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Bertini irreducibility theorem
k : algebraically closed field
Pn: projective space over k
P̌n: the dual projective space (H ∈ P̌n means H is a hyperplane)
X ⊂ Pn: irreducible subvariety of dimension ≥ 2

Bertini irreducibility theorem (vague form)

H ∩ X is irreducible for “most” hyperplanes H.

Mgood := {H ∈ P̌n : H ∩ X is irreducible}
Mbad := {H ∈ P̌n : H ∩ X is not irreducible}

Bertini irreducibility theorem (precise form)

Mgood contains a dense open subvariety of P̌n.
Equivalently, dimMbad ≤ n − 1.

How big is Mbad, really?

Example

For a hypersurface X ⊂ Pn, it turns out that dimMbad ≤ 2!
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Benoist’s theorem

X ⊂ Pn: irreducible subvariety of dimension ≥ 2
Mbad := {H ∈ P̌n : H ∩ X is not irreducible}

Theorem (Benoist 2011)

dimMbad ≤ codimX + 1.

The bound codimX + 1 is best possible:

Example (warmup)

curve C ⊂ Pm, not a line dimMbad = m = codimC + 1.
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X ⊂ Pn: irreducible subvariety
Mbad := {H ∈ P̌n : H ∩ X is not irreducible}

Theorem (Benoist 2011)

dimMbad ≤ codimX + 1.

The bound codimX + 1 is best possible:

Example (warmup)

Take inverse images under a linear projection:

π−1C ⊂ Pn

π

��

dimMbad = m = codimπ−1C + 1

curve C ⊂ Pm, not a line dimMbad = m = codimC + 1.



Benoist’s theorem: two proof strategies

X ⊂ Pn: irreducible subvariety
Mbad := {H ∈ P̌n : H ∩ X is not irreducible}

Theorem (Benoist 2011)

dimMbad ≤ codimX + 1.

Benoist’s proof is purely geometric, but tricky:

1. reduce to the case of a hypersurface;

2. reduce further to the case of a cone over a plane curve;

3. degenerate to a union of hyperplanes;

4. use normalization and the EGA IV4 form of the
Ramanujam–Samuel criterion for a divisor to be Cartier.

We will give a new proof based on counting over finite fields,
partly inspired by Tao’s 2012 blog post on the Lang–Weil bound.



Irreducible vs. geometrically irreducible
Let X be a variety over an arbitrary field F .
Call X geometrically irreducible if X ×

F
F is irreducible.

Example

Suppose that 2 is not a square in Fp. Let

X := SpecFp[x , y ]/(y2 − 2x2).

Then X is irreducible, but not geometrically irreducible:

y =
√

2 x

y = −
√

2 x

We have X (Fp) = {(0, 0)}.



Lang–Weil bound

Theorem (Lang–Weil 1954)

Let X be an r -dimensional variety over Fq. Let |X | = |X (Fq)|.
1. General crude upper bound:

|X | = O(qr ).

2. If X is geometrically irreducible, then

|X | = qr + O(qr−1/2).

3. More generally, if a is the number of irreducible components of
X that are geometrically irreducible of dimension r , then

|X | = aqr + O(qr−1/2).



Reduction to the case of a finite field

X ⊂ Pn: geometrically irreducible subvariety over a field F
Mbad := {H ∈ P̌n : H ∩ X is not geometrically irreducible}

Theorem (Benoist 2011)

dimMbad ≤ codimX + 1.

Standard specialization argument for reducing to the case F = Fq:

1. X ⊂ Pn
F is the base change of some X ⊂ Pn

R , for some finitely
generated Z-subalgebra R ⊂ F , such that X → SpecR has
geometrically irreducible fibers all of the same dimension.

2. There is a big bad Mbad ⊂ P̌n
R such that for any R-field k ,

the fiber (Mbad)k is the little Mbad for Xk ⊂ Pn
k .

3. If each little Mbad over a closed point has dimension
≤ codimX + 1, then the same holds for X ⊂ Pn

F .

4. The residue field at each closed point of SpecR is a finite field.



Upper bound on variance for hyperplane sections
X ⊂ Pn: geom. irreducible subvariety over Fq. Let m = dimX .
H ⊂ Pn: random hyperplane over Fq

Z : the random variable |(H ∩ X )(Fq)|

Proposition

The mean µ of Z is ∼ |X |/q ∼ qm−1,

The variance σ2 of Z is O(|X |/q) = O(qm−1).

Very small!

Sketch of proof.

Z =
∑
x∈X

1x∈H , so

µ = EZ =

∑
H

∑
x∈X 1x∈H∑
H 1

=

∑
x∈X

∑
H 1H3x∑

H 1
= · · ·

σ2 = E((Z − µ)2) = E(Z 2)− µ2 = · · · ,

where E(Z 2) can be similarly computed in terms of the easy sums∑
H 1H3x ,y for x , y ∈ X (Fq).
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Lower bound on variance

From previous slide: µ ∼ qm−1, and σ2 = O(qm−1).

On the other hand:

Each H ∈Mbad(Fq) contributes a lot to the variance:∣∣∣|H∩X |−µ∣∣∣ & qm−1.

Let b := dimMbad. If b is large, then there are many bad H:

|Mbad(Fq)| & qb.

Thus

σ2 &
qb(qm−1)2

total number of H
∼ qb+2(m−1)−n.
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Lower bound on variance

From previous slide: µ ∼ qm−1, and σ2 = O(qm−1).

On the other hand, after replacing Fq by a finite extension:

A positive fraction of H ∈Mbad(Fq) contribute a lot to the
variance: ∣∣∣|H∩X |−µ∣∣∣ & qm−1.

Let b := dimMbad. If b is large, then there are many bad H:

|Mbad(Fq)| & qb.

Thus

σ2 &
qb(qm−1)2

total number of H
∼ qb+2(m−1)−n.



End of proof

Combine the lower and upper bounds on the variance:

qb+2(m−1)−n . σ2 . qm−1.

If q is sufficiently large, this implies

b + 2(m − 1)− n ≤ m − 1

b ≤ (n −m) + 1

dimMbad ≤ codimX + 1. �



Jouanolou’s Bertini irreducibility theorem

X : geometrically irreducible variety
φ : X → Pn: an arbitrary morphism (previously was an immersion)
Mgood := {H ∈ P̌n : φ−1H is geometrically irreducible}
Mbad := {H ∈ P̌n : φ−1H is not geometrically irreducible}

Theorem (Jouanolou 1983)

If dimφ(X ) ≥ 2, then dimMbad ≤ n − 1.

Theorem (P.–Slavov 2020)

If the nonempty fibers of φ all have the same dimension, then
dimMbad ≤ codimφ(X ) + 1.

The proof is the same, but using the random variable |φ−1(H)|.

Counterexample (without the fiber dimension hypothesis)

If X → Pn is the blow-up of a point P, then Mbad consists of the
H containing P, so dimMbad = n − 1, but codimφ(X ) + 1 = 1.



Application to monodromy
k : algebraically closed field
φ : X → Y : generically étale morphism of integral k-varieties
k(X )′: the Galois closure of k(X )/k(Y )
Mon(φ): the monodromy group Gal(k(X )′/k(Y ))
(There is also a definition not requiring X to be integral.)

Now suppose in addition that Y ⊂ Pn.
For each H ⊂ Pn, restrict φ to obtain φH : φ−1(H ∩ Y )→ (H ∩ Y ).
The following says that Mon(φH) ' Mon(φ) for “most” H:

Theorem (P.–Slavov 2020)

Let Mgood be the set of H ∈ P̌n such that

1. H ∩ Y is irreducible;

2. the generic point of H ∩ Y has a neighborhood U in Y such
that U is normal and φ−1U → U is finite étale; and

3. the inclusion Mon(φH) ↪→ Mon(φ) is an isomorphism.

Let Mbad := P̌n −Mgood. Then dimMbad ≤ codimY + 1.



Motivic version?

Let us return to our finite field proof of Benoist’s theorem.

Question

Is there a motivic version?

More specifically, can one make the variance argument work when
one replaces finite field point counts with classes in some version of
the Grothendieck ring of varieties?



“This is not the last slide!”
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