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1. Main result

Our result, loosely speaking, is that in a nontrivial family of varieties f : X → Y over a
perfect field k, some fiber Xt = f−1(t) has a point rational over the field of definition of t.
The precise statement, which is slightly more general, is given in Theorem 1 below. Denote
by f(X) the scheme-theoretic image of a morphism f : X → Y between noetherian schemes,
and by κ(x) the residue field of a point x of a scheme.

Theorem 1. Let X and Y be schemes of finite type over a field k. Let f : X → Y be a
k-morphism such that dim f(X) ≥ 1. Then there exists a closed point x ∈ X such that the
extension κ(x) of κ(f(x)) is purely inseparable.

Proof. We begin with several straightforward reductions. If we cover Y with finitely many

open affine subsets V , one of them must satisfy dim
(
V ∩ f(X)

)
≥ 1. Similarly, some open

affine subset U of f−1(V ) satisfies dim
(
V ∩ f(U)

)
≥ 1. By considering f |U : U → V instead

of f , we reduce to the case X = Spec A and Y = Spec B. Let φ : B → A correspond to f .

If f ′ is a composition X ′ α→ X
f→ Y

β→ Y ′ of morphisms of schemes of finite type over
k with dim f ′(X ′) ≥ 1, and if we find a closed point x′ ∈ X ′ with κ(x′) purely inseparable
over κ(f ′(x′)), then x = α(x′) ∈ X will do for f . For instance, composing Xred → X with
f does not affect the dimension of the image in Y , so we may assume X is reduced. Some
irreducible component of X will have positive-dimensional image in Y ; hence we may assume
X is integral.

Replacing Y by f(X), or equivalently B by φ(B), we may assume that φ is injective and
dim Y ≥ 1. Since dim B = dim Y ≥ 1, the polynomial ring k[t] injects into B. Composing f
with the associated morphism Y → A1, we reduce to the case Y = A1, B = k[t].

Let S = k[t] \ {0}, and let m be a maximal ideal of S−1A. Let A′ be the image of A in
L := (S−1A)/m. The composition B = k[t] → A → A′ is still injective, so we may reduce to
the case A = A′.

Now S−1A = Frac(A) = L is both a field and a finitely generated k(t)-algebra, so
[L : k(t)] < ∞ by the Nullstellensatz. Write k(t) ⊆ L0 ⊂ L1 ⊂ · · · ⊂ Lr = L with L0

separable over k(t) and Li+1 = Li(ui) purely inseparable of degree p over Li, where p is
the characteristic of k. By the Primitive Element Theorem, we may write L0 = k(t)(z).
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Multiplying z by a nonzero element of k[t], we may assume that the characteristic polyno-
mial P (T ) of z in L0 over k(t) has coefficients in B = k[t]. Let Ai = B[z, u1, . . . , ui], so
S−1Ai = Li. Pick q ∈ B nonzero such that up

i+1 ∈ Ai[q
−1] for each i and Ar[q

−1] = A[q−1].
We claim that for some b ∈ B, b − z 6∈ A0[q

−1]∗. It suffices to find b ∈ B such that
P (b) = NormL0/k(t)(b − z) is not a unit in B[q−1]. Let Tn be the set of polynomials in t of
exact degree n with coefficients in {0, 1}, so #Tn = 2n. Let d = deg P . Then {P (b) : b ∈ Tn }
consists of at least 2n/d distinct polynomials, each monic of degree nd if n is larger than
the t-degree of the coefficients of P . On the other hand, factoring q over k shows that the
number of monic polynomials of degree nd in B[q−1]∗ is less than O

(
(nd)deg q

)
as n → ∞.

By taking n large, we find b ∈ Tn such that P (b) 6∈ B[q−1]∗, and hence b− z 6∈ A0[q
−1]∗.

Choose a maximal ideal n0 of A0[q
−1] containing b − z. Since Ai+1[q

−1] has the form
Ai[q

−1][U ]/(Up − αi) for some αi ∈ Ai[q
−1], there is a unique maximal ideal n of Ar[q

−1] =
A[q−1] above n0. Let x0 ∈ Spec A0[q

−1] and x ∈ Spec A[q−1] ⊆ Spec A = X be the corre-
sponding closed points, so κ(x) is purely inseparable over κ(x0). It remains to show that
the extension κ(x0) of κ(f(x)) is trivial. Let t̄ and b̄ = z̄ denote the images of t, b, and z in
κ(x0). Then κ(x0) = k(t̄, z̄) = k(t̄, b̄) = k(t̄) = κ(f(x)). �

Remark. In Theorem 1, if in addition some dense open subset of X is smooth over its image
in Y , then we can find a closed point x ∈ X with κ(x) = κ(f(x)): by (IV, 17.16.3(ii)) of [2]
one can reduce to the case where X is étale over its image, and then by (IV, 17.6.1(a,c′))
of [2] all residue field extensions are separable. (When we write κ(x) = κ(f(x)), we mean
that the field homomorphism κ(f(x)) → κ(x) induced by f is an isomorphism.)

Corollary 2. Let X and Y be schemes of finite type over a perfect field k. Let f : X → Y
be a k-morphism such that dim f(X) ≥ 1. Then there exists a closed point x ∈ X such that
κ(x) = κ(f(x)).

Proof. Theorem 1 provides x. The extension κ(x) of κ(f(x)) is automatically separable,
since both fields are finite extensions of the perfect field k. �

Remark . Corollary 2 can fail for nonperfect k. Here is a counterexample. Let k0 be a
perfect field of characteristic p, let k = k0(s, t) where s, t are indeterminates, and let L =
k0(s

1/p, t1/p). Let f : X → Y be the morphism of affine k-schemes associated to the inclusion
k[z] ↪→ L[z]. Suppose that there exists a closed point x ∈ X with [κ(x) : κ(f(x))] = 1. Let
α ∈ L be a root of the polynomial in L[z] generating the prime x. Then [L(α) : k(α)] = 1,
so L ⊆ k(α). We obtain the contradiction

p2 = [L : kLp] ≤ [k(α) : k · k(α)p] = [k(α) : k(αp)] ≤ p.

(The first inequality is the case F = k(α) of the inequality [L : kLp] ≤ [F : kF p] for finite
extensions of fields k ⊆ L ⊆ F of characteristic p: this follows from [F : L] = [F p : Lp] ≥
[kF p : kLp] and [F : L][L : kLp] = [F : kF p][kF p : kLp].)

2. Arithmetic analogues

Theorem 4 below is an arithmetic analogue of Corollary 2. Lemma 3 is a special case of
Theorem 4, and will be used to prove it.

Lemma 3. Let f : X → SpecZ be a dominant morphism of finite type. Then there exists
x ∈ X such that κ(x) = κ(f(x)) (or equivalently, such that κ(x) has prime order).
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Proof. Mimic the proof of Theorem 1 with Z playing the role of k[t]. Eventually we reduce
to the statement that if q is a nonzero integer, and P ∈ Z[T ] is a nonconstant polynomial,
then there exists b ∈ Z such that P (b) 6∈ Z[q−1]∗. This holds, by a counting argument again:
if deg P = d, then {P (1), . . . , P (n)} is a set of at least n/d distinct integers of absolute value
O(nd), but the number of integers in Z[q−1] up to this bound grows like a power of log n
only. �

Remark. Alternatively, after reducing to the case dim X = 1, one could invoke the Cheb-
otarev Density Theorem. Of course, this would make the proof less elementary.

Theorem 4. Let X and Y be schemes of finite type over SpecZ, and let f : X → Y be
a morphism such that dim f(X) ≥ 1. Then there exists a closed point x ∈ X such that
κ(x) = κ(f(x)).

Proof. If X dominates SpecZ, use the x given by Lemma 3. Otherwise there are finitely many
nonzero primes p of Z for which the fiber Xp of X → SpecZ is nonempty, so dim f(Xp) ≥ 1
for some p. Apply Corollary 2 to the morphism of fibers fp : Xp → Yp over Fp to find x. �

3. Application to Shafarevich-Tate groups in a family

The paper [1] constructs a nonisotrivial smooth proper family X → U of genus 1 curves
over an open subset U of P1

Q, such that for each t ∈ U(Q), the fiber Xt violates the Hasse
principle. It also constructs a nonisotrivial smooth proper family Y → U of torsors of
abelian surfaces over an open subset U of P1

Q such that for every t ∈ U of odd degree over
Q, Yt violates the Hasse principle over the number field κ(t). In other words, these fibers
represent nonzero elements of the Shafarevich-Tate groups of the associated abelian varieties.
Corollary 2 shows that such results cannot be extended to all closed fibers of a family: there
will always be a closed point t ∈ U above which the fiber has a point rational over κ(t).
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