
THE WORST CASE IN SHELLSORT
AND RELATED ALGORITHMS

BJORN POONEN

Abstract. We show that sorting a sufficiently long list of length N using Shellsort with m
increments (not necessarily decreasing) requires at least N1+c/

√
m comparisons in the worst

case, for some constant c > 0. For m ≤ (log N/ log log N)2 we obtain an upper bound of the
same form. We also prove that Ω(N(log N/ log log N)2) comparisons are needed regardless
of the number of increments. Our approach is general enough to apply to other sorting
algorithms, including Shaker-sort, for which an even stronger result is proved.

1. Introduction

Shellsort is a general-purpose sorting algorithm that was invented by Shell in 1959 [14].
Empirical results show that it is competitive with the fastest sorting algorithms, especially
when N , the number of elements to be sorted, is not too large. The algorithm is very simple
to describe. If h ≥ 1, to h-sort a list L[1], . . . , L[n] is to apply insertion sort to each of the
sublists L[i], L[i+h], . . . , L[i+2h], etc., where 1 ≤ i ≤ h. A list for which these sublists are in
order is said to be h-ordered. Shellsort sorts a list by performing an h1-sort, an h2-sort, . . . ,
and finally an hm-sort, where h1, h2, . . . , hm are positive integers called the increments and
hm = 1. The choice hm = 1 guarantees that the resulting list is in order, because 1-sorting
a list is the same as sorting it using insertion sort.

As far as complexity is concerned, insertion sort is a series of compare-exchange operations
between pairs of adjacent elements, where a compare-exchange consists of comparing two
elements and exchanging them, if necessary, to put them in order. Thus Shellsort also can
be considered a series of compare-exchanges, between pairs of elements L[i] and L[i+ h] for
various h’s (the increments).

Shaker-sort, proposed by Incerpi and Sedgewick [5], is another general-purpose sorting
algorithm which sorts a list in a number of passes, each having an associated increment h.
To h-shake a list L[1], . . . , L[n] is to perform compare-exchanges on the following pairs of
positions, in the order listed:

(1, 1 + h), (2, 2 + h), . . . , (N − h− 1, N − 1), (N − h,N),

(N − h− 1, N − 1), (N − h− 2, N − 2), . . . , (2, 2 + h), (1, 1 + h).

Note that the distance between the elements of each pair is h. Shaker-sort sorts a list by
performing an h1-shake, an h2-shake, . . . , and an hm-shake, for some sequence h1, h2, . . . , hm.
Instead of assuming hm = 1, which would not guarantee that the result was sorted, we assume
that insertion sort is applied at the end, after the hm-shake. (Alternatively, we could perform
1-shakes repeatedly at the end until the list is sorted.)

Date: October 11, 1992.
For the final version of this article, see J. Algorithms 15, no. 1 (July 1993), 101–124.

1



Often one defines an infinite sequence of integers and takes the integers less than N , in
decreasing order, as the increments. Such increment sequences are said to be uniform. But
in general, the increment sequence need not be decreasing, and it may depend on N .

Choosing the increment sequence wisely is crucial for good performance, both in theory
and in practice, so much research has gone into finding the best sequence. Shell [14] sug-
gested using (bN/2c, bN/4c, bN/8c, . . . , 1) in his algorithm, but when N is a power of 2,
this sequence requires Θ(N2). (All bounds listed here are for the worst case.) Lazarus and
Frank [7], Hibbard [3], and Knuth (Section 5.2.1 in [6]) proposed modifications to Shell’s
sequence, and Papernov and Stasevich [9] showed that Hibbard’s sequence required only
O(N3/2) comparisons. All of these sequences were within a constant of a geometric sequence
with integer ratio, and Pratt [10] showed that Shellsort with any such sequence would require
Ω(N3/2) comparisons. Pratt also gave a sequence with Θ((logN)2) increments that required
only Θ(N(logN)2) comparisons. (See Proposition 4 in this paper.) But this sequence gave
a slow algorithm in practice, because of the large number of increments involved.

For a while it was believed, because of Pratt’s lower bound, that Shellsort with any se-
quence of O(logN) increments would require Ω(N3/2) comparisons. But then Sedgewick [11]
gave an example of such a sequence which required only O(N4/3) comparisons, and Incerpi

and Sedgewick [4] later reduced the upper bound to O(N1+ε/
√

logN), for any ε > 0. Weiss
and Sedgewick [16] made a conjecture about inversions which implied that this bound was
best possible. We prove a version of this conjecture, and hence, using an argument similar
to theirs, we can deduce that this is the best possible bound for O(logN) increments.

Very recently, Cypher [2] proved that all Shellsort sorting networks based on monoton-
ically decreasing increment sequences require Ω(N(logN)2/ log logN) comparators. The
differences between this lower bound and ours are the following:

• Most importantly, his lower bound applies only to Shellsort networks. This means
that the entire sequence of comparisons must be specified before looking at the given
list. By contrast, when Shellsort is used as a general-purpose sorting algorithm, the
results of previous comparisons are used in choosing the comparisons to be done next.
For example, the part of the algorithm that inserts an element into a sorted list moves
the element only as far as it needs to be moved. With a network, one would have
to allow for the possibility that the element would move the entire length of the list,
unless something was already known about the size of the element.
• Our results apply to other algorithms, such as Shaker-sort.
• We do not require that the increments be decreasing.
• We do not require that the h-sort be done by insertion sort. It may be done by any

series of compare-exchanges on pairs separated by h.
• We have a bound as a function of the number of increments, in addition to a general

bound.
• Cypher’s bound is slightly stronger than ours: Ω(N(logN)2/ log logN) vs. Ω(N(logN/ log logN)2).

We now outline the rest of our paper. First, in Section 2, we discuss the generalizations
of Shellsort to be considered. In Section 3, we describe the Frobenius problem, and prove a
result showing its connection with Shellsort. This result is used in Section 4 to obtain upper
bounds on the worst case of Shellsort, as a function of the number of increments used.

The rest of the paper is devoted to proving the corresponding lower bound theorems.
Section 5 defines inversions, which are used to measure how unordered a list is. Sections 6

2



and 7 discuss the Frobenius problem in greater depth. These two sections contain the hardest
part of the argument. The results of those two sections are used in Section 8 to show that
that a certain list, the Frobenius pattern, has many inversions even though it is h-ordered for
many h’s. Section 9 uses the Frobenius pattern to build other such lists. Because Sections
6, 7, 8, and 9 involve so much detail, it may be best for the reader to skip them on a first
reading, and to look at only the important Lemma 18, which is the only result from those
sections that is used later.

Finally, in Section 10 we prove three lower bound theorems. Theorem 3 says that if
not enough (only m) increments are used, many (N1+c2/

√
m for some constant c2) compare-

exchanges will have to be done in the worst case. This is proved by dividing [
√
N,N/2] into

intervals and showing that if some interval contains few increments, then Lemma 18 can be
applied to give a list with many inversions so that many compare-exchanges are needed to
sort the list. Theorem 4 gives a lower bound on the worst case which is independent of the
number of increments. It follows easily from Theorem 3. The argument is as follows: the
number of comparisons per increment is always at least Ω(N). So if the number of increments
m is large, many comparisons are needed. On the other hand, if m is small,, again many
comparisons are needed by Theorem 3. The last result of the section, Theorem 5, is a
strengthening of the lower bound for Shaker-sort for certain increment sequences. This was
proved by Weiss and Sedgewick [15], assuming their inversion conjecture.

In proving our theorems, we do not attempt to obtain the best possible constants. Also,
wherever convenient, we assume N is sufficiently large. (At the very end of the proof of

Theorem 3, we need N ≥ 2236
, for example!) We could certainly make our theorems work

for smaller N and improve our constants by making more precise estimates in the course
of the proof, but it is probably not worth the effort, because it seems nearly impossible to
improve the result so much that it gives a meaningful general lower bound for any N < 1012.
Nevertheless, we feel that the existence of an Ω(N(logN/ log logN)2) bound suggests that
even in practical situations, Shellsort may not be the best algorithm to use when N is large,
say N > 107.

We end our paper by mentioning a few unanswered questions.

2. Shellsort-type Algorithms

We now describe the general class of algorithms we will consider. A sorting algorithm is
a Shellsort-type algorithm if it satisfies the following:

(1) The algorithm sorts a list L[1], . . . , L[N ] in a number of passes, each with an associ-
ated increment h. During a pass with increment h, the algorithm performs compare-
exchanges (one at a time) on pairs L[i], L[i+ h] for 1 ≤ i ≤ N − h.

(2) At least Ω(N) comparisons are done during each pass with increment h < N/2.
(3) If the list is k-ordered at the beginning of a pass, the list is k-ordered at the end of

the pass also.

The sequence of increments need not be decreasing, and it need not end in 1, so long as the
algorithm actually sorts. It may contain duplicates. The sequence also may depend on N ,
but it must be fixed before looking at the list to be sorted.

Because of condition 3, it is not obvious that even Shellsort is a Shellsort-type algorithm.
(That Shellsort satisfies 3 is Theorem K in Section 5.2.1 of [6].) Even more surprising is

3



that Shaker-sort satisfies 3. To prove this, we will use the following easy result, which is
Exercise 21 in Section 5.3.4 of [6].

Proposition 1. If L,L′ are lists of the same length N , and L[i] ≤ L′[i] for all i, then the
inequalities still hold after the same series of compare-exchanges is performed on both lists.

Proof. It suffices to consider a single compare-exchange, say on (j, k), with j < k. Let M
and M ′ be the lists after the compare-exchange. For i 6= j, k, M [i] = L[i] ≤ L′[i] = M ′[i].
Also

M [j] = min{L[j], L[k]} ≤ min{L′[j], L′[k]} = M ′[j]

M [k] = max{L[j], L[k]} ≤ max{L′[j], L′[k]} = M ′[k]

so the result follows. �

Proposition 2. Shellsort and Shaker-sort are Shellsort-type algorithms.

Proof. It is clear that condition 1 is satisfied, and that 2 is satisfied by Shaker-sort. Condition
2 is also true for Shellsort, because N − h comparisons are necessary in an h-sort, even if
only to check that the list is h-ordered. (This is Ω(N) when h < N/2.) So it remains to
show that 3 holds.

Let L denote the k-ordered list at the beginning of a pass with increment h. Consider the
following 2 by (N + k) array:

−∞ · · · −∞ L[1] · · · L[N − k] L[N − k + 1] · · · L[N ]
L[1] · · · L[k] L[k + 1] · · · L[N ] +∞ · · · +∞

Since L is k-ordered, each entry in the first row is less than or equal to the entry below it.
Consider performing an h-sort on both rows or an h-shake on both rows. This has the same
effect as performing it on the two copies of L within the array, because the −∞ and +∞
terms stay where they are. But this can be done by a series of compare-exchanges, so by
Proposition 1, in the resulting array each entry of the first row is less than or equal to the
entry below it. So the resulting list is k-ordered. �

Proposition 2 holds for Shellsort even if the method used to do the h-sort is not insertion
sort, as long as conditions 1 and 2 still hold. This is because the result of an h-sort done by
compare-exchanges at distance h is independent of the method. Shellsort-type algorithms
have the following property, which will be used in proving our lower bound theorems.

Lemma 1. If a Shellsort-type algorithm is applied to a list which is h-ordered for all incre-
ments h ≥ β, where β is some fixed cutoff, then the passes with increments h ≥ β do nothing
to the list.

Proof. By condition 3, the list will be h-ordered at the beginning of every pass, for each
increment h ≥ β. So the compare-exchanges at distance h done during a pass with increment
h ≥ β can’t do anything. �

If we dropped condition 3 from the definition of Shellsort-type algorithms, we could still
prove Lemma 1 under the assumption that the increments were decreasing, because then at
the beginning of a pass with increment h ≥ β, the list would be in its initial state, and would
hence be h-ordered already.

4



3. The Frobenius Problem

Suppose a1, . . . , ar is a sequence of positive integers with gcd(a1, . . . , ar) = 1. Then every
integer k can be expressed in the form n1a1 + · · ·+ nrar for some integers n1, . . . nr. We say
k is expressible if the ni’s can be chosen nonnegative, and inexpressible otherwise. It is not
hard to show that if k is sufficiently positive, k is expressible. So a natural question to ask
is, what is the largest inexpressible integer g = g(a1, . . . , ar)? For example, suppose r = 2,
a1 = 3, a2 = 5. Then the expressible integers are 0, 3, 5, 6, 8, 9, 10, 11, 12, . . ., so g = 7. (Note
that if a1 consecutive integers are expressible, then all larger integers will be expressible.)

The problem of determining g is known as the Frobenius problem, because according to
Brauer [1], Frobenius mentioned it in his lectures. Although the problem dates back to the
nineteenth century [13], no general formula for g in terms of a1, . . . , ar has been found. The
problem has been solved in some special cases, however. (See [12] for some of these.) For
example, the following result is well-known. For a proof, see Exercise 21 in Section 5.2.1
of [6] or Example 1 on page 4 of [12].

Proposition 3. If gcd(a1, a2) = 1, g(a1, a2) = a1a2 − a1 − a2.

Our next result shows how knowledge of g can be useful in obtaining upper bounds on the
time required to do an h-sort.

Lemma 2. Let a1, . . . , ar be positive integers with greatest common divisor 1. The number
of steps required to h-sort a list L[1], . . . , L[N ] which is already (a1h)-ordered, . . . , (arh)-
ordered, is O(Ng), where g = g(a1, . . . , ar).

Proof. By definition of g, every multiple of h greater than gh is a sum n1(a1h)+ · · ·+nr(arh)
for some ni ≥ 0. Since L is (a1h)-ordered, . . . , (arh)-ordered, it follows from transitivity
that L[j − bh] ≤ L[j] for all b > g. So during the h-sort, inserting each element L[j] into
its proper position in its sublist will involve moving it at most g steps of h. There are N
elements to put into place, so the total number of steps required is at most Ng. �

4. Upper Bounds on the Worst Case

We now prove the best known upper bound for Shellsort, due to Pratt [10]. All logarithms
in this paper are to the base 2 unless explicitly written otherwise.

Proposition 4. If the numbers of the form 2a3b less than N are used in decreasing or-
der as increments in Shellsort, then the worst case and average case running times are
Θ(N(logN)2).

Proof. By the time the list is to be h-sorted, the list will have already been (2h)-sorted and
(3h)-sorted, and it will still be (2h)-ordered and (3h)-ordered by condition 3 in the definition
of Shellsort-type algorithms. So by Lemma 2, the h-sort requires only O(Ng(2, 3)) = O(N)
steps. There are dlog2Ne powers of 2 less than N and dlog3Ne powers of 3 less than N ,
so there are at most dlog2Nedlog3Ne = O((logN)2) increments. Thus the total number of
steps is always O(N(logN)2).

By condition 2 in the definition of Shellsort-type algorithms, Ω(N) comparisons are re-
quired for each increment h < N/2. And there are Ω((logN)2) increments less than N/2,

since there are dlog2

√
N/2e powers of 2 less than

√
N/2, which may be paired with the

dlog3

√
N/2e powers of 3 less than

√
N/2. So the total number of steps is Ω(N(logN)2)

also. �
5



Even though Pratt’s increment sequence gives the best known theoretical bound, it does
not give the fastest algorithm in practice. (See [4] for some empirical results.) This may be
because the other sequences actually have an average case better than Θ(N(logN)2). Or
it may be that N is not sufficiently large yet. But certainly one reason is that too many
increments are being used. (There are Θ((logN)2) of them.) In order to get reasonable
running times in practice, it seems necessary to limit the number of increments to O(logN).
So what time bounds can we get under this restriction? We shall see that the asymptotic
worst case running time worsens as we reduce the number of increments we are allowed to
use.

For now, we give upper bounds where the number of increments is restricted. A result
very similar to the following (the special case m = Θ(logN)) was proved by Chazelle. (See
Theorem 3 (non-uniform case) in [4].)

Theorem 1. For all m, there exists a sequence of at most m increments for which Shellsort
requires O(mN1+O(1/

√
m)) steps in the worst case.

Proof. The proof is a generalization of the proof of Pratt’s result. If m ≥ (logN)2 we are
done, since we can take the sequence of Proposition 4. Otherwise, pick the smallest integer
α ≥ 3 such that blogα−1NcblogαNc ≤ m. There are at most m numbers of the form
(α − 1)aαb less than N , so we may use them as increments, in decreasing order. As in the
proof of Proposition 4, each h-sort will require O(Ng(α−1, α)) steps. By Proposition 3, this
is O(Nα2). Since there are at most m increments, the total running time will be O(mNα2).
Now m < (logN)2, so by definition of α,(

logN

logα

)2

= Θ(m)

α = NΘ(1/
√
m)

O(mNα2) = O(mN1+O(1/
√
m))

as desired. �

Theorem 2. There is a constant c1 such that for all sufficiently large N and all m ≤
(logN/ log logN)2, there exists a sequence of at most m increments for which Shellsort re-
quires at most N1+c1/

√
m steps.

Proof. By Theorem 1, there are constants c, c′ such that we can find a sequence of at most
m increments for which Shellsort requires at most cmN1+c′/

√
m steps. But for sufficiently

large N ,

logN1/
√
m =

logN√
m
≥ log logN ≥ log c

and

logN2/
√
m ≥ 2 log logN ≥ logm

so

N1+(3+c′)/
√
m ≥ cmN1+c′/

√
m

and we may take c1 = 3 + c′. �
6



In contrast with Proposition 4, the sequences produced by Theorems 1 and 2 are non-
uniform. (The sequences depend on α which depends on N .) But it should be possible to
obtain the same upper bounds for uniform sequences by generalizing Theorem 3 in [4], by
choosing the sequence of primes a1, a2, a3, . . . (of the proof there) with an appropriate rate
of growth (not necessarily exponential).

5. Inversions

An inversion in a list L[1], . . . , L[N ] is an ordered pair (i, j) where i < j and L[i] > L[j].
The number of inversions in a list is a measure of how much work must be done to sort it.
For example, an already sorted list has no inversions, a list of length N in reverse order (such
as N,N − 1, . . . , 1) has N(N − 1)/2 inversions, and a random list of length N is expected
to have N(N − 1)/4 inversions, since each of the N(N − 1)/2 pairs (i, j) with i < j is an
inversion with probability 1/2.

Counting inversions is especially useful when analyzing algorithms which sort by exchanges
because of the following proposition:

Proposition 5. If i < j, exchanging elements L[i] and L[j] in a list changes the number of
inversions by less than 2(j − i).

Proof. We need only consider the pairs which involve either i or j. If k < i, then (k, i) is
an inversion in the new list iff (k, j) was an inversion in the original list, and (k, j) is an
inversion in the new list iff (k, i) was an inversion in the original list. So there is no change
in the number of inversions involving k where k < i. Similarly we need not consider the
pairs involving k where k > j. The only pairs that remain are (i, k) and (k, j) for i < k < j,
and (i, j) itself. But there are only 2(j − i)− 1 of these. �

We also need a result about inversions of a sublist. In proving this we will use the following
inequality:

Lemma 3. If k ≥ 2 and 0 ≤ b1, . . . , bk ≤ t, then there exists s, 1 ≤ s ≤ k − 1, such that
bs(t− bs+1) ≥ b1(t− bk)/4.

Proof. Without loss of generality we may replace b1 with t. This can only shrink the set of
s which satisfy the inequality. Similarly we may assume bk = 0. Choose the largest s such
that bs ≥ t/2, so 1 ≤ s ≤ k − 1. Then bs+1 < t/2, so bs(t− bs+1) ≥ t2/4 = b1(t− bk)/4. �

The following result says (roughly) that in a list of N zeros and ones where a fraction p
of the pairs are inversions, one can find a sublist of given length n ≤ N where at least a
fraction p/256 of the pairs are inversions.

Proposition 6. If 2 ≤ n ≤ N and L[1], . . . , L[N ] is a list of zeros and ones with I inversions,

then some sublist L[k], . . . , L[k + n− 1] of length n has at least n2I
256N2 inversions.

Proof. Let t = bn/2c ≥ 1 and q = dN/te ≥ 2. Then t ≥ n/4, and q ≤ 2N/t ≤ 8N/n. Make
a list of length N ′ = qt with I inversions by appending N ′−N ones to the end of L. Divide
this list into q blocks Bi of length t. Let bi be the number of ones in Bi, and let ni be the
number of inversions within Bi. Then

I =
∑
i<j

bi(t− bj) +

q∑
i=1

ni,

7



since the first sum counts the number of inversions involving a pair of elements from different
blocks. If ni ≥ I/2q for some i, then any sublist of length n containing the part of Bi

belonging to the original list L will have at least

I

2q
≥ I

2

( n

8N

)
≥ n2I

256N2

inversions. Otherwise ∑
i<j

bi(t− bj) = I −
q∑
i=1

ni ≥ I − q
(
I

2q

)
=
I

2
,

so for some i < j,

bi(t− bj) ≥
I/2

q(q − 1)/2
≥ I

q2
≥ n2I

64N2
.

By the previous lemma applied to bi, bi+1, . . . , bj, we get bs(t− bs+1) ≥ n2I
256N2 for some s. So

any sublist of length n containing the part of Bs ∪Bs+1 belonging to the original list L will

have at least n2I
256N2 inversions. �

6. A Geometric Interpretation of the Frobenius Problem

Throughout the next three sections, a1, . . . , ar will be a fixed sequence of integers with
2 ≤ a1 ≤ · · · ≤ ar and gcd(a1, . . . , ar) = 1. (So r ≥ 2.) Define a = a1 + · · · + ar. We
let g = g(a1, . . . , ar) as in Section 3. We will also be interested in a related function ψ(x),
defined as the number of (nonnegative) expressible integers less than or equal to x. In our
example r = 2, a1 = 3, and a2 = 5 from Section 3, we have ψ(6) = 4, for instance.

To get information about ψ(x) and g, we will express ψ(x) as a volume of a certain
geometrical figure, and approximate the figure. First we need a few definitions. Label each
point (x1, . . . , xr) ∈ Rr with the integer a1bx1c + · · · + arbxrc. Let L be the set of lattice
points with label zero. So L is a subgroup of Zr isomorphic (as an abstract group) to Zr−1.
For x ≥ 0, define regions

P = { (x1, . . . , xr) ∈ Rr | xi ≥ 0 for all i }

S = L+ P def
= { v + w | v ∈ L, w ∈ P }

Q(x) = { (x1, . . . , xr) ∈ Rr | 0 ≤ a1x1 + · · · arxr ≤ x }
S(x) = { v ∈ S with label at most x }
T (x) = S ∩ Q(x) = { (x1, . . . , xr) ∈ S | a1x1 + · · · arxr ≤ x }

Lemma 4. The region S is the set of points with expressible label.

Proof. If w ∈ P the label of w is obviously expressible. But for any v ∈ L, w and v+w have
the same label. Thus every point in S has expressible label. Conversely, if w = (w1, . . . , wr)
has an expressible label, equal to a1n1 + · · ·+ arnr, where ni ∈ Z, ni ≥ 0, then w ∈ (v+P),
where v = (bw1c − n1, . . . , bwrc − nr) ∈ L. �

We think of T (x) as an approximation to S(x), because of the following lemma. Recall
that a = a1 + · · · + ar. Think of a as an error term. We will later impose conditions that
make a small compared to other relevant quantities.

8



Lemma 5. For all x ≥ 0, T (x) ⊆ S(x) ⊆ T (x+ a).

Proof. The first inclusion follows, because if a1x1 + · · · + arxr ≤ x, then a1bx1c + · · · +
arbxrc ≤ x. The second inclusion follows, because if a1bx1c + · · · + arbxrc ≤ x, then
a1x1 + · · ·+ arxr ≤ x+ a. �

Now for any region U invariant under translation by elements of L (such as S, Q(x),
S(x), or T (x)), we define the volume of U per point of L as the r-dimensional volume of any
measurable region U0 such that U is the disjoint union of the translates v+U0 where v ∈ L.
(This is independent of the choice of U0.)

Lemma 6. The volume of Q(x) per point of L is x.

Proof. If {e1, . . . , er−1} is a basis for L (as a Z-module), and er is any lattice point in Zr with
label 1, then {e1, . . . , er−1, er} is a basis for Zr, because for each v ∈ Zr there is a unique
integer k such that v − ker ∈ L, namely the label of v. So the change of coordinates to
{e1, . . . , er} has determinant ±1, and hence preserves volumes. Under this transformation,
L becomes { (x1, . . . , xr−1, 0)} ∈ Zr }, and Q(x) becomes { (x1, . . . , xr) ∈ Rr | 0 ≤ xr ≤ x },
so the result is now clear. �

Lemma 7. The volume of S(x) per point of L is ψ(x).

Proof. For each expressible integer k ≤ x, pick a cube [n1, n1 + 1)× · · · × [nr, nr + 1) where
(n1, . . . , nr) is a lattice point with label k. Let U0 be their union. Then S(x) is the disjoint
union of (v+U0) for v ∈ L (because of Lemma 4), and the volume of U0 is clearly ψ(x). �

To approximate ψ(x), we define Ψ(x) as the volume of T (x) per point of L. To check this
is well-defined, we must exhibit a measurable region U0 such that T (x) is the disjoint union
of the translates of U0. First, we can make L into an ordered group by identifying it with a
subgroup of the additive group of R isomorphic to Zr−1. Then for v ∈ L, we can define

Pv = (v + P) \
⋃
w∈L
w<v

(w + P).

Each z ∈ S is in finitely many w + P for w ∈ L, so S is the disjoint union of the Pv. Also
Pv = v + P0 for each v ∈ L. Thus T (x) is the disjoint union of the translates of P0 ∩Q(x),
so Ψ(x) is the volume of P0 ∩Q(x).

The advantage of working with Ψ(x) instead of ψ(x) is that the region T (x) is much
simpler than S(x). We shall see that whereas ψ(x) is a step function (stepping up 1 at each
expressible integer), Ψ(x) is continuous and even differentiable.

We also want to approximate g. By Lemma 4, g is the supremum of the labels of points
in Rr \ S. So we define G as the supremum of a1x1 + · · ·+ arxr for (x1, . . . , xr) ∈ Rr \ S.

Lemma 8. G = g + a.

Proof. By Lemma 4, Rr \ S is the union of the cubes [n1, n1 + 1)× · · · × [nr, nr + 1) where
(n1, . . . , nr) ranges over lattice points with inexpressible label. So we maximize a1x1+· · · arxr
in Rr \S by picking a lattice point (n1, . . . , nr) with maximal inexpressible label and looking
at the value a1x1 + · · · + arxr at (n1 + ε, . . . , nr + ε) as ε approaches 1. Thus we get
G = g + a. �

9



7. Properties of Ψ(x) and G

We will derive a large number of results about Ψ(x) and G, and use these to get information
about ψ(x) and g. But first we need a lemma.

Lemma 9. If r ≥ 2, (1− 1/r)r ≥ 1/4.

Proof. For r ≥ 2 we can apply the arithmetic-geometric mean inequality to get

1− 1/(r + 1) =
1 +

r terms︷ ︸︸ ︷
(1− 1/r) + · · ·+ (1− 1/r)

r + 1
≥

r+1

√
1 · (1− 1/r) · · · (1− 1/r)︸ ︷︷ ︸

r terms

.

So (1− 1/(r + 1))r+1 ≥ (1− 1/r)r for all r ≥ 2. Thus

(1− 1/r)r ≥ (1− 1/(r − 1))r−1 ≥ · · · ≥ (1− 1/2)2 = 1/4.

�

In the following proposition, the first six properties are proved using geometrical argu-
ments. The rest are simply corollaries of these six.

Proposition 7.

(1) Ψ(x) is increasing for x ≥ 0
(2) Ψ(x) ≤ xr

r!a1a2···ar
with equality for sufficiently small x ≥ 0

(3) Ψ(G) ≤ G/2
(4) If x ≥ y ≥ 0, then Ψ(x)−Ψ(y) ≤ x− y, and equality holds if x ≥ y ≥ G
(5) Ψ is differentiable
(6) Ψ′(αx) ≥ αr−1Ψ′(x) for x ≥ 0, 0 ≤ α ≤ 1
(7) |Ψ(x)−Ψ(y)| ≥ |x− y| for all x, y ≥ 0.
(8) 0 ≤ Ψ′(x) ≤ 1 for all x ≥ 0
(9) Ψ′(x) = 1 for x ≥ G

(10) 0 ≤ Ψ(x) ≤ x for all x ≥ 0
(11) x−Ψ(x) is increasing for x ≥ 0
(12) Ψ(x) ≥ xΨ′(x)/r
(13) Ψ(x)/xr is decreasing for x > 0
(14) Ψ(αx) ≥ αrΨ(x) for x ≥ 0, 0 ≤ α ≤ 1
(15) Ψ(G) ≥ G/r

(16) G ≥ a
1+1/r
1

(17) Ψ(G−Ψ(G)) ≥ G/8r

Proof. If x ≥ y ≥ 0, then T (x) ⊇ T (y), so Ψ(x) ≥ Ψ(y). So (1) holds. For all x ≥ 0,
P0 ∩ Q(x) is contained in the r-dimensional simplex P ∩ Q(x), and they are equal for
sufficiently small x, by definition of P0. The lengths of the r edges of this simplex meeting
orthogonally at 0 are x/a1, . . . , x/ar, so the volume is (1/r!)(x/a1) · · · (x/ar). Thus (2) holds.

Statement (3) is analogous to the result that ψ(g) ≤ (g + 1)/2 (due to Nijenhuis and
Wilf [8]), which is proved by noting that if k is expressible, g− k cannot be expressible. The
proof is analogous as well, although it is harder to state. By definition of G, we can pick
v = (v1, . . . , vr) ∈ Rr \ int(S) with a1v1 + · · ·+ arvr = G. The interior int(S) of S is closed
under addition, since int(S) = L + int(P), where L and int(P) are closed under addition.

10



If the union int(T (G)) ∪ (v − int(T (G))) inside Q(G) were not disjoint, then v would be
a sum of two vectors in int(S), which contradicts v 6∈ int(S). Thus this union is disjoint,
and by taking the volume per point of L, we deduce from the definition of Ψ(G) and from
Lemma 6 that 2Ψ(G) ≤ G. (Note that as far as volumes are concerned, it does not matter
that we have int(T (G)) instead of T (G).) Thus Ψ(G) ≤ G/2.

If x ≥ y ≥ 0, then T (x) \ T (y) ⊆ Q(x) \ Q(y), by their definitions, and equality holds for
x ≥ y ≥ G, by definition of G. By taking the volume per point of both sides and applying
Lemma 6, we get (4).

It is clear from the geometry that Ψ is differentiable and that Ψ′(x) is proportional to the
(r − 1)-dimensional volume per point of L of the face of T (x) contained in the hyperplane
a1x1 + . . .+arxr = x. (This is the part of T (x) that grows with x.) Since T (x) is the disjoint
union of the translates of P0 ∩ Q(x), this can also be expressed as the (r − 1)-dimensional
volume of the face F(x) of P0 ∩ Q(x) contained in the hyperplane a1x1 + . . . + arxr = x.
If 0 ≤ α ≤ 1, and v ∈ P0 ∩ Q(x), then αv ∈ P0 ∩ Q(αx), so αF(x) ⊆ F(αx). Taking
(r − 1)-dimensional volumes, we get αr−1Ψ′(x) ≤ Ψ′(αx).

Now (7), (8), and (9) follow from (1), (4), and (5). By (2), Ψ(0) = 0, so (10) and (11)
follow from (8). Integrating (6) with respect to α from 0 to 1 yields (1/x)(Ψ(x) − Ψ(0)) ≥
(1/r)Ψ′(x), so (12) holds. Since

d

dx

(
Ψ(x)

xr

)
=

Ψ′(x)

xr
− rΨ(x)

xr+1
= − r

xr+1

(
Ψ(x)− xΨ′(x)

r

)
,

(13) follows from (12). Then (14) follows from (13). Set x = G in (9) and (12) to deduce
(15). By (15) and (2),

G

r
≤ Ψ(G) ≤ Gr

r!a1a2 · · · ar
≤ Gr

rar1
,

so G ≥ a
1+1/(r−1)
1 . This implies (16).

By (3), G − Ψ(G) ≥ G/2. So if Ψ(G − Ψ(G)) ≥ (G − Ψ(G))/r, (17) follows. Otherwise,
by (15), the continuous function Φ(x)− x/r changes sign in [G−Ψ(G), G], so Ψ(H) = H/r
for some H ∈ [G−Ψ(G), G]. Then

G−Ψ(G) ≥ H −Ψ(H) (by (11))

Ψ(G−Ψ(G)) ≥ Ψ(H −Ψ(H)) (by (1))

= Ψ((1− 1/r)H)

≥ (1− 1/r)rΨ(H) (by (14))

= (1− 1/r)rH/r

≥ H/4r,

by Lemma 9. But H ≥ G−Ψ(G) ≥ G/2, so Ψ(G−Ψ(G)) ≥ G/8r. �

Our goal is to produce a result similar to (17) for ψ(x) and g.

Lemma 10. |ψ(x)−Ψ(x)| ≤ a.

Proof. Taking volumes per point of L in Lemma 5 gives Ψ(x) ≤ ψ(x) ≤ Ψ(x + a). But
Ψ(x+ a) ≤ Ψ(x) + a, by (4) in Proposition 7, so the result follows. �

Lemma 11. ψ(g − ψ(g)) ≥ G/8r − 4a.
11



Proof. First we will apply Lemma 10, (7) from Proposition 7, and Lemma 8 repeatedly to
show ψ(g − ψ(g)) is close to Ψ(G − Ψ(G)). From |ψ(g) − Ψ(g)| ≤ a and |Ψ(g) − Ψ(G)| ≤
|g−G| = a, we get |ψ(g)−Ψ(G)| ≤ 2a. Similarly from |ψ(g−ψ(g))−Ψ(g−ψ(g))| ≤ a and

|Ψ(g − ψ(g))−Ψ(G−Ψ(G))| ≤ |(g − ψ(g))− (G−Ψ(G)|
≤ |g −G|+ |ψ(G)−Ψ(G)|
≤ a+ 2a

= 3a,

we get |ψ(g − ψ(g))−Ψ(G−Ψ(G))| ≤ 4a. Thus

ψ(g − ψ(g)) ≥ Ψ(G−Ψ(G))− 4a ≥ G/8r − 4a,

by (17) in Proposition 7. �

8. Inversions in the Frobenius Pattern

The Frobenius pattern is the list L[0], . . . , L[g], where L[i] is 1 if i is expressible, and 0
otherwise. In our example r = 2, a1 = 3, and a2 = 5 from Section 3, the Frobenius pattern
is

i 0 1 2 3 4 5 6 7
L[i] 1 0 0 1 0 1 1 0

Lemma 12. The Frobenius pattern is a1-ordered, . . . , ar-ordered.

Proof. Suppose 0 ≤ k < k+ai ≤ g. If L[k] = 1, then k is expressible, so k+ai is expressible,
and L[k + ai] = 1. So L[k] ≤ L[k + ai] in any case. �

Lemma 13. The Frobenius pattern has at least (ψ(g − ψ(g)))2 inversions.

Proof. The Frobenius pattern has ψ(g) ones and g + 1− ψ(g) zeros. There are ψ(g − ψ(g))
ones in the first g + 1 − ψ(g) positions (where the zeros belong), so there must also be
ψ(g − ψ(g)) zeros in the last ψ(g) positions (where the ones belong). Each of these ones
occurs before each of these zeros, so we get (ψ(g − ψ(g)))2 inversions. �

The next lemma says roughly that the fraction of pairs in the Frobenius pattern which
are inversions is at least Ω(r−2). To prove it, we need a few hypotheses to guarantee that a
will be small compared to G/r.

Lemma 14. If ar ≤ 2a1 and a1 ≥ r9r, then the Frobenius pattern has length N ≥ 1
2
a

1+1/r
1

and has at least N2/256r2 inversions.

Proof. First,

G

64r
≥ a

1+1/r
1

64r
(by (16) in Proposition 7)

≥ r9a1

64r
≥ 2ra1 (since r ≥ 2)

=

r terms︷ ︸︸ ︷
2a1 + · · ·+ 2a1

≥ a1 + · · · ar,
12



so a ≤ G/64r. Thus

N = (G− a) + 1 (by Lemma 8)

≥ G/2

≥ 1

2
a

1+1/r
1

by (16) in Proposition 7. Also, by Lemma 11,

ψ(g − ψ(g)) ≥ G/8r − 4a ≥ G/8r − 4(G/64r) = G/16r ≥ N/16r,

since G ≥ G−a+1 = N . By Lemma 13, the Frobenius pattern contains at least (N/16r)2 =
N2/256r2 inversions. �

9. Making Lists with Lots of Inversions

In this section, we show how to use Frobenius patterns to build other lists which are h-
ordered for various h’s but which still have many inversions. Our first lemma is similar in
spirit to Exercise 16 in Section 5.2.1 of [6].

Lemma 15. If N, h ≥ 2, there exists an h-ordered list of N zeros and ones having at least
N2/256 inversions.

Proof. If N < h then the list of length N in reverse order is h-ordered and has N(N−1)/2 ≥
N2/4 inversions. Otherwise let q = bN/hc, so q ≥ N/2h. For 0 ≤ i ≤ h− 1, let

L[i] =

{
1 if (i mod h) < h/2,

0 otherwise.

For 1 ≤ j ≤ k ≤ q, we get dh/2ebh/2c inversions by pairing the dh/2e ones in the jth

block of h elements with the bh/2c zeros in the kth block of h elements, so there are at least
1
2
q(q + 1)dh/2ebh/2c inversions in L. But 1

2
q(q + 1) ≥ q2/2 ≥ N2/8h2 and dh/2ebh/2c ≥

(h/2)(h/4), so this is at least N2/256 inversions. �

Lemma 16. If a1, . . . , ar are arbitrary integers satisfying 2 ≤ a1 ≤ · · · ≤ ar and a1 ≥ r9r,

then there exists N ≥ 1
2
a

1+1/r
1 and a list of N zeros and ones which is a1-ordered,. . . ,ar-

ordered, and which has at least N2/256r2 inversions.

Proof. We can assume ar < 2a1, because otherwise we can replace each ai with bi = a1 +
(ai mod a1) (and then order the bi’s). A list which is bi-ordered for all i will be ai-ordered
for all i, since a1 = b1 and each other ai is bi plus some nonnegative multiple of a1.

Let h = gcd(a1, . . . , ar). If h = 1, the result follows from Lemma 14. If h ≥ 2, then for
any N ≥ 2 there is an h-ordered list with at least N2/256 inversions, by Lemma 15. This
list is a1-ordered,. . . ,ar-ordered, so we are done. �

Lemma 17. If 2 ≤ a1 ≤ · · · ≤ ar, a1 ≥ r9r, and 2 ≤ l ≤ 1
2
a

1+1/r
1 , there exists a list of l zeros

and ones which is a1-ordered,. . . ,ar-ordered, and which has at least 2−16l2/r2 inversions.

Proof. By the previous lemma, for some N ≥ l there is a list of N zeros and ones which is
a1-ordered,. . . ,ar-ordered, and which has at least N2/256r2 inversions. By Proposition 6, we
can take a sublist of length l having at least (l2/256N2)(N2/256r2) = 2−16l2/r2 inversions,
and this sublist is also a1-ordered,. . . ,ar-ordered. �

13



Everything so far has been building up to the following lemma, which is the only result
from the past four sections which we use later.

Lemma 18. If 2 ≤ a1 ≤ · · · ≤ ar, a1 ≥ r9r, 2 ≤ l ≤ 1
2
a

1+1/r
1 , and N ≥ l, then there exists

a list of length N which is a1-ordered,. . . ,ar-ordered, and h-ordered for all h ≥ l, and which
has at least 2−17Nl/r2 inversions.

Proof. Let L[0], L[1], . . . , L[l−1] be the list of l zeros and ones given by the previous lemma.
For 0 ≤ i ≤ N − 1, define L′[i] = 10bi/lc + L[i mod l]. Then L′ contains bN/lc ≥ N/2l
copies of L (with entries displaced by various multiples of 10), so L′ contains at least
(N/2l)(2−16l2/r2) = 2−17Nl/r2 inversions. Also L′ is clearly a1-ordered,. . . ,ar-ordered, and
h-ordered for all h ≥ l. �

10. Lower Bounds on the Worst Case

We are now ready to prove a lower bound corresponding to the upper bound of Theorem 2.
The situation is as follows: we are sorting a list of length N using a Shellsort-type algorithm.
Let c2 = 1/432, and let m be the number of increments less than N/2.

Theorem 3. If N is sufficiently large, there is a list of length N on which the algorithm
must perform at least N1+c2/

√
m compare-exchange operations.

Before proving the theorem, let us remark that if we defined m as the total number of
increments, we would be proving a weaker result. So the theorem would still hold. But we
will need the stronger version when we prove our next theorem.

Proof. If N c2/
√
m <
√

logN , then

N1+c2/
√
m < N

√
logN

≤ logN !,

for sufficiently large N . We would then be done, since this is the information-theoretic lower
bound on the number of comparisons required. So we may assume

N c2/
√
m ≥

√
logN(1)

c2√
m

logN ≥ 1

2
log logN

m ≤
(

logN

log logN

)2

,(2)

since c2 < 1/2.

For k ≥ 0, define βk = N
1
2

+ k
72
√

m . If k ∈ Z and 0 ≤ k ≤ d18
√
me, then

k ≤ 18
√
m+ 1 ≤ 24

√
m

βk ≤ N
1
2

+ 24
√

m
72
√

m = N5/6 ≤ N/2,

provided N is sufficiently large. So we have at least 18
√
m disjoint intervals [βi, βi+1) with

βi+1 ≤ N/2, which together contain at most m increments. Thus some interval [βi, βi+1)
contains r increments a1 ≤ · · · ≤ ar, where

(3) r ≤ m

18
√
m

=

√
m

18
.

14



By (2),

r ≤ 1

18

(
logN

log logN

)
(4)

r ≤ logN,(5)

for sufficiently large N .
The next two paragraphs are devoted to showing that the conditions of Lemma 18 hold.

We have

(6) a1 ≥ βi ≥
√
N,

so

log a1 ≥
1

2
logN

= 9

[
1

18

(
logN

log logN

)]
(log logN)

≥ 9r log r,

by (4) and (5). Thus a1 ≥ r9r.
Let l = dβi+1e. Then 2 ≤ l ≤ N , and

l ≤ 2βi+1

= 2N
1

72
√

mβi

≤
(

1

2

√
logN

)
N

1
72
√

mβi (for sufficiently large N)

≤ 1

2
N c2/

√
mN

1
72
√

mβi (by (1))

≤ 1

2
N9/

√
mβi (since c2 + 1/72 ≤ 9)

≤ 1

2
a

18/
√
m

1 a1 (by (6))

≤ 1

2
a

1+1/r
1 (by (3)).

So we may apply Lemma 18 to obtain a list L of length N which is a1-ordered, . . . ,
ar-ordered, and h-ordered for all h ≥ l, and which has at least 2−17Nl/r2 inversions. In
particular, L is h-ordered for each increment h ≥ βi. By Lemma 1, no exchanges are done
during the passes corresponding to these large increments, so the burden of removing the
inversions is laid upon the passes with increments less than βi. By Proposition 5, each
exchange during those passes reduces the number of inversions by less than 2βi. To reduce

15



this number to zero (to sort the list), the number of exchanges needed is at least

1

2βi

(
Nl

217r2

)
≥ Nβi+1

218βi(logN)2
(by (5))

=
N ·N

1
72
√

m

218(logN)2

=
N1+c2/

√
mN5c2/

√
m

218(logN)2
(since 6c2 = 1/72)

≥ N1+c2/
√
m(
√

logN)5

218(logN)2
(by (1))

≥ N1+c2/
√
m,

for sufficiently large N . �

The next theorem follows quite easily.

Theorem 4. Any Shellsort-type algorithm makes Ω(N(logN/ log logN)2) comparisons in
the worst case.

Proof. As in Theorem 3, let m be the number of increments less than N/2. If

m >
c2

2

4

(
logN

log logN

)2

,

then we are done, since each pass with increment h < N/2 makes Ω(N) comparisons. Oth-
erwise

√
m ≤ c2

2

(
logN

log logN

)
c2√
m

logN ≥ 2 log logN

N c2/
√
m ≥ (logN)2

N1+c2/
√
m ≥ N(logN)2,

so by Theorem 3, at least N(logN)2 comparisons will be made in the worst case, for suffi-
ciently large N . �

For the particular case of Shaker-sort, we can prove an even stronger result for some
increment sequences.

Theorem 5. If hj = Θ(αj) for some fixed real α > 1, and the increments hj less than N
are used in any order in Shaker-sort, then Ω(N2) steps are required in the worst case.

Proof. Let hm be the largest increment used and let ai = hm−r+i, 1 ≤ i ≤ r, be the r largest
increments in increasing order. (We’ll choose r later.) For fixed r, a1 = Θ(N/αr) = Θ(N),

so N ≤ 1
2
a

1+1/r
1 for large N . Thus by Lemma 18 with l = N , there exists a list L of length

N which is a1-ordered, . . ., ar-ordered and which has at least 2−17N2/r2 inversions.
16



An h-shake involves at most 2N compare-exchanges at a distance of h, so by Proposition 5,
the increments h1, . . . , hm−r can remove at most

4N(h1 + h2 + · · ·+ hm−r) = Θ(N(α + α2 + · · ·+ αm−r))

= Θ(Nαm−r)

= Θ(α−rN2)

inversions. Pick r large enough that this is less than or equal to 2−18N2/r2. Then when
Shaker-sort is applied to L, the increments a1, . . . , ar do no work (by Lemma 1), so after all
the h-shakes, at least

2−17N2/r2 − 2−18N2/r2 = 2−18N2/r2

inversions remain to removed by the insertion sort at the end, and this will take at least
2−18N2/r2 steps. Since r is independent of N , this is Ω(N2). �

11. Unsolved Problems

We now mention some things we would have liked to prove. It would be nice to have a
tight bound on the worst case performance. There is still a small gap between our upper
and lower bounds, when the number of increments exceeds (logN/ log logN)2, and when the
number of increments is unrestricted. We know that the complexity of Shellsort, for instance
is Ω(N(logN/ log logN)2) and O(N(logN)2). What is the actual complexity? Probably the
answer is Θ(N(logN)2), so Pratt’s increments are the best asymptotically, but it seems
impossible to obtain this lower bound simply by refining the techniques used above. Making
more careful estimates seems only to improve the constants.

An even more interesting problem, which we have not considered at all in this paper, is
the determination of the average case behavior of Shellsort or Shaker-sort. This is irrelevant
when constructing sorting networks, but it is important when using either method as a
general-purpose sorting algorithm. Virtually nothing is known about the average case. The
only increment sequences for which the average running time of Shellsort has been calculated
are (h, k, 1) (see [17]), and sequences in which each increment is a multiple of the next (see the
Corollary to Theorem H in Section 5.2.1 of [6]). None of our results rule out an O(N logN)
average case Shellsort or Shaker-sort, although perhaps they make it a little less likely.

References

[1] Brauer, A., On a Problem of Partitions, Amer. J. Math. 64 (1942), 299–312.
[2] Cypher, R., A Lower Bound on the Size of Shellsort Sorting Networks, Proceedings of the 1989 Inter-

national Conference on Parallel Processing, 58–63.
[3] Hibbard, T., An Empirical Study of Minimal Storage Sorting, Comm. of the ACM 6, no. 5 (May

1963), 206–213.
[4] Incerpi, J. and R. Sedgewick, Improved Upper Bounds on Shellsort, J. Comput. System. Sci. 31,

no. 2 (1985), 210–224.
[5] Incerpi, J. and R. Sedgewick, Practical Variations on Shellsort, Inform. Process. Lett. 26 (1987),

37–43.
[6] Knuth, D., “The Art of Computer Programming. 3. Sorting and Searching”, Addison-Wesley, Reading,

Mass., 1973.
[7] Lazarus, R. and R. Frank, A High-Speed Sorting Procedure, Comm. of the ACM 3, no. 1 (1960),

20–22.
[8] Nijenhuis, A. and H. Wilf, Representations of Integers by Linear Forms in Nonnegative Integers, J.

Number Theory 4 (1972), 98–106.
17



[9] Papernov, A. and G. Stasevich, A Method of Information Sorting in Computer Memories, Problems
of Inform. Transmission 1, no. 3 (1965), 63–75.

[10] Pratt, V., “Shellsort and Sorting Networks”, Garland Publishing, New York, 1979. (Originally pre-
sented as the author’s Ph. D. thesis, Stanford University, 1971.)

[11] Sedgewick, R., A New Upper Bound for Shellsort, J. of Algorithms 2 (1986), 159–173.
[12] Selmer, E., On the Linear Diophantine Problem of Frobenius, J. reine angew. Math. 294 (1977), 1–17.
[13] Sharp, W. J. Curran, Solution to Problem 7382 (Mathematics) proposed by J. J. Sylvester, Ed.

Times 41 (1884), London.
[14] Shell, D., A High-Speed Sorting Procedure, Comm. of the ACM 2, no. 7 (1959), 30–32.
[15] Weiss, M. and R. Sedgewick, Bad Cases for Shaker Sort, Inform. Process. Lett. 28 (1988), 133–136.
[16] Weiss, M. and R. Sedgewick, Tight Lower Bounds for Shellsort, J. of Algorithms 11 (1990), 242–251.
[17] Yao, A., An Analysis of (h, k, 1)-Shellsort, J. of Algorithms 1 (1980), 14–50.

Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720
E-mail address: poonen@math.berkeley.edu

18


