} \\ (\text { Mordell-Weil) } \end{gathered}$	$(\log B)^{O(1)} ?$	$B^{\circ(1)}$?	
$\chi<0$	finite (Siegel, Faltings, Darmon- Granville)	finite? (Campana)	finite?	

Theorems and conjectures

	Darmon $\mathbb{P}^{1}-\Delta$	Campana $\left(\mathbb{P}^{1}-\Delta\right)_{C}$	Almost integral $\mathbb{P}^{1}-\Delta+r$	3 kinds of integral points
$\chi>0$	$\sim B^{\chi}$ (Beukers)	$\sim B^{\chi}$?	$B^{\chi+o(1)}$?	- Darmon's M-curves Almost integral poin Counting points
$\chi=0$	$\begin{gathered} (\log B)^{O(1)} \\ (\text { Mordell-Weil) } \end{gathered}$	$(\log B)^{O(1)}$?	$B^{\circ(1)}$?	
$\chi<0$	finite (Siegel, Faltings, Darmon- Granville)	finite? (Campana)	finite?	

All are true if $N \leq 2$.

Theorems and conjectures

	Darmon $\mathbb{P}^{1}-\Delta$	Campana $\left(\mathbb{P}^{1}-\Delta\right)_{C}$	Almost integral $\mathbb{P}^{1}-\Delta+r$	3 kinds of integral points
$\chi>0$	$\sim B^{\chi}$ (Beukers)	$\sim B^{\chi}$?	$B^{\chi+o(1)}$?	Darmon's M-curves Almost integral poi Counting points
$\chi=0$	$\begin{gathered} (\log B)^{O(1)} \\ (\text { Mordell-Weil) } \end{gathered}$	$(\log B)^{O(1)}$?	$B^{\circ(1)}$?	
$\chi<0$	finite (Siegel, Faltings, Darmon- Granville)	finite? (Campana) $(\Longleftarrow a b c)$	$\begin{gathered} \text { finite? } \\ (\Longleftrightarrow a b c) \end{gathered}$	

All are true if $N \leq 2$.

Theorems and conjectures

	Darmon $\mathbb{P}^{1}-\Delta$	Campana $\left(\mathbb{P}^{1}-\Delta\right)_{C}$	Almost integral $\mathbb{P}^{1}-\Delta+r$	3 kinds of integral points
$\chi>0$	$\sim B^{\chi}$ (Beukers)	$\sim B^{\chi}$?	$B^{\chi+o(1)}$?	- armon's M-curves Almost integral poin
$\chi=0$	$\begin{gathered} (\log B)^{O(1)} \\ (\text { Mordell-Weil) } \end{gathered}$	$\begin{gathered} (\log B)^{O(1)} ? \\ \left(\Longrightarrow{ }^{*}\right) \end{gathered}$	$B^{o(1)}$?	$\begin{aligned} & \text { Counting funcions } \\ & \text { Henticis } \\ & \text { Theoiem snd } \\ & \text { Conjectures } \end{aligned}$
$\chi<0$	finite (Siegel, Faltings, Darmon- Granville)	finite? (Campana) $(\Longleftarrow a b c)$	$\begin{gathered} \text { finite? } \\ (\Longleftrightarrow a b c) \end{gathered}$	

All are true if $N \leq 2$.

* Given an elliptic curve over a number field, the ranks of its twists are uniformly bounded.

Consequences of the Campana column

Example

Consider $\left(\mathbb{P}^{1}-\Delta\right)_{C}$ with $\Delta:=\frac{1}{2}[0]+\frac{1}{2}[1]+\frac{1}{2}[\infty]$. So $\chi=1 / 2$. Then the number of solutions to

$$
\left\{\begin{array}{l}
x+y=z \\
x, y, z \in \mathbb{Z} \cap[1, B] \text { squareful, } \\
\operatorname{gcd}(x, y, z)=1
\end{array}\right.
$$

The projective line minus three fractional points

Bjorn Poonen

kinds of integra

Darmon's M-curves
Campana's orbifolds Almost integral points
is $\sim B^{1 / 2}$?
Is the following related?

Theorem (Blomer 2005)

The number of integers in $[1, B]$ expressible as the sum of two squareful integers is

$$
\frac{B}{(\log B)^{1-2^{-1 / 3}+o(1)}}
$$

Consequences II

Example

Take $\Delta:=[\infty]+\frac{1}{2}[0]+\frac{1}{2}[1]$. So $\chi=0$. Then $\{a \in \mathbb{Z} \cap[1, B]: a, a+1$ are both squareful $\}=(\log B)^{O(1)}$? Is it $O(\log B)$?
Well known: the Pell equation $x^{2}-8 y^{2}=1$ proves $\gtrsim \log B$.
Example
Take $\Delta:=[\infty]+\frac{1}{2}[0]+\frac{1}{2}[1]+\frac{1}{2}[2]$. So $\chi=-1 / 2$. Then

$$
\left\{a \in \mathbb{Z}_{\geq 1}: a, a+1, a+2 \text { are all squareful }\right\}
$$

is finite?
Conjecture (Erdős 1975)
The set in the previous example is empty.

The projective line minus three fractional points

Bjorn Poonen

3 kinds of integra

points

Darmon's M-curves Campana's orbifolds Almost integral points Counting points of bounded height

Counting functions

Heuristics
Theorems and

Consequences III

The projective line minus three fractional points

Bjorn Poonen

3 kinds of integral

points

Darmon's M-curves
Campana's orbifolds Almost integral points

Counting points of bounded height

Counting functions

Heuristics
Theorems and conjectures
Consequences
is finite?
Can linear forms in logarithms prove this? It seems not.

