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Abstract. Under suitable hypotheses, we construct a probability measure on the set of
closed maximal isotropic subspaces of a locally compact quadratic space over Fp. A random
subspace chosen with respect to this measure is discrete with probability 1, and the dimen-
sion of its intersection with a fixed compact open maximal isotropic subspace is a certain
nonnegative-integer-valued random variable.

We then prove that the p-Selmer group of an elliptic curve is naturally the intersection
of a discrete maximal isotropic subspace with a compact open maximal isotropic subspace
in a locally compact quadratic space over Fp. By modeling the first subspace as being
random, we can explain the known phenomena regarding distribution of Selmer ranks, such
as the theorems of Heath-Brown, Swinnerton-Dyer, and Kane for 2-Selmer groups in certain
families of quadratic twists, and the average size of 2- and 3-Selmer groups as computed by
Bhargava and Shankar. Our model is compatible with Delaunay’s heuristics for p-torsion in
Shafarevich-Tate groups, and predicts that the average rank of elliptic curves over a fixed
number field is at most 1/2. Many of our results generalize to abelian varieties over global
fields.

1. Introduction

1.1. Selmer groups. D. R. Heath-Brown [HB93,HB94], P. Swinnerton-Dyer [SD08], and
D. Kane [Kan13] obtained the distribution for the nonnegative integer s(E) defined as the
F2-dimension of the 2-Selmer group Sel2E minus the dimension of the rational 2-torsion
group E(Q)[2], as E varies over quadratic twists of certain elliptic curves over Q. The
distribution was the one for which

Prob (s(E) = d) =

(∏
j≥0

(1 + 2−j)−1

)(
d∏
j=1

2

2j − 1

)
.

In [HB94], it was reconstructed from the moments of 2s(E); in [SD08] and [Kan13], it arose
as the stationary distribution for a Markov process.

Our work begins with the observation that this distribution coincides with a distribu-
tion arising naturally in combinatorics, namely, the limit as n → ∞ of the distribution of
dim(Z ∩W ) where Z and W are random maximal isotropic subspaces inside a hyperbolic
quadratic space of dimension 2n over F2. Here it is essential that the maximal isotropic sub-
spaces be isotropic not only for the associated symmetric bilinear pairing, but also for the
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quadratic form; otherwise, one would obtain the wrong distribution. That such a quadratic
space might be relevant is suggested already by the combinatorial calculations in [HB94].

Is it just a coincidence, or is there some direct relation between Selmer groups and intersec-
tions of maximal isotropic subgroups? Our answer is that Sel2E is naturally the intersection
of two maximal isotropic subspaces in an infinite-dimensional quadratic space V over F2.
The fact that it could be obtained as an intersection of two subspaces that were maximal
isotropic for a pairing induced by a Weil pairing is implicit in standard arithmetic duality
theorems.

To make sense of our answer, we use the theory of quadratic forms on locally compact
abelian groups as introduced by A. Weil in [Wei64]. The locally compact abelian group V
in the application is the restricted direct product of the groups H1(Qp, E[2]) for p ≤ ∞ with
respect to the subgroups of unramified classes. The quadratic form Q is built using D. Mum-
ford’s Heisenberg group, using ideas of Yu. Zarhin [Zar74, §2]. Then arithmetic duality the-
orems are applied to show that the images of the compact group

∏
p≤∞E(Qp)/2E(Qp) and

the discrete group H1(Q, E[2]) are maximal isotropic in (V,Q). Their intersection is Sel2E.

1.2. Conjectures for elliptic curves. This understanding of the structure of Sel2E sug-
gests the following, in which we replace 2 by p and generalize to global fields:

Conjecture 1.1. Fix a global field k and a prime p.
(a) As E varies over all elliptic curves over k,

Prob
(
dimFp SelpE = d

)
=

(∏
j≥0

(1 + p−j)−1

)(
d∏
j=1

p

pj − 1

)
.

(For the sake of definiteness, we define the probability by considering the finitely many
elliptic curves y2 = x3 + ax+ b where a, b ∈ k have height ≤ B, and looking at the limit
of the probability as B →∞; use a long Weierstrass equation if char k is 2 or 3.)

(b) The average of # SelpE over all E/k is p+ 1.
(c) For m ∈ Z≥0, the average of (# SelpE)m over all E/k is

∏m
i=1(pi + 1).

Several results in the direction of Conjecture 1.1 are known:
• When p = 2, Heath-Brown [HB94, Theorem 2] proved the analogue of Conjecture 1.1
for the family of quadratic twists of y2 = x3 − x over Q, with the caveat that the
distribution of dim Sel2E is shifted by +2 to account for the contribution of E[2]
(cf. Remark 4.17). Swinnerton-Dyer [SD08] and Kane [Kan13] generalized this result
to the family of quadratic twists of any fixed elliptic curve E/Q with E[2] ⊆ E(Q)
and no rational cyclic subgroup of order 4.
• For the family of all elliptic curves E/Q with E[2] ⊂ E(Q), G. Yu [Yu06, Theorem 1]
built upon Heath-Brown’s approach to prove that the average size of Sel2E is finite.
(Strictly speaking, if the limit defining the average does not exist, the result holds
with a lim sup.) See also [Yu05] for results for other families of elliptic curves over
Q.
• For the family of all elliptic curves over Fq(t) with 3 - q, A. J. de Jong [dJ02] proved
that the average size of Sel3E (in the lim sup sense) is at most 4 + O(1/q), where
the O(1/q) is an explicit rational function of q. In fact, de Jong speculated that the
truth was 4, and that the same might hold for number fields.
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• For the family of all elliptic curves over Q, M. Bhargava and A. Shankar proved that
the average size of Sel2 is 3 [BS15a] and the average size of Sel3 is 4 [BS15b].
• For E over a number field k with a real embedding and with E[2](k) = 0, B. Mazur
and K. Rubin [MR10] and Z. Klagsbrun showed how to twist judiciously to obtain
lower bounds on the number of quadratic twists of E (up to a bound) with prescribed
dim Sel2.

As has been observed by Bhargava, since rkE(k) ≤ dimFp SelpE, Conjecture 1.1(b) would
imply that Prob(rkE(k) ≥ 2) is at most (p+1)/p2. If we assume this for an infinite sequence
of primes p, we conclude that asymptotically 100% of elliptic curves over k have rank 0 or 1.

A priori, the average rank could still be greater than 1 if there were rare curves of very
high rank, but Conjecture 1.1(b) for an infinite sequence of primes p implies also that the
elliptic curves of rank ≥ 2 contribute nothing to the average value of rkE(k), and in fact
nothing to the average value of prkE(k). (Proof: Define ep as the lim sup as B → ∞ of the
sum of prkE(k) over curves of rank ≥ 2 of height bounded by B divided by the total number
of curves of height bounded by B. If q is a larger prime, then ep ≤ (p2/q2)eq ≤ (p2/q2)(q+1),
which tends to 0 as q →∞, so ep = 0.)

If in addition we assume that the parity of rkE(k) is equidistributed, we obtain the
following well-known conjecture:

Conjecture 1.2. Fix a global field k. Asymptotically 50% of elliptic curves over k have
rank 0, and 50% have rank 1. Moreover, the average rank is 1/2.

Remark 1.3. D. Goldfeld conjectured that the average rank in a family of quadratic twists
of a fixed elliptic curve over Q was 1/2 [Gol79, Conjecture B]. Other evidence for Conjec-
ture 1.2 was provided by the extensive study by N. Katz and P. Sarnak of a function field
analogue [KS99a,KS99b].

Also, as has been observed by Rubin, the distribution in Conjecture 1.1(a) tends, as
p → ∞, to the distribution assigning probability 50% to each of 0 and 1. Thus, even
without assuming equidistribution of parity, Conjecture 1.1 for any infinite set of primes p
would imply not only that 100% of elliptic curves have rank 0 or 1, but also that at least
50% have rank 0, and that the average rank is at most 1/2.

Conjecture 1.1(a) for a single p does not duplicate C. Delaunay’s prediction for dimFp X(E)[p]
[Del01,Del07]. Instead the predictions complement each other: we prove that the only distri-
bution on rkE(Q) compatible with both predictions is the one in Conjecture 1.2, for which
rkE(Q) is 0 or 1, with probability 1/2 each (see Theorem 5.2). A related result, that Con-
jectures 1.1(a) (for p = 2) and 1.2 together imply the X[2] predictions for rank 0 and 1, had
been observed at the end of [Del07].

If we also use the heuristic that the dimensions of dimFp SelpE for different p are inde-
pendent except for the constraint that their parities are equal, we are led to the following
generalization of Conjecture 1.1:

Conjecture 1.4. Fix a global field k and let n be a squarefree positive integer. Let ω(n) be
the number of prime factors of n.
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(a) Fix dp ∈ Z≥0 for each prime p dividing n. As E varies over all elliptic curves over k,

Prob

SelnE '
∏
p|n

(Z/pZ)dp

 = 2ω(n)−1
∏
p|n

((∏
j≥0

(1 + p−j)−1

)(
dp∏
j=1

p

pj − 1

))
if the dp all have the same parity, and the probability is 0 otherwise.

(b) The average of # SelnE over all E/k is the sum of the divisors of n.
(c) For m ∈ Z≥0, the average of (# SelnE)m over all E/k is

∏
p|n
∏m

i=1(pi + 1).

The factor of 2ω(n)−1 arises in (a), because only 2 of the 2ω(n) choices of parities for p | n
are constant sequences.

Remark 1.5. Based on investigations for n ≤ 5, Bhargava and Shankar have proposed Con-
jecture 1.4(b) for all positive integers n, at least for k = Q.

Remark 1.6. As was noticed during a discussion with Bhargava and Kane, if we combine
Delaunay’s heuristics for X[n] with Conjecture 1.2 for varying E/Q, we can predict the
distribution for the abelian group SelnE for any fixed positive integer n. Namely, E(Q)tors =
0 with probability 1, and in that case the term on the left in

0→ E(Q)

nE(Q)
→ SelnE →X(E)[n]→ 0

is free, so the sequence of Z/nZ-modules splits; thus, given Conjecture 1.2, the distribution
of SelnE can be deduced from knowing the distribution of X(E)[n] for rank 0 curves and
for rank 1 curves.

1.3. Conjectures for abelian varieties. In fact, our theorems are proved in a more general
context, with [2] : E → E replaced by any self-dual isogeny λ : A→ Â that is of odd degree
or that comes from a symmetric line sheaf on an abelian variety A over a global field k.
(See Theorem 4.14.) In this setting, we have a surprise: it is not SelλA itself that is the
intersection of maximal isotropic subgroups, but its quotient by X1(k,A[λ]), and the latter
group is sometimes nonzero, as we explain in Section 3. Moreover, for certain families, such
as the family of all genus 2 curves, there may be “causal” subgroups of SelλA, which increase
its expected size by a constant factor. Taking these into account suggests the following:

Conjecture 1.7. Fix a global field k of characteristic not 2, and fix a positive integer g.
Let f ∈ k[x] range over separable polynomials of degree 2g + 1 (with coefficients of height
bounded by B, with B →∞). Let C be the smooth projective model of y2 = f(x). Construct
the Jacobian A := JacC. Then the analogues of Conjectures 1.1, 1.2, and 1.4 hold for SelpA
and SelnA, with the same distributions. They hold also with 2g + 1 replaced by 2g + 2 if n
is odd.

Conjecture 1.8. Fix a global field k of characteristic not 2, and fix an even positive integer
g. Let f ∈ k[x] range over polynomials of degree 2g + 2 (with coefficients of height bounded
by B, with B →∞). Let C be the smooth projective model of y2 = f(x), and let A = JacC.
(a) If XSel2 is the Z≥0-valued random variable predicted by Conjecture 1.1(a) to model dimF2 Sel2E,

then the analogous random variable for Sel2A is XSel2 + 1.
(b) The average of # Sel2A is 6 (instead of 3).
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(c) For m ∈ Z≥0, the average of (# Sel2A)m is 2m
∏m

i=1(2i + 1).

Example 4.20 will explain the rationale for the +1 in Conjecture 1.8(a), and will explain
why we do not venture to make an analogous conjecture for odd g.

Remark 1.9. Although we have formulated conjectures for the family of all curves of a spec-
ified type, our model makes sense also for more limited families (e.g., a family of quadratic
twists). One should take into account systematic contributions to the Selmer group, however,
as was necessary in Conjecture 1.8.

2. Random maximal isotropic subspaces

2.1. Quadratic modules. See [Sch85, 1.§6 and 5.§1] for the definitions of this section.
Let V and T be abelian groups. Call a function Q : V → T a (T -valued) quadratic form
if Q is a quadratic map (i.e., the symmetric pairing 〈 , 〉 : V × V → T sending (x, y) to
Q(x + y)−Q(x)−Q(y) is bilinear) and Q(av) = a2Q(v) for every a ∈ Z and v ∈ V . Then
(V,Q) is called a quadratic module.

Remark 2.1. A quadratic map Q satisfying the identity Q(−v) = Q(v) is a quadratic form.
(Taking x = y = 0 shows that Q(0) = 0, and then Q(av + (−v)) − Q(av) − Q(−v) =
a(Q(0)−Q(v)−Q(−v)) computes Q(av) for other a ∈ Z by induction.)

Lemma 2.2. Let (V,Q) be a quadratic module. Suppose that v ∈ V and ` ∈ Z are such that
`v = 0. If ` is odd, then `Q(v) = 0. If ` is even, then 2`Q(v) = 0.

Proof. We have `2Q(v) = Q(`v) = 0, and 2`Q(v) = `〈v, v〉 = 〈`v, v〉 = 0. �

Given a subgroup W ⊆ V , let W⊥ := {v ∈ V : 〈v, w〉 = 0 for all w ∈ W}. Call W a
maximal isotropic subgroup of (V,Q) if W⊥ = W and Q|W = 0. Let IV be the set of maximal
isotropic subgroups of (V,Q).

Remark 2.3. Say that W is maximal isotropic for the pairing 〈 , 〉 if W⊥ = W . If W = 2W
or T [2] = 0, then W⊥ = W implies Q|W = 0, but in general Q|W = 0 is a nonvacuous extra
condition.

Call a quadratic module (V,Q) nondegenerate if Q is R/Z-valued and V is finite (we will
relax this condition in Section 2.4) and the homomorphism V → V ∗ := Hom(V,R/Z) defined
by v 7→ (w 7→ 〈v, w〉) is an isomorphism. Call (V,Q) weakly metabolic if it is nondegenerate
and contains a maximal isotropic subgroup. (Metabolic entails the additional condition that
the subgroup be a direct summand.)

Remark 2.4. Suppose that (V,Q) is a nondegenerate quadratic module, and X is an isotropic
subgroup of (V,Q). Then
(a) The quotient X⊥/X is a nondegenerate quadratic module under the quadratic form QX

induced by Q.
(b) IfW ∈ IV , then (W ∩X⊥)+X ∈ IV , and ((W ∩X⊥)+X)/X ∈ IX⊥/X . Let πV,X

⊥/X(W )

denote this last subgroup, which is the image of W ∩X⊥ in X⊥/X.

Remark 2.5. If (V,Q) is a nondegenerate quadratic module with #V <∞, the obstruction
to V being weakly metabolic is measured by an abelian group WQ '

⊕
pWQ(p) called

the Witt group of nondegenerate quadratic forms on finite abelian groups [Sch85, 5.§1]. The
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obstruction for (V,Q) equals the obstruction for X⊥/X for any isotropic subgroup X of
(V,Q) (cf. [Sch85, Lemma 5.1.3]).

2.2. Counting subspaces.

Proposition 2.6. Let (V,Q) be a 2n-dimensional weakly metabolic quadratic space over
F := Fp, with Q taking values in 1

p
Z/Z ' F .

(a) All fibers of πV,X⊥/X : IV → IX⊥/X have size
∏dimX

i=1 (pn−i + 1).
(b) We have #IV =

∏n−1
j=0 (pj + 1).

(c) Let W be a fixed maximal isotropic subspace of V . Let Xn be the random variable
dim(Z ∩ W ), where Z is chosen uniformly at random from IV . Then Xn is a sum
of independent Bernoulli random variables B1, . . . , Bn where Bi is 1 with probability
1/(pi−1 + 1) and 0 otherwise.

(d) For 0 ≤ d ≤ n, let ad,n := Prob(Xn = d), and let ad := limn→∞ ad,n. Then∑
d≥0

ad,nz
d =

n−1∏
i=0

z + pi

1 + pi
=

n−1∏
i=0

1 + p−iz

1 + p−i
.

∑
d≥0

adz
d =

∞∏
i=0

1 + p−iz

1 + p−i
.

(e) For 0 ≤ d ≤ n, we have

ad,n =
n−1∏
j=0

(1 + p−j)−1

d∏
j=1

p

pj − 1

d−1∏
j=0

(1− pj−n).

(f) For d ≥ 0, we have

ad = c
d∏
j=1

p

pj − 1
,

where
c :=

∏
j≥0

(1 + p−j)−1 =
1

2

∏
i≥0

(1− p−(2i+1)).

Proof.
(a) Choose a full flag in X; then πV,X⊥/X factors into dimX maps of the same type, so we

reduce to the case dimX = 1. Write X = Fv with v ∈ V . For Z ∈ IV , let Z be its image
in IX⊥/X . There is a bijection {Z ∈ IV : v ∈ Z} → IX⊥/X defined by Z 7→ Z = Z/X.

Fix W ∈ IX⊥/X , and let W ∈ IV be such that W = W/X. We want to show that
#{Z ∈ IV : Z = W} = pn−1 + 1. This follows once we show that the map

{Z ∈ IV : Z = W} → {codimension 1 subspaces of W not containing v} ∪ {W}
Z 7→ Z ∩W

is a bijection. If v ∈ Z, then Z = W implies that Z = W . If v /∈ Z, then Z = W
implies that Z ∩W has codimension 1 in W (and does not contain v). Conversely, for
a given W1 of codimension 1 in W not containing v, the Z ∈ IV containing W1 are in
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bijection with the maximal isotropic subspaces of the weakly metabolic 2-dimensional
space W⊥

1 /W1, which is isomorphic to (F 2, xy), so there are two such Z: one of them is
W , and the other satisfies Z ∩W = W1 and Z = W . Thus we have the bijection.

(b) Apply (a) to a maximal isotropic X.
(c) If n > 0, fix a nonzero v in W , and define Z as in the proof of (a). Then

dimZ ∩W = dimZ ∩W + δv∈Z ,

where δv∈W is 1 if v ∈ Z and 0 otherwise. The term dimZ ∩W has the distribution
Xn−1. Conditioned on the value of Z, the term δv∈Z is 1 with probability 1/(pn−1 + 1)
and 0 otherwise, since there are pn−1 + 1 subspaces Z ∈ IV with the given Z, and only
one of them (namely, the preimage of Z under V → V/Fv) contains v. Thus Xn is
the sum of Xn−1 and the independent Bernoulli random variable Bn, so we are done by
induction on n.

(d) The generating function for Xn is the product of the generating functions for B1, . . . , Bn;
this gives the first identity. The second follows from the first.

(e) This follows from (d) and Cauchy’s q-binomial theorem (which actually goes back to
[Rot11] and is related to earlier formulas of Euler). Namely, set t = 1/p in formula (18)
of [Cau43], and divide by

∏n−1
j=0 (1 + p−j).

(f) Take the limit of (e) as n→∞. The alternative formula for c follows from substituting

1 + p−j =
1− p−2j

1− p−j
for j 6= 0 and cancelling common factors. �

Remark 2.7. There is a variant for finite-dimensional vector spaces V over a finite field F of
non-prime order. One can define the notion of weakly metabolic quadratic form Q : V → F ,
and then prove Proposition 2.6 with q in place of p.

If we consider only even-dimensional nondegenerate quadratic spaces over F , then the
obstruction analogous to that in Remark 2.5 takes values in a group of order 2. The obstruc-
tion is the discriminant in F×/F×2 if charF 6= 2, and the Arf invariant (see [Sch85, 9.§4]) if
charF = 2.

Remark 2.8. By Lemma 2.2, a quadratic form on a 2-torsion module will in general take
values in the 4-torsion of the image group. Thus we need an analogue of Proposition 2.6(c) for
a 1

4
Z/Z-valued quadratic form Q on a 2n-dimensional F2-vector space V such that Q(V ) 6⊂

1
2
Z/Z, or equivalently such that 〈x, x〉 = 2Q(x) is not identically 0.
The map x 7→ 〈x, x〉 is a linear functional V → 1

2
Z/Z ' F2 since

〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉 = 〈x, x〉+ 〈y, y〉.
Hence there exists a nonzero c ∈ V such that 〈x, x〉 = 〈x, c〉 for all x ∈ V . This equation
shows that for any maximal isotropic subspace W of V , we have c ∈ W⊥ = W . The map
W 7→ W/F2c defines a bijection between the set of maximal isotropic subspaces of V and the
set of maximal isotropic subspaces of (F2c)

⊥/F2c, which is a 1
2
Z/Z-valued quadratic space.

So the random variable dim(Z ∩W ) for V is 1 plus the corresponding random variable for
the 1

2
Z/Z-valued quadratic space of dimension dimV − 2.

Definition 2.9. Given a prime p, let XSelp be a Z≥0-valued random variable such that for
any d ∈ Z≥0, the probability Prob(XSelp = d) equals the ad in Proposition 2.6(d).

7



In the notation of Proposition 2.6(c), we can also write

XSelp = lim
n→∞

Xn =
∞∑
n=1

Bn.

Remark 2.10. The distribution of XSel2 agrees with the distribution of s(E) mentioned at
the beginning of Section 1.1.

2.3. Some topology. To interpret ar as a probability and not only a limit of probabilities,
we are led to consider infinite-dimensional quadratic spaces. The naïve dual of such a space
V is too large to be isomorphic to V , so we consider spaces with a locally compact topology
and use the Pontryagin dual. In order to define a probability measure on the set of maximal
isotropic subspaces, we need additional countability constraints. This section proves the
equivalence of several such countability constraints.

For a locally compact abelian group G, define the Pontryagin dual G∗ := Homconts(G,R/Z).
Recall that a topological space is σ-compact if it is expressible as a union of countably many
compact subspaces, first-countable if each point has a countable basis of neighborhoods,
second-countable if the topology admits a countable basis, and separable if it has a countable
dense subset.

Proposition 2.11. Let G be a locally compact abelian group. The following are equivalent:

(a) G∗ is σ-compact.
(b) G is first-countable.
(c) G is metrizable.

Moreover, G is second-countable if and only if G and G∗ are both σ-compact.

Proof. After peeling off a direct factor Rn from G, we may assume that G contains a compact
open subgroup K, by the Pontryagin–van Kampen structure theorem [vK35, Theorem 2].
Each of (a), (b), (c) holds for G if and only if it holds for K, and for K the three conditions
are equivalent to second-countability by [Kak43, Theorem 2 and the bottom of page 366].
To prove the final statement, observe that G is second-countable if and only if K is second-
countable and G/K is countable. By the above, K is second-countable if and only G∗ is
σ-compact; on the other hand, G/K is countable if and only if G is σ-compact. �

Corollary 2.12. Let G be a locally compact abelian group such that G ' G∗. Then the
following are equivalent:

(a) G is σ-compact.
(b) G is first-countable.
(c) G is metrizable.
(d) G is second-countable.
(e) G is separable.

Proof. Proposition 2.11 formally implies the equivalence of (a), (b), (c), (d). To obtain
(d) =⇒ (e), choose one point from each nonempty set in a countable basis. To prove
(e) =⇒ (a), reduce to the case that G contains a compact open subgroupK; then separability
implies that G/K is finite, so G is σ-compact. �
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2.4. Quadratic forms on locally compact abelian groups.

Definition 2.13. A locally compact quadratic module (V,Q) is a locally compact abelian
group V equipped with a continuous quadratic form Q : V → R/Z. (This notion was in-
troduced in [Wei64, p. 145], where Q was called a “caractère du second degré”; for him,
the codomain of Q was the group of complex numbers of absolute value 1, because he was
interested in the Fourier transforms of such Q.)

The definitions of maximal isotropic and nondegenerate extend to this setting.

Definition 2.14. Call a nondegenerate locally compact quadratic module (V,Q) weakly
metabolic if it contains a compact open maximal isotropic subgroup W ; we then say also that
(V,Q,W ) is weakly metabolic.

Remark 2.15. In Definition 2.14, it would perhaps be more natural to require the subgroup
W to be only closed, not necessarily compact and open. Here we explain that the two
definitions are equivalent when V contains a compact open subgroup, which is not a strong
hypothesis, since by the Pontryagin–van Kampen structure theorem, if V is a locally compact
abelian group, then V ' Rn ⊕ V ′ as topological groups, where V ′ contains a compact open
subgroup.

If (V,Q) is a nondegenerate locally compact quadratic module containing a compact open
subgroup K, then X := K ∩ K⊥ is a compact open subgroup that is isotropic for the
pairing. Then Q restricts to a continuous linear map X → 1

2
Z/Z, and its kernel Y is a

compact open subgroup that is isotropic for Q. Next, if W is any closed maximal isotropic
subgroup of (V,Q), then (W ∩ Y ⊥) + Y is a compact open maximal isotropic subgroup of
(V,Q) (cf. Remark 2.4(b)).

Remark 2.16. If (V,Q) is a nondegenerate locally compact quadratic module containing a
compact open isotropic subgroup X, then the obstruction to (V,Q) containing a maximal
isotropic closed subgroup is the same as that for X⊥/X, so the obstruction is measured by
an element of WQ that is independent of X (cf. Remark 2.5).

Example 2.17. IfW is a locally compact abelian group, then V := W×W ∗ may be equipped
with the quadratic form Q((w, f)) := f(w). IfW contains a compact open subgroup Y , then
its annihilator in W ∗ is a compact open subgroup Y ′ of W ∗, and X := Y × Y ′ is a compact
open subgroup of V , so Remark 2.15 shows that (V,Q) is weakly metabolic.

Example 2.18 (cf. [Bra48, Théorème 1]). Suppose that (Vi, Qi,Wi) for i ∈ I are weakly
metabolic. Define the restricted direct product

V :=
∏′

i∈I

(Vi,Wi) :=

{
(vi)i∈I ∈

∏
i∈I

Vi : vi ∈ Wi for all but finitely many i

}
.

Let W :=
∏

i∈IWi. As usual, equip V with the topology for which W is open and has the
product topology. For v := (vi) ∈ V , define Q(v) =

∑
i∈I Qi(vi), which makes sense since

Qi(vi) = 0 for all but finitely many i. Then (V,Q,W ) is another weakly metabolic locally
compact quadratic module.

Moreover, if I is countable and each Vi is second-countable, then V is second-countable
too. (Proof: Use Corollary 2.12 to replace second-countable by σ-compact. If each Vi is
σ-compact, then each Vi/Wi is countable, so V/W '

⊕
i∈I Vi/Wi is countable, so V is

σ-compact.)
9



Let (V,Q) be a locally compact quadratic module. Let IV be the set of maximal isotropic
closed subgroups of (V,Q). Let XV be the poset of compact open isotropic subgroups of
(V,Q), ordered by (reverse) inclusion.

Theorem 2.19. Let (V,Q,W ) be a second-countable weakly metabolic locally compact qua-
dratic module.
(a) The set XV is a countable directed poset.
(b) The finite sets IX⊥/X for X ∈ XV with the maps πX⊥

1 /X1,X⊥
2 /X2 for X1 ⊆ X2 (cf. Re-

mark 2.4(b)) form an inverse system.
(c) If

⋂
X∈XV X = 0, then the collection of maps πV,X⊥/X induces a bijection

IV → lim←−
X∈XV

IX⊥/X .

Equip IV with the inverse limit topology.
(d) In the remaining parts of this theorem, assume that p is a prime such that pV = 0. Then

there exists a unique probability measure µ on the Borel σ-algebra of IV such that for
every compact open isotropic subgroup X of (V,Q), the push-forward π

V,X⊥/X
∗ µ is the

uniform probability measure on the finite set IX⊥/X .
(e) The measure µ is invariant under the orthogonal group Aut(V,Q).
(f) If Z is distributed according to µ, then Prob(Z is discrete) = 1 and Prob(Z∩W is finite) =

1. If moreover dimFp V is infinite, then the distribution of dim(Z ∩W ) is given by XSelp

(see Definition 2.9).

Proof.
(a) The intersection of two compact open isotropic subgroups of V is another one, so XV is

a directed poset. To prove that XV is countable, first consider the bijection

{compact open subgroups of W} → {finite subgroups of V/W} (1)

X 7→ X⊥/W.

Since V/W is a countable discrete group, both sets above are countable. The map

XV → {compact open subgroups of W}
X 7→ X ∩W

has finite fibers, since the X ∈ XV containing a given compact open subgroup Y of
W are in bijection with the isotropic subgroups of the finite group Y ⊥/Y . Thus XV is
countable.

(b) Given X1 ⊆ X2 ⊆ X3 the maps πX
⊥
i /Xi,X

⊥
j /Xj for i < j behave as expected under

composition.
(c) The same computation proving (b) shows that the map is well-defined. If X ∈ XV , then

X⊥ is another compact open subgroup of V since it contains X as a finite-index open
subgroup. The group (X⊥)∗ ' V/X is a discrete Fp-vector space, so it equals the direct
limit of its finite-dimensional subspaces. Taking duals shows that X⊥ is the inverse limit
of its finite quotients, i.e., of the groups X⊥/Y where Y ranges over open subgroups
of X⊥. Moreover, every open subgroup of X⊥ contains an open subgroup of X (just
intersect with X), so it suffices to take the latter.

10



Now the inverse map (ZX) 7→ Z is constructed as follows: given (ZX) ∈ lim←−X∈XV IX⊥/X ,
let

Z̃X := lim←−
Y ∈XV
Y⊆X

(
ZY ∩

X⊥

Y

)
⊆ lim←−

Y ∈XV
Y⊆X

X⊥

Y
= X⊥

Z :=
⋃

X∈XV

Z̃X .

The maps in the inverse system defining Z̃ are surjections, so the image of Z̃X in X⊥/X
equals ZX . If X,X ′ ∈ XV and X ′ ⊆ X, then Z̃X = Z̃X′ ∩X⊥, so Z ∩X⊥ = Z̃X . Since
each ZY is isotropic in Y ⊥/Y , the group Z̃X is isotropic, so Z is isotropic. If z ∈ Z⊥, then
we have z ∈ X⊥ for some X, and then for any Y ⊆ X, the element z mod Y ∈ Y ⊥/Y
is perpendicular to πV,Y

⊥/Y (Z) = ZY , but Z⊥Y = ZY , so z mod Y ∈ ZY , and also
z mod Y ∈ X⊥/Y ; this holds for all Y ⊆ X, so z ∈ Z. Thus Z⊥ = Z; i.e., Z ∈ IV .

Now we show that the two constructions are inverse to each other. If we start with
(ZX), then the Z produced by the inverse map satisfies πV,X⊥/X(Z) = ZX . Conversely,
if we start with Z, and define ZX := πV,X

⊥/X(Z), then the inverse map applied to (ZX)
produces Z ′ such that Z∩X⊥ ⊆ Z ′ for all X, so Z ⊆ Z ′, but Z and Z ′ are both maximal
isotropic, so Z = Z ′.

(d) Since V/W is a discrete Fp-vector space of dimension at most ℵ0, we may choose a cofinal
increasing sequence of finite-dimensional subspaces of V/W , and this corresponds under
(1) to a cofinal decreasing sequence Y1, Y2, . . . of compact open subgroups of W whose
intersection is 0. Thus (c) applies. Each map in the inverse system has fibers of constant
size, by Proposition 2.6(a), so the uniform measures on these finite sets are compatible.
By [Bou04, III.§4.5, Proposition 8(iv)], the inverse limit measure exists.

(e) The construction is functorial with respect to isomorphisms (V,Q)→ (V ′, Q′).
(f) Since

∑∞
r=0 ar = 1, it suffices to prove the last statement, that Prob(dim(Z ∩W ) = r) =

ar. Let Yi be as in the proof of (d). Then dim(Z ∩W ) is the limit of the increasing
sequence of nonnegative integers dim(πV,Y

⊥
i /Yi(Z) ∩ πV,Y ⊥

i /Yi(W )). By Proposition2.6(c)
and its proof, the difference of consecutive integers in this sequence is a sum of indepen-
dent Bernoulli random variables. Since

∑
j≥1 Prob(Bj = 1) converges, the Borel-Cantelli

lemma implies that

Prob
(

dim(Z ∩W ) 6= dim(πV,Y
⊥
i /Yi(Z) ∩ πV,Y ⊥

i /Yi(W ))
)
→ 0

as i→∞. In particular, Prob (dim(Z ∩W ) =∞) is 0. On the other hand, dimY ⊥i /Yi →
∞ as i→∞, so

Prob (dim(Z ∩W ) = d) = lim
n→∞

ad,n = ad = Prob
(
XSelp = d

)
. �

Remark 2.20. There is only one infinite-dimensional second-countable weakly metabolic lo-
cally compact quadratic Fp-vector space (V,Q), up to isomorphism. Inside V we are given
a compact open maximal isotropic subspace W , and Theorem 2.19(f) implies the existence
of a discrete maximal isotropic closed subspace Z with Z ∩W = 0. Since V is infinite and
second-countable, dimFp Z = ℵ0, so the isomorphism type of Z as locally compact abelian
group is determined. The pairing Z ×W → R/Z defined by (z, w) 7→ Q(z + w) puts Z and
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W in Pontryagin duality. Now the summing map Z ×W → V is an isomorphism under
which Q corresponds to the standard quadratic form on Z × Z∗ defined in Example 2.17.

Remark 2.21. Suppose that V is as in Theorem 2.19(f), and that Z ∈ IV is chosen at random.
The probability that Z contains a given nonzero vector v of V then equals 0, because for any
compact open isotropic subgroup X ≤ V small enough that v ∈ X⊥−X, if dimX⊥/X = 2n,
then the probability that πV,X⊥/X(Z) contains the nonzero element πV,X⊥/X(v) is 1/(pn+ 1),
which tends to 0 as X shrinks. Now, if we fix a discrete Z0 ∈ IV and choose Z ∈ IV at
random, then dim(Z ∩ Z0) = 0 with probability 1 by the previous sentence applied to each
nonzero vector of the countable set Z0.

2.5. Moments. Given a random variable X, let E(X) be its expectation. So if m ∈ Z≥0,
then E(Xm) is its mth moment.

Proposition 2.22. Fix a prime p and fix m ∈ Z≥0. Let Xn be as in Proposition 2.6(c), and
let XSelp be as in Definition 2.9. Then
(a) We have

E
((
pXn
)m)

=
m∏
i=1

pi + 1

1 + p−(n−i)

E
((
pXSelp

)m)
=

m∏
i=1

(pi + 1).

In particular, E(pXSelp ) = p+ 1.
(b) We have Prob(Xn is even) = 1/2 for each n > 0, and Prob(XSelp is even) = 1/2.
(c) If we condition on the event that XSelp has a prescribed parity, the moments in (a) remain

the same. The same holds for the mth moment of pXn if m < n.

Proof.
(a) Substitute z = pm in Proposition 2.6(d). The products telescope.
(b) Substitute z = −1 in Proposition 2.6(d).
(c) Substitute z = −pm in Proposition 2.6(d).

�

3. Shafarevich-Tate groups of finite group schemes

3.1. Definitions. For each field k, choose an algebraic closure k and a separable closure
ks ⊆ k, and let Gk := Gal(ks/k). A local field is a nondiscrete locally compact topological
field; each such field is a finite extension of one of R, Qp, or Fp((t)) for some prime p. A
global field is a finite extension of Q or Fp(t) for some prime p.

In the rest of Section 3, k denotes a global field. Let Ω be the set of nontrivial places of k.
For v ∈ Ω, let kv be the completion of k at v, so kv is a local field; if v is nonarchimedean,
let Ov be the valuation ring in kv.

For a sheaf of abelian groups M on the big fppf site of Spec k, define

X1(k,M) := ker

(
H1(k,M)→

∏
v∈Ω

H1(kv,M)

)
. (2)
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Remark 3.1. If M is represented by a smooth finite-type group scheme over k, such as the
kernel of an isogeny of degree not divisible by char k, then we may interpret the cohomology
groups as Galois cohomology groups: H1(k,M) = H1(Gk,M(ks)) and so on.

Definition 3.2. Let C be a smooth projective curve of genus g over k. Let A = JacC.
The degree g − 1 component of the Picard scheme of C contains a closed subscheme T
parametrizing line sheaves on C whose square is isomorphic to the canonical sheaf of C.
This T is a torsor under A[2], called the theta characteristic torsor. Let cT ∈ H1(k,A[2]) be
its class.

3.2. Vanishing criteria. The following criteria for vanishing of X1(k,M) will be especially
relevant for Theorem 4.14(b).

Proposition 3.3. Suppose that M is a finite étale group scheme over k, so we identify M
with the finite Gk-module M(ks).
(a) If M = Z/nZ, then X1(k,M) = 0.
(b) If M is a direct summand of a direct sum of permutation Z/nZ-modules arising from

finite separable extensions of k, then X1(k,M) = 0.
(c) Let G be the image of Gk in AutM(ks). Identify H1(G,M) with its image under the

injection H1(G,M) ↪→ H1(k,M). Then

X1(k,M) ⊆
⋂

cyclic H ≤ G

ker
(
H1(G,M)→ H1(H,M)

)
.

(d) If p is a prime such that pM = 0 and the Sylow p-subgroups of AutM(ks) are cyclic,
then X1(k,M) = 0.

(e) If E is an elliptic curve, and p 6= char k, then X1(k,E[p]) = 0.
(f) If char k 6= 2, and A is the Jacobian of the smooth projective model of y2 = f(x), where

f ∈ k[x] is separable of odd degree, then X1(k,A[2]) = 0.

Proof.
(a) See [Mil06, Example I.4.11(i)].
(b) Combine (a) with Shapiro’s lemma [AW67, §4, Proposition 2] to obtain the result for a

finite permutation module (Z/nZ)[Gk/GL] for a finite separable extension L of k. The
result for direct summands of direct sums of these follows.

(c) This is a consequence of the Chebotarev density theorem: see [BPS13].
(d) Let G be the image of Gk → AutM(ks). Then any Sylow p-subgroup P of G is cyclic.

But the restriction H1(G,M) → H1(P,M) is injective [AW67, §6, Corollary 3], so (c)
shows that X1(k,M) = 0.

(e) Any Sylow-p-subgroup of GL2(Fp) is conjugate to the group of upper triangular unipotent
matrices, which is cyclic. Apply (d).

(f) The group A[2] is a direct summand of the permutation Z/2Z-module on the set of zeros
of f . Apply (b). �

3.3. Jacobians of hyperelliptic curves. See [PR11, Example 3.12(b)] for a 2-dimensional
Jacobian A with X1(Q, A[2]) 6= 0. Such examples are rare: a special case of Proposi-
tion 3.4 below shows that asymptotically 100% of 2-dimensional Jacobians A over Q have
X1(Q, A[2]) = 0.
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Proposition 3.4. Fix g ≥ 1 and a prime p. For random f(x) ∈ Z[x] of degree 2g + 1 with
coefficients in [−B,B], if A is the Jacobian of the smooth projective model C of y2 = f(x),
the probability that X1(Q, A[p]) = 0 tends to 1 as B → ∞. The same holds if 2g + 1 is
replaced by 2g + 2 (the general case for a genus g hyperelliptic curve).

Proof. By Proposition 3.3(e) we may assume g ≥ 2. We may assume that f is separable.
First consider the case p 6= 2. Generically, the image of GQ → AutA[p] is as large as

possible given the existence of the Weil pairing ep, i.e., isomorphic to GSp2g(Fp). By the
Hilbert irreducibility theorem, the same holds for asymptotically 100% of the polynomials
f . By Proposition 3.3(c), X1(Q, A[p]) is contained in the subgroup H1(GSp2g(Fp), A[p]) of
H1(Q, A[p]), and that subgroup is 0 because the central element −I ∈ GSp2g(Fp) has no
fixed vector (cf. [Fou64, Lemma 14.4] and [Pol71, Theorem 2.3]).

Now suppose that p = 2. In the degree 2g + 1 case, we are done by Proposition 3.3(f).
So assume that deg f = 2g + 2. Let ∆ be the set of zeros of f in Q, so #∆ = 2g + 2. For
m ∈ Z/2Z, letWm be the quotient of the sum-m part of the permutation module F∆

2 ' F2g+2
2

by the diagonal addition action of F2. Then the GQ-module A[2] may be identified withW0,
and Wm is a torsor under W0.

Again by the Hilbert irreducibility theorem, we may assume that the group Gal(Q(A[2])/Q) '
Gal(f) is as large as possible, i.e., equal to S2g+2. Then X1(Q, A[2]) ⊆ H1(S2g+2,W0) ⊂
H1(Q, A[2]). The group H1(S2g+2,W0) is of order 2, generated by the class cW1 of W1

[Pol71, Theorem 5.2]. Computations as in [PS99, §9.2] show that for each prime `, the
probability that f(x) factors over Z` into irreducible polynomials of degree 2g and 2 defin-
ing unramified and ramified extensions of Q`, respectively, is of order 1/` (not smaller) as
` → ∞, and in this case no point in W1 is GQ`-invariant, so cW1 has nonzero image in
H1(Q`, A[2]). Since the conditions at finitely many ` are asymptotically independent as
B → ∞, and since

∑
1/` diverges, there will exist such a prime ` for almost all f , and in

this case cW1 /∈X1(Q, A[2]), so X1(Q, A[2]) = 0. �

Remark 3.5. Proposition 3.4 can easily be extended to an arbitrary global field of character-
istic not equal to 2 or p.

Remark 3.6. Let C be the smooth projective model of y2 = f(x), where f(x) ∈ k[x] is
separable of degree 2g + 2. As torsors under A[2] ' W0, we have T ' Wg−1 (cf. [Mum71,
p. 191]).

3.4. Jacobians with generic 2-torsion. Suppose that C is a curve of genus g ≥ 2 over
a global field k of characteristic not 2 such that the image G of Gk → AutA[2] is as large
as possible, i.e., Sp2g(F2). (This forces C to be non-hyperelliptic if g ≥ 3.) By [Pol71,
Theorems 4.1 and 4.8], the group H1(G,A[2]) ⊆ H1(Gk, A[2]) is of order 2, generated by cT .
So Proposition 3.3(c) shows that X1(k,A[2]) is of order 2 or 1, according to whether the
nonzero class cT lies in X1(k,A[2]) or not.

4. Selmer groups as intersections of two maximal isotropic subgroups

4.1. Quadratic form arising from the Heisenberg group. Let A be an abelian variety
over a field k. Let Â be its dual abelian variety. Let λ : A → Â be an isogeny equal to its
dual. The exact sequence

0→ A[λ]→ A
λ→ Â→ 0

14



gives rise to the “descent sequence”

0→ Â(k)

λA(k)

δ→ H1(A[λ])→ H1(A)[λ]→ 0, (3)

where H1(A)[λ] is the kernel of the homomorphism H1(λ) : H1(A)→ H1(Â).
Since λ is self-dual, we obtain an (alternating) Weil pairing

eλ : A[λ]× A[λ]→ Gm

identifying A[λ] with its own Cartier dual (cf. [Mum70, p. 143, Theorem 1]). Composing the
cup product with H1(eλ) gives a symmetric pairing

∪
eλ

: H1(A[λ])× H1(A[λ])→ H2(Gm)

and its values are killed by deg λ. It is well-known (especially when λ is separable) that the
image of the natural map Â(k)/λA(k)→ H1(A[λ]) is isotropic with respect to ∪

eλ
.

In the rest of Section 4, we will assume that we are in one of the following cases:
I. The self-dual isogeny λ has odd degree.
II. The self-dual isogeny λ is of the form φL for some symmetric line sheaf L on A.

(Symmetric means [−1]∗L ' L . For the definition of φL , see [Mum70, p. 60 and
Corollary 5 on p. 131].)

In each of these cases, we will construct a natural quadratic form q whose associated bilinear
pairing is ∪

eλ
. Moreover, in each case, we will show that the image of Â(k)/λA(k)→ H1(A[λ])

is isotropic with respect to q.

Remark 4.1. We need Case II in addition to the easier Case I since, for example, we want
to study SelpE even when p = 2.

Remark 4.2. For any symmetric line sheaf L , the homomorphism φL is self-dual [Pol03,
p. 116]. If moreover L is ample, then φL is an isogeny (see [Mum70, p. 124 and Corollary 5
on p. 131]).

Remark 4.3. If A is an elliptic curve and λ is multiplication-by-n for some positive integer
n, then Case II applies. Namely, let P be the origin of A, and let L be the symmetric line
sheaf O(nP ); then φL = λ.

Remark 4.4. The obstruction to expressing a self-dual isogeny λ as φL is given by an element
cλ ∈ H1(Â[2]). For example, if λ is an odd multiple of the principal polarization on a Jacobian
of a curve with no rational theta characteristic, then cλ 6= 0. See [PR11, §3] for these facts,
and for many criteria for the vanishing of cλ.

Remark 4.5. If λ = 2µ for some self-dual isogeny µ : A→ Â, then λ is of the form φL , since
cλ = 2cµ = 0. Explicitly, take L := (1, µ)∗P, where P is the Poincaré line sheaf on A× Â
(see [Mum70, §20, proof of Theorem 2]).

We now return to the construction of the quadratic form.

Case I: deg λ is odd.
15



Then q(x) := −1
2

(
x ∪
eλ
x

)
is a quadratic form whose associated bilinear pairing is −∪

eλ
.

(The sign here is chosen to make the conclusion of Corollary 4.7 hold for q.) Since the image
of Â(k)/λA(k) → H1(A[λ]) is isotropic with respect to ∪

eλ
, it is isotropic with respect to q

too.

Case II: there is a symmetric line sheaf L on A such that λ = φL . (This hypothesis
remains in force until the end of Section 4.1.)

When λ is separable, Zarhin [Zar74, §2] constructed a quadratic form q : H1(A[λ]) →
H2(Gm) whose associated bilinear pairing was ∪

eλ
; for elliptic curves, C. O’Neil showed that

the image of Â(k)/λA(k) → H1(A[λ]) is isotropic for q (this is implicit in [O’N02, Proposi-
tion 2.3]). Because we wish to include the inseparable case, and because we wish to prove
isotropy of the quadratic form for abelian varieties of arbitrary dimension, we will give a
detailed construction and proof in the general case.

The pairs (x, φ) where x ∈ A(k) and φ is an isomorphism from L to τ ∗xL form a (usually
nonabelian) group under the operation

(x, φ)(x′, φ′) = (x+ x′, (τx′φ)φ′).

The same can be done after base extension, so we get a group functor. Automorphisms of
L induce the identity on this group functor, so it depends only on the class of L in PicA.

Proposition 4.6 (Mumford).
(a) This functor is representable by a finite-type group scheme H(L ), called the Heisenberg

group (or theta group or Mumford group).
(b) It fits in an exact sequence

1→ Gm → H(L )→ A[λ]→ 1, (4)
where the two maps in the middle are given by t 7→ (0,multiplication by t) and (x, φ) to
x. This exhibits H(L ) as a central extension of finite-type group schemes.

(c) The induced commutator pairing

A[λ]× A[λ]→ Gm

is the Weil pairing eλ.

Proof. See [Mum91, pp. 44–46]. �

Corollary 4.7. The connecting homomorphism q : H1(A[λ])→ H2(Gm) induced by (4) is a
quadratic form whose associated bilinear pairing H1(A[λ])×H1(A[λ])→ H2(Gm) sends (x, y)
to −x ∪

eλ
y.

Proof. Applying [PR11, Proposition 2.9] to (4) shows that q is a quadratic map giving rise to
the bilinear pairing claimed. By Remark 2.1, it remains to prove the identity q(−v) = q(v).
Functoriality of (4) with respect to the automorphism [−1] of A gives a commutative diagram

1 // Gm
// H(L ) //

��

A[λ] //

−1
��

1

1 // Gm
// H([−1]∗L ) // A[λ] // 1.
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But [−1]∗L ' L , so both rows give rise to q. Functoriality of the connecting homomorphism
gives q(−v) = q(v) for any v ∈ H1(A[λ]). �

Remark 4.8. The proof of the next proposition involves a sheaf of sets on the big fppf site of
Spec k, but in the case char k - deg λ, it is sufficient to think of it as a set with a continuous
Gk-action.

Proposition 4.9. Identify Â(k)/λA(k) with its image W under δ in (3). Then q|W = 0.

Proof. Let P be the Poincaré line sheaf on A × Â. For y ∈ Â(k), let Py be the line sheaf
on A obtained by restricting P to A × {y}. For any y1, y2 ∈ Â(k), there is a canonical
isomorphism ιy1,y2 : Py1 ⊗Py2 →Py1+y2 , satisfying a cocycle condition [Pol03, §10.3].

The groupH(L )(k) acts on the left on the set of triples (x, y, φ) where x ∈ A(k), y ∈ Â(k),
and φ : L ⊗Py → (τ ∗xL ) as follows:

(x, φ)(x′, y′, φ′) = (x+ x′, y′, (τx′φ)φ′).

The same holds after base extension, and we get an fppf-sheaf of sets G(L ) on which H(L )

acts freely. There is a morphism G(L )→ Â sending (x, y, φ) to y, and this identifies Â with
the quotient sheaf H(L )\G(L ). There is also a morphism G(L ) → A sending (x, y, φ) to
x, and the action of H(L ) on G(L ) is compatible with the action of its quotient A[λ] on A.
Thus we have the following compatible diagram:

1 // H(L ) //

��

G(L ) //

��

Â //

��

0

0 // A[λ] // A
λ // Â // 0,

where the first row indicates only that H(L ) acts freely on G(L ) with quotient being Â.
This is enough to give a commutative square of pointed sets

H0(Â) // H1(H(L ))

��

H0(Â) // H1(A[λ]),

so H0(Â)→ H1(A[λ]) factors through H1(H(L )). But the sequence H1(H(L ))→ H1(A[λ])→
H2(Gm) from (4) is exact, so the composition H0(Â)→ H1(A[λ])→ H2(Gm) is 0. �

Remark 4.10. Proposition 4.9 can be generalized to an abelian scheme over an arbitrary base
scheme S. The proof is the same.

4.2. Local fields. Let kv be a local field. The group H1(kv, A[λ]) has a topology making it
locally compact, the group H2(kv,Gm) may be identified with a subgroup of Q/Z and given
the discrete topology, and the quadratic form q : H1(kv, A[λ]) → H2(kv,Gm) is continuous
(cf. [Mil06, III.6.5]; the same arguments work even though (4) has a nonabelian group in the
middle). The composition

H1(kv, A[λ])
q→ H2(kv,Gm) ↪→ Q/Z
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is a quadratic form qv. By local duality [Mil06, I.2.3, I.2.13(a), III.6.10], qv is nondegenerate.
Moreover, H1(kv, A[λ]) is finite if char kv - deg λ [Mil06, I.2.3, I.2.13(a)], and σ-compact in
general [Mil06, III.6.5(a)], so it is second-countable by Corollary 2.12.

Proposition 4.11. Let kv be a local field. In (3) for kv, the group W ' Â(kv)/λA(kv) is
a compact open maximal isotropic subgroup of (H1(kv, A[λ]), qv), which is therefore weakly
metabolic.

Proof. By Proposition 4.9, qv restricts to 0 on W , so it suffices to show that W⊥ = W . Let
A(kv)• be A(kv) modulo its connected component (which is nonzero only if kv is R or C).
Then W is the image of Â(kv)• → H1(kv, A[λ]), so W⊥ is the kernel of the dual map, which
by Tate local duality [Mil06, I.3.4, I.3.7, III.7.8] is H1(kv, A[λ]) → H1(kv, A). This kernel is
W , by exactness of (3). �

Suppose that kv is nonarchimedean. Let Ov is its valuation ring and let Fv be its residue
field. Suppose that A has good reduction, i.e., that it extends to an abelian scheme (again
denoted A) over Ov. Then the fppf-cohomology group H1(Ov, A[λ]) is an open subgroup of
H1(kv, A[λ]).

Remark 4.12. If moreover charFv - deg λ, then we may understand H1(Ov, A[λ]) in concrete
terms as the kernel H1(kv, A[λ])unr of the restriction map

H1(kv, A[λ])→ H1(kunr
v , A[λ])

of Galois cohomology groups.
Proposition 4.13. Suppose that kv is nonarchimedean. Suppose that A extends to an abelian
scheme over Ov. Then the subgroups W ' Â(kv)/λA(kv) and H1(Ov, A[λ]) in H1(kv, A[λ])
are equal. In particular, H1(Ov, A[λ]) is a maximal isotropic subgroup.

Proof. By [Mil80, III.3.11(a)] and [Lan56], respectively, H1(Ov, A) ' H1(Fv, A) = 0. The
valuative criterion for properness [Har77, II.4.7] yields A(Ov) = A(kv) and Â(Ov) = Â(kv).
So taking cohomology of (3) over Ov gives the result. �

4.3. Global fields. Let k be a global field. For any nonempty subset S of Ω containing the
archimedean places, define the ring of S-integers OS := {x ∈ k : v(x) ≥ 0 for all v /∈ S}.

Let A be an abelian variety over k, Let λ : A → Â be a self-dual isogeny as in Case I
or II of Section 4.1. Choose a nonempty finite S containing all bad places, by which we mean
that S contains all archimedean places and A extends to an abelian scheme A over OS . In
Example 2.18 take I = Ω, Vi = H1(kv, A[λ]), Qi = qv, and Wi = Â(kv)/λA(kv), which is
valid by Proposition 4.11. The resulting restricted direct product

V :=
∏′

v∈Ω

(
H1(kv, A[λ]),

Â(kv)

λA(kv)

)
equipped with the quadratic form

Q :
∏′

v∈Ω

(
H1(kv, A[λ]),

Â(kv)

λA(kv)

)
→ Q/Z

(ξv)v∈Ω 7→
∑
v

qv(ξv)
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is a second-countable weakly metabolic locally compact quadratic module. Proposition 4.13,
which applies for all but finitely many v, shows that

V =
∏′

v∈Ω

(
H1(kv, A[λ]),H1(Ov, A[λ])

)
.

(The subgroup H1(Ov, A[λ]) is defined and equal to Â(kv)/λA(kv) only for v /∈ S, but that
is enough.)

As usual, define the Selmer group

SelλA := ker

(
H1(k,A[λ])→

∏
v∈Ω

H1(kv, A)

)
.

Below will appear X1(k,A[λ]), which is a subgroup of SelλA, and is not to be confused
with the Shafarevich-Tate group X(A) = X1(k,A).

Theorem 4.14.
(a) The images of the homomorphisms

H1(k,A[λ])

��∏
v∈Ω

Â(kv)

λA(kv)
//
∏′

v∈Ω

(H1(kv, A[λ]),H1(Ov, A[λ]))

are maximal isotropic subgroups with respect to Q.
(b) The vertical map induces an isomorphism from SelλA/X1(k,A[λ]) to the intersection of

these two images. (See Section 3 for information about X1(k,A[λ]), which is often 0.)

Proof.
(a) The subgroup

∏
v∈Ω Â(kv)/λA(kv) (or rather its imageW under the horizontal injection)

is maximal isotropic by construction.
The vertical homomorphism H1(k,A[λ])→

∏′

v∈Ω
(H1(kv, A[λ]),H1(Ov, A[λ])) is well-

defined since each element of H1(k,A[λ]) belongs to the subgroup H1(OT , A[λ]) for some
finite T ⊆ Ω containing S, and OT ⊆ Ov for all v /∈ T . Let W be the image. Suppose
that s ∈ H1(k,A[λ]), and let w ∈ W be its image. The construction of the quadratic form
of Corollary 4.7 is functorial with respect to base extension, so Q(w) can be computed
by evaluating the global quadratic form

q : H1(k,A[λ])→ H2(k,Gm)

on s, and afterwards summing the local invariants. Exactness of

0→ H2(k,Gm)→
⊕
v∈Ω

H2(kv,Gm)
∑

inv−→ Q/Z→ 0

in the middle (the reciprocity law for the Brauer group: see [GS06, Remark 6.5.6] for
references) implies that the sum of the local invariants of our global class is 0. Thus
Q|W = 0.
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It remains to show that W is its own annihilator. Since eλ identifies A[λ] with its
own Cartier dual, the middle three terms of the 9-term Poitou-Tate exact sequence
([Mil06, I.4.10(c)] and [GA09, 4.11]) give the self-dual exact sequence

H1(k,A[λ])
β1−→

∏′

v∈Ω

(H1(kv, A[λ]),H1(Ov, A[λ]))
γ1−→ H1(k,A[λ])∗,

where ∗ denotes Pontryagin dual. Since W = im(β1) and the dual of β1 is γ1,

W⊥ = ker(γ1) = im(β1) = W.

(b) This follows from the exactness of (3) for S = Spec kv for each v ∈ Ω. �

Remark 4.15. There is a variant of Theorem 4.14 in which the infinite restricted direct
product is taken over only a subset S of Ω containing all bad places and all places of residue
characteristic dividing deg λ. If S is finite, then the restricted direct product becomes a
finite direct product. The same proof as before shows that the images of

∏
v∈S Â(kv)/λA(kv)

and H1(OS , A[λ]) are maximal isotropic. The intersection of the images equals the image of
SelλA.

Remark 4.16. Suppose thatA = JacC and λ is multiplication-by-2, with L as in Remark 4.5.
Let cT be as in Definition 3.2, and let cT ,v be its image in H1(kv, A[2]). It follows from
[PS99, Corollary 2] that cT ∈ Sel2A. By [PR11, Theorem 3.9],

x ∪
e2
x = x ∪

e2
cT (5)

for all x ∈ H1(kv, A[2]). This, with Remark 2.8, implies that qv takes values in 1
2
Z/Z (instead

of just 1
4
Z/Z) if and only if cT ,v = 0. Thus

Q takes values in 1
2
Z/Z ⇐⇒ cT ∈X1(k,A[2]).

For an example with cT ∈ Sel2A −X1(k,A[2]), and another example with 0 6= cT ∈
X1(k,A[2]), see [PR11, Example 3.12].

Remark 4.17. Suppose that we are considering a family of abelian varieties with a systematic
subgroup G of SelλA coming from rational points (e.g., a family of elliptic curves with
rational 2-torsion). Let X be the image of G in

∏′

v∈Ω
(H1(kv, A[λ]),H1(Ov, A[λ])). Then

our model for SelλA should be that its image in X⊥/X is an intersection of random maximal
isotropic subgroups. In particular, the size of SelλA/X1(k,A[λ]) should be distributed as
#X times the size of the random intersection.

Example 4.18. Suppose that char k 6= p and A is an elliptic curve E : y2 = f(x). The theta
divisor Θ on E is the identity point with multiplicity 1. Let L = O(pΘ). Then λ is E p→ E,
and SelλA is the p-Selmer group SelpE. Moreover, X1(k,E[p]) = 0 by Proposition 3.3(e).
Thus Theorem 4.14 identifies SelpE as an intersection of two maximal isotropic subspaces in
an Fp-vector space. Moreover, the values of the quadratic form on that space are killed by
p, even when p = 2, since cT = 0 in (5). In particular, dim SelpE should be expected to be
distributed according to XSelp , with the adjustment given by Remark 4.17 when necessary
for the family at hand. This is evidence for Conjecture 1.1(a). The rest of Conjecture 1.1,
concerning moments, is plausible given Proposition 2.22(a).

20



Example 4.19. The same reasoning applies to the p-Selmer group of the Jacobian of a
hyperelliptic curve y2 = f(x) over a global field of characteristic not 2 in the following cases:

• f is separable of degree 2g + 1, and p is arbitrary;
• f is separable of degree 2g + 2, and p is odd.

(Use Propositions 3.3(f) and 3.4, and Remark 3.5.) This suggests Conjecture 1.7.

Example 4.20. Consider y2 = f(x) over a global field k of characteristic not 2 with deg f =
2g + 2 for even g ≥ 2. Proposition 3.4 and Remark 3.5 show that X1(k,A[p]) is 0 with
probability 1 for each p 6= char k. But the Hilbert irreducibility theorem shows that cT 6= 0
with probability 1, so Remarks 4.16 and 2.8 suggest that dim Sel2A now has the distribution
XSel2 + 1. This suggests Conjecture 1.8.

In the analogous situation with g odd, it is less clear what to predict for Sel2A: using
techniques in [PS99, §9.2] one can show that the probability that cW1 lies in Sel2A is strictly
between 0 and 1, and the existence of this element may invalidate the random model.

5. Relation to heuristics for X and rank

The Hilbert irreducibility theorem shows that asymptotically 100% of elliptic curves (or-
dered by naïve height) have E(Q)[p] = 0. (For much stronger results, see [Duk97] and
[Jon10].) So for statistical purposes, when letting E run over all elliptic curves, we may
ignore contributions of torsion to the p-Selmer group.

In analogy with the Cohen-Lenstra heuristics [CL84], Delaunay has formulated a conjec-
ture describing the distribution of Shafarevich-Tate groups of random elliptic curves over Q.
We now recall his conjectures for dimFp X[p]. For each prime p and r ∈ Z≥0, let XX[p],r be
a random variable taking values in 2Z≥0 such that

Prob
(
XX[p],r = 2n

)
= p−n(2r+2n−1)

∏∞
i=n+1(1− p−(2r+2i−1))∏n

i=1(1− p−2i)
.

The following conjecture is as in [Del01, Example F and Heuristic Assumption], with the
correction that u/2 in the Heuristic Assumption is replaced by u (his u is our r). This
correction was suggested explicitly in [Del07, §3.2] for rank 1, and it seems natural to make
the correction for higher rank too.

Conjecture 5.1 (Delaunay). Let r, n ∈ Z≥0. If E ranges over elliptic curves over Q of rank
r, up to isomorphism, ordered by conductor, then the fraction with dimFp X(E)[p] = 2n

equals Prob
(
XX[p],r = 2n

)
.

If the “rank” r itself is a random variable R, viewed as a prior distribution, then the
distribution of dim SelpE should be given by R+XX[p],R. On the other hand, Theorem 4.14
suggests that dim SelpE should be distributed according to XSelp . Let Rconjectured be the
random variable taking values 0 and 1 with probability 1/2 each.

Theorem 5.2. For each prime p, the unique Z≥0-valued random variable R such that XSelp

and R +XX[p],R have the same distribution is Rconjectured.
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Proof. First we show that Rconjectured has the claimed property. This follows from the follow-
ing identities for n ∈ Z≥0:

Prob
(
XSelp = 2n

)
= c

2n∏
j=1

p

pj − 1

=
1

2

∏
i≥0

(1− p−(2i+1)) · p−n(2n−1)

2n∏
j=1

(1− p−j)−1

=
1

2
p−n(2n−1)

∏
i≥n+1

(1− p−(2i−1))
n∏
i=1

(1− p−2i)−1

=
1

2
Prob

(
XX[p],0 = 2n

)
Prob

(
XSelp = 2n+ 1

)
= c

2n+1∏
j=1

p

pj − 1

=
1

2

∏
i≥0

(1− p−(2i+1)) · p−n(2n+1)

2n+1∏
j=1

(1− p−j)−1

=
1

2
p−n(2n+1)

∏
i≥n+1

(1− p−(2i+1))
n∏
i=1

(1− p−2i)−1

=
1

2
Prob

(
XX[p],1 = 2n

)
.

Next we show that any random variable R with the property has the same distribution as
Rconjectured. For r ∈ Z≥0, define a function fr : Z≥0 → R by fr(s) := Prob(XX[p],r = s − r).
The assumption on R implies that

∞∑
r=0

Prob(R = r)fr(s) =
∞∑
r=0

Prob (Rconjectured = r) fr(s).

Thus to prove that R and Rconjectured have the same distribution, it will suffice to prove that
the functions fr are linearly independent in the sense that for any sequence of real numbers
(αr)r≥0 with

∑
r≥0 |αr| <∞, the equality

∑∞
r=0 αrfr = 0 implies that αr = 0 for all r ∈ Z≥0.

In fact, αr = 0 by induction on r, since fr(s) = 0 for all s > r, and f(r, r) > 0. �
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