
SUMS OF VALUES OF A RATIONAL FUNCTION

BJORN POONEN

Abstract. Let K be a number field, and let f ∈ K(x) be a nonconstant
rational function. We study the sets{

n∑
i=1

f(xi) : xi ∈ K − {poles of f}

}
and {

n∑
i=1

f(xi)−
2n∑

i=n+1

f(xi) : xi ∈ K − {poles of f}

}
for large n. These are rational function analogues of Waring’s Problem.

1. Introduction

Lagrange proved that every nonnegative integer is a sum of four integer
squares. Waring claimed that for each k ≥ 1, there exists n ≥ 1 such that
every nonnegative integer is a sum of n nonnegative kth powers. Hilbert
proved this, and later the circle method was developed to give a simpler
approach to this and other such questions. Analogues over number fields
are known. There is also the easier problem which asks for representations
of an integer as

n∑
i=1

xki −
n+n′∑
i=n+1

xki

when n and n′ are large relative to k. See the beginning of the book [Vau97]
for an introduction to some of these problems.

Each of these results for integers implies its analogue for rational numbers.
This paper studies what happens when the function f(x) = xk is replaced
by an arbitrary rational function f(x). The problem can be generalized
further by considering number fields instead of Q, but already over Q the
problem seems very difficult: see Section 5.

Our two main theorems give partial answers to these questions:
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Theorem 1.1. Suppose K is a finite extension of Q. Let f ∈ K(x) be a
nonconstant rational function with all poles in K ∪∞. For n� 1 it is true
that for all c ∈ K, there exist x1, . . . , x2n ∈ K − {poles of f} such that

n∑
i=1

f(xi)−
2n∑

i=n+1

f(xi) = c.

Theorem 1.2. Keep the hypotheses of Theorem 1.1 and assume in addition
that f has at most 3 poles, all of which are simple. Then for n � 1 it is
true that for all c ∈ K, there exist x1, . . . , xn ∈ K − {poles of f} such that

n∑
i=1

f(xi) = c.

Conjecture 1.3. Theorem 1.2 holds even for f having more than 3 poles,
provided that all the poles are simple and in K ∪∞.

To give a sense of the main ideas of the paper, let us sketch a proof of
Theorem 1.1 in the case that K = Q and all poles of f are simple and in
Q. We will find a “generic” solution: namely, we will g1, . . . , gn+n′ ∈ Q(x)
such that

n∑
i=1

f(gi(x))−
n+n′∑
i=n+1

f(gi(x)) = x.

Then by specializing x we can represent any rational number in the desired
form. (Actually, a further trick is needed to force n = n′ and to represent
the rational numbers at which the gi have poles, but let us ignore these
technicalities for now.) To find the gi, we let

S :=

{
n∑

i=1

f(gi(x))−
n+n′∑
i=n+1

f(gi(x))

∣∣∣∣ n, n′ ≥ 0, gi ∈ Q(x) and deg gi = 1

}
⊂ Q(x)

and let P1 be the set of γ ∈ S such that all poles of γ lie in Z (they are
automatically simple). Each γ ∈ P1 has the form

γ(x) =
s∑

i=1

ai
x− ri

+ b

where the ri are distinct integers, ai ∈ Q∗, and b ∈ Q. The trick is to
associate to γ the Laurent polynomial

γ :=
s∑

i=1

aiT
ri ∈ Q[T, T−1],
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and let M := { γ : γ ∈ P1 }.1 Clearly M is an additive subgroup of
Q[T, T−1]; moreover, since the operations γ(x) 7→ γ(x ± 1) map P1 into
itself, M is a Z[T, T−1]-submodule, and Q ·M is an ideal of Q[T, T−1]. With

a little work, one shows that for each α ∈ Q∗ there exists a Laurent poly-
nomial in Q ·M not vanishing at α, so that by the Hilbert Nullstellensatz,
Q ·M is the unit ideal. (Here we used the Nullstellensatz only for A1−{0},
but when we prove our theorem for number fields other than Q, we will
apply it to (A1−{0})n.) Knowing that 1 ∈ Q ·M means that some function
a
x

+ b with a 6= 0 belongs to S. Substituting the inverse fractional linear
transformation into x shows that x itself belongs to S, completing the proof.

Remark 1.4. Without the assumption that the poles of f are in K ∪ ∞,
Theorems 1.1 and 1.2 can fail. See Section 5.

Question 1.5. Do Theorems 1.1 and 1.2 hold for arbitrary fields K? Prob-
ably both can fail.

We now outline the structure of the paper. Section 2 uses Hensel’s Lemma
to prove an analogous (but much easier) result over p-adic fields; this is not
needed for the global results, but helps motivate the discussion in Section 5.
Sections 3 and 4 prove Theorems 1.1 and 1.2, respectively. Section 5 raises
questions about the number field case not yet addressed by our results. Fi-
nally, Section 6 discusses potential implications for diophantine definability.

2. Sums over p-adic fields

Proposition 2.1. Suppose that [Kv : Qp] <∞ for some finite prime p. Let
f ∈ Kv(x) be nonconstant. Then there exists c ∈ Kv and an open additive
subgroup G of Kv such that for all sufficiently large n,

{ f(t1) + · · ·+ f(tn) | t1, . . . , tn ∈ Kv } = nc+G.

Remark 2.2. The open additive subgroups of Qp are Qp and pnZp for n ∈ Z.
For other local fields Kv, there are others, such as Zp + pnO, where O is the
ring of integers of Kv.

Proof.
Case 1: f has a pole at some point P ∈ P1(Kv).

Expand f in a Laurent series in a uniformizer t at P . Let ε be the
coefficient of t−r, where r is the order of the pole. By scaling f , we may
assume that ε = 1. There is a power series g = t + · · · ∈ Kv[[t]] such that
g−r = f and g converges for sufficiently small t. By Hensel’s Lemma, the set
of values taken by g on any neighborhood of 0 contains a neighborhood of 0.

1A. Okounkov pointed out to me that up to some normalizations, γ(T ) is the Fourier
transform of γ(x)!
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Thus every sufficiently large r-th power in Kv is a value of f . Next we must
show that there exists n such that any γ ∈ Kv is a sum of large r-th powers.
To accomplish this, first use Hensel’s Lemma to write 0 = αr

1 + · · ·+ αr
n for

some n ≥ 1 and α1, . . . , αn ∈ K∗v . Let βi = Mαi for some M ∈ Kv much

larger than γ, and use Hensel’s Lemma to replace β1 by some β̃1 closer to
β1 than to 0, such that

β̃r
1 + βr

2 + · · ·+ βr
n = γ.

Thus we may take c = 0 and G = Kv.

Case 2: f has no poles in P1(Kv).
Let O be the ring of integers in Kv, and let π be a uniformizer. Since

f is nonconstant, there exists α ∈ Kv such that f ′(α) 6= 0. By Hensel’s
Lemma, f(Kv) contains a neighborhood of f(α). By considering f − f(α)
instead of f , we reduce to the case where f(α) = 0. Now f(Kv) contains an
open subgroup H := πrO for some r ∈ Z. On the other hand, since f has
no poles, compactness implies that f(P1(Kv)) ⊂ πRO for some R ∈ Z. Let
Sn ⊆ Kv/H be the set of cosets that contain f(t1) + · · · + f(tn) for some
t1, . . . , tn. Since 0 is a value of f , the Sn form an increasing sequence. On
the other hand, each Sn is contained in the finite set πRO/πrO, so there
exists n such that SN = Sn for all N ≥ n. Since Sn is finite and closed under
addition, it is a subgroup of Kv/H. Let G be the union of the cosets in Sn.
Then G is an open subgroup of Kv, and all values of f are in G. On the
other hand, every element of G is a sum of n + 1 values of f , by definition
of Sn, since we can arrange to have f(tn+1) equal any desired element of
H. �

Corollary 2.3. Under the hypotheses of Proposition 2.1, the values of

f(t1) + · · ·+ f(tn)− f(tn+1)− · · · − f(t2n)

form an open subgroup of Kv.

Analogous results for rational functions in many variables over p-adic
fields can be proved in the same way.

3. Sums and differences over number fields

This section is devoted to the proof of Theorem 1.1. The first lemma of
this section is a thinly disguised version of Hilbert’s Nullstellensatz, as its
proof will reveal. Its relevance will become clear in the proof of Lemma 3.2.
We fix an integer d ≥ 1 (which eventually will be taken to be [K : Q]) and
for any ring R, we define R[T,T−1] = R[T1, T

−1
1 , . . . , Td, T

−1
d ]. If k is a field

and t ∈ (k
∗
)d, let evt : k[T,T−1] → k denote the evaluation map, which

induces evt : V ⊗k k[T,T−1]→ V ⊗k k for any k-vector space V .
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Lemma 3.1. Let V be a finite-dimensional vector space over a field k. If M
is a k[T,T−1]-submodule of N := V ⊗k k[T,T−1] and M 6= N , then there

exist nonzero λ ∈ Homk(V ⊗k k, k) and t ∈ (k
∗
)d such that λ(evt(F )) = 0

for all F ∈M .

Proof. Without loss of generality, we may assume k = k. Let A = k[T,T−1],
which is a noetherian ring. Then N is a noetherian A-module, so we may
assume M is a maximal proper submodule of N . The A-module homomor-
phism A→ N/M sending 1 to any n ∈ N \M must then be surjective, with
kernel equal to a maximal ideal m. Hence mN ⊆M . The ring A is the ring
of regular functions on the affine variety (A1\{0})d, so by Hilbert’s Nullstel-

lensatz, A/m ' k is an isomorphism induced by evt for some point t ∈ (k
∗
)d.

Since mN ⊆ M ( N , the image of M under evt : N = V ⊗k A → V is a
proper subspace of V , so there exists a nonzero λ ∈ Homk(V, k) such that
λ(evt(M)) = 0, as desired. �

The main step in the proof of Theorem 1.1 is the following lemma, which
obtains a representation of the rational function x as a combination of values
of f .

Lemma 3.2. Suppose [K : Q] < ∞. Let f ∈ K(x) be nonconstant with
all poles in K ∪∞. For some n, n′ ≥ 1, there exist g1, . . . , gn+n′ ∈ K(x) of
degree 1 such that

n∑
i=1

f(gi(x))−
n+n′∑
i=n+1

f(gi(x)) = x.

Remark 3.3. Whenever we write f(gi(x)), there is also the tacit requirement
that gi(x) should not be a constant equal to a pole of f .

Proof. Define

S :=

{
n∑

i=1

f(gi(x))−
n+n′∑
i=n+1

f(gi(x))

∣∣∣∣ n, n′ ≥ 0, gi ∈ K(x) and deg gi = 1

}
⊂ K(x).

We need to show that x ∈ S. Below we will frequently use without mention
the easy fact that if j ∈ S, and g ∈ K(x) is of degree 1, then j ◦ g ∈ S.

For j ∈ K(x), let m(j) denote the maximum order of all poles of j. Since
S contains nonconstant rational functions, we may choose a nonconstant
j ∈ S minimizing m := m(j).

Case 1. j has a unique pole of order m.
If m = 1, then deg j = 1, so x = j ◦ g ∈ S, where g is the inverse function

of j. If m > 1, then by replacing j with j ◦ g for some g of degree 1,
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we may assume that the pole is at ∞. Then j(x + 1) − j(x) ∈ S, but
0 < m(j(x+ 1)− j(x)) = m− 1 < m, contradicting the definition of j.

Case 2. j has more than one pole of order m.
Let d = [K : Q]. Let α1, . . . , αd be a Z-basis for the ring of integers OK

of K. Let Pm be the set of γ ∈ S such that m(γ) ≤ m, and such that all
poles of γ of order m are in OK . By replacing the given j with j ◦ g for
some g of degree 1, we may assume first that j has no pole at ∞, and then
that j ∈ Pm.

Given any γ ∈ Pm, write γ as

(1) γ(x) =
s∑

i=1

ai
(x− ri)m

+ (terms with lower order poles)

where the ri are distinct elements of OK and ai ∈ K∗, and define the
operation by

γ :=
s∑

i=1

aiT
ki ∈ K[T,T−1],

where each vector of exponents ki = (ki1, . . . , ki,d) ∈ Zd is such that ri =
ki1α1+ · · ·+ki,dαd. Since Pm is an additive group, so is M := { γ | γ ∈ Pm }.
If 1 ≤ i ≤ d and k ∈ Z, and τ(x) is the polynomial x−kαi, then γ ◦ τ = T k

i γ.
Thus we arrive at the following key observation:

M is a Z[T,T−1]-submodule of K[T,T−1].

If Q · M = K[T,T−1], then there exists γ ∈ Pm such that γ ∈ Q∗ ⊂
K[T,T−1]. Then γ has a single pole (at 0) of order m, and we have reduced
to Case 1.

Otherwise, if Q·M 6= K[T,T−1], then by Lemma 3.1 applied with V = K,
k = Q, and Q ·M as M , there exist a nonzero λ ∈ HomQ(K ⊗ Q,Q) and

t ∈ (Q∗)d such that λ(evt(γ)) = 0 for all γ ∈ M . Pick a finite extension L
of Q over which λ and t are defined; i.e., so that λ maps K ⊗L into L, and
t ∈ (L∗)d. Replacing λ by an integer multiple, we may assume that λ maps
OK ⊗ OL into OL. Define ai, ri ∈ K so that (1) holds with γ replaced by
our given j. For any prime p of Q, let OK,p (resp. OL,p) denote the subring
of K (resp. L) of elements that are integral at all the primes above p. By
the Chebotarev Density Theorem, there exists a prime p of Q such that

(1) p splits completely in K and in L,
(2) for any prime p of L above p, the (OL/p)-linear functional

λp : OK,p/(p)⊗ (OL/p)→ OL/p ' Fp

induced by λ is nonzero,

(3) t ∈
(
O∗L,p

)d
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(4) ai ∈ O∗K,p and ri − rk ∈ O∗K,p for all 1 ≤ i < k ≤ s.

(The conditions after the first one exclude only finitely many p.) Fix p as
in condition 2.

Replacing j(x) by j(x + c) for some c ∈ OK , we may assume that r1 =
p. Then the other ri are prime to p, because of condition 4. Let R =
r1r2 . . . rs 6= 0. Then η(x) := pmj(R/x) ∈ S has poles at R/ri for 1 ≤ i ≤
d, so η ∈ Pm. The coefficient bi of (x − R/ri)

−m in the partial fraction
decomposition of η(x) equals the value of

pm
(
x− R

ri

)m
ai(

R
x
− ri

)m
at x = R/ri (which makes sense after terms are cancelled), so

bi =

(
− p
ri

)m(
R

ri

)m

ai.

Since the ri are in O∗K,p except for r1 = p, and since ai ∈ O∗K,p, each bi
lies in OK,p; in fact, b1 ∈ O∗K,p and bi ∈ pmOK,p for 2 ≤ i ≤ s. Let
µ(x) = η(x+R/r1) ∈ Pm, to move the pole at R/r1 to 0. Then

µ ≡ b1 (mod pOK,p[T,T
−1]).

Since p splits completely in k,

OK,p/(p) ' Fp × · · · × Fp,

and since b1 ∈ O∗K,p, b1 reduces mod p to a vector of elements of F∗p on the
right. Since λp is nonzero, one of the factors on the right (tensored with
OL/p), say the i-th, is not killed by λp. Choose c ∈ OK whose image in

OK,p/(p) ' Fp × · · · × Fp

is zero in all coordinates except the i-th, and let θ(x) = µ(x/c). A short
calculation shows that θ ∈ Pm and

θ ≡ cmb1 (mod pOK,p[T,T
−1]).

Now
evt(θ) ≡ cmb1 ⊗ 1 (mod p(OK,p ⊗OL)).

By choice of c, the right hand side is not killed by λp, so λ(evt(θ)) cannot
possibly be zero. This contradicts the construction of λ and t. �

Theorem 3.4. Let K be a finite extension of Q. Let f ∈ K(x) be a non-
constant rational function all of whose poles are in K ∪ ∞. If n ≥ 1 is
sufficiently large, then for any h ∈ K(x), there exist g1, . . . , g2n ∈ K(x)
such that

n∑
i=1

f(gi(x))−
2n∑

i=n+1

f(gi(x)) = h(x).
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Proof. Find a representation of x as in Lemma 3.2, using n plus terms and
n′ minus terms. Write h = h1 − h2 where h1, h2 ∈ K(x) are nonconstant.
Substitute h1 for x in the identity giving x, then substitute h2 for x in the
same identity, and subtract the two equations to obtain a representation of
h using n + n′ plus terms and n + n′ minus terms. We can add pairs of
cancelling terms to obtain representations with more than n + n′ terms of
each sign. �

To prove Theorem 1.1, apply Theorem 3.4 with h(x) as the constant
c ∈ K. and substitute an element of K for x: all but finitely many elements
of K will yield a representation of the required form.

4. Sums over number fields

Fix a number field K for this section. If f, h ∈ K(x), we write h � f to
mean that for some n ≥ 1, there exist g1, . . . , gn ∈ K(x) of degree 1 such
that

∑n
i=1 f(gi(x)) = h(x). The set of h such that h � f is closed under

addition, and closed under h 7→ h ◦ j for any j ∈ K(x) of degree 1, so it
follows that � is transitive.

Lemma 4.1. Suppose f is a nonconstant function in K(x). Suppose that
the poles of f are simple and in K ∪ ∞. If there is a constant function
c ∈ K such that c � f , then x � f .

Proof. We are given an identity
∑n

i=1 f(gi(x)) = c. Let h(x) = f(g1(x)),
which is a nonconstant function with poles in K ∪∞ such that h � f and
c− h � f . Applying Lemma 3.2 to h yields an identity

n∑
i=1

h(ji(x))−
n+n′∑
i=n+1

h(ji(x)) = x

for some ji ∈ K(x) of degree 1. Then

n∑
i=1

h(ji(x)) +
n+n′∑
i=n+1

(c− h(ji(x))) = x+ n′c

and each summand on the left is � f , so x+ n′c � f . Substituting x− n′c
for x shows that x � f . �

Lemma 4.2. If f ∈ K(x) is nonconstant with ≤ 3 poles, all simple and in
K ∪∞, then there is a constant function c ∈ K such that c � f .

Proof. First suppose that f has ≤ 2 poles. Composing with a degree 1 func-
tion, we may assume without loss of generality that the poles are contained
in {0,∞}, so

f(x) = ax+
b

x
+ r
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for some a, b, r ∈ K. Then 2r = f(x) + f(−x) � f , and 2r is constant.
If f has 3 poles, then we may assume they are 0, 1, and ∞. Then

f(x) + f(−x) has 2 poles (at 1 and −1), and f(x) + f(−x) � f , so apply
the previous paragraph and use transitivity of �. �

Proof of Theorem 1.2. Applying Lemmas 4.1 and 4.2, we see that x � f .
Thus

∑m
i=1 f(gi(x)) = x for some gi ∈ K(x) of degree 1. Then

∑m
i=1 f(gi(x))+∑m

i=1 f(gi(c − x)) = c. Substitute an element of K for x: all but finitely

many choices lead to a representation of c as
∑2m

i=1 f(xi) with xi ∈ K.
To obtain a representation with n terms for n > 2m, choose x2m+1, . . . , xn ∈

K−{poles of f} arbitrarily, let c′ = c−
∑n

i=2m+1 f(xi), and use the previous

paragraph to find x1, . . . , x2m such that
∑2m

i=1 f(xi) = c′. �

5. Local-global questions

Throughout this section K denotes a number field, and f ∈ K(x) is a
nonconstant rational function.

Theorem 1.2 cannot be generalized to all nonconstant f with poles in
K∪∞, since there can be local obstructions at the real places. For instance,
if K = Q and f(x) = x2, then the equation is not solvable when c < 0.

Question 5.1. Is it possible that Theorem 1.2 can be extended to the case
where f has all poles in K ∪ ∞ (not necessarily simple), and the highest
order pole is of odd order?

Without the assumption that the poles of f are in K ∪ ∞, even Theo-
rem 1.1 can fail. For example, suppose that K = Q and f(x) = 2/(x2 − 2).
Local considerations show that

f(t) ∈ R :=

{
r

s
∈ Q

∣∣∣∣ r, s ∈ Z, and s is a product of primes of the form 8k ± 1

}
for any t ∈ Q. If c 6∈ R, then for any n,

n∑
i=1

f(xi)−
2n∑

i=n+1

f(xi) = c

has no solution over K.

Remark 5.2. Nevertheless, there are some rational functions having some
poles outside K ∪∞ for which the conclusions of Theorems 1.1 and 3.4 still
hold. For instance, if K = Q again, and

f(x) =
x

2
+

1

x2 − 2
,
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then although f has poles outside Q ∪ ∞, the combination f(x) − f(−x)
yields x, from which any other h ∈ Q(x) can be obtained. (See the proof of
Theorem 3.4 for this last step.)

Local obstructions explain the failure of Theorem 1.1 to generalize to
functions such as f(x) = 2/(x2 − 2). It is natural to ask whether these are
the only obstructions to representability of a rational numbers as a sum and
difference of a fixed number of values of f : More precisely, one might ask
the following:

Question 5.3. For n� 1 is it true that for each c ∈ K, the equation

(2)
n∑

i=1

f(xi)−
2n∑

i=n+1

f(xi) = c

has a solution over K if and only if it has a solution over all completions?
Equivalently, if Xn,c is the affine variety over K defined by (2) and the
inequalities saying that each xi does not equal a pole of f , is it true for
n� 1 that for all c ∈ K, the variety Xn,c satisfies the Hasse principle?

The analogous question with sums only has a negative answer. For ex-
ample, if K = Q and f(x) = (x2 − 2)2 then methods similar to those used
in the proof of Proposition 2.1 show that for n ≥ 5,

f(x1) + · · ·+ f(xn) = 0

has a solution over every completion of Q, while considering the equation
over R shows that it has no solution over Q. One could however, ask the
following:

Question 5.4. Is it true for n� 1 that for all c ∈ K, if

(3)
n∑

i=1

f(xi) = c

has a solution over every completion of K, and for each real completion Kv

the equation
∑n

i=1 f(xi) = c′ is solvable over Kv for all c′ in a neighborhood
of c, then (3) has a solution over K?

6. Undecidability

A subset A ⊆ Q is called diophantine over Q if there is a polynomial
g(t, x1, . . . , xn) such that

A = { a ∈ Q : ∃x1, . . . , xn ∈ Q with g(a, x1, . . . , xn) = 0 }.
If Z were diophantine over Q, then the (known) undecidability of Hilbert’s
Tenth Problem over Z would imply the undecidability of Hilbert’s Tenth
Problem over Q, that is, that there is no general algorithm for deciding
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whether a variety over Q has a rational point. See the book [DLPVG00] for
a discussion of this and related questions.

Given that it is unknown whether Z is diophantine over Q, it is natural
to ask whether other subrings between Z and Q can be proved to be dio-
phantine over Q. If S is the complement of a finite subset in the set of all
primes, then the semilocal ring Z[S−1] is known to be diophantine over Q:
this follows from [KR92]. Currently there are no other subsets S for which
Z[S−1] has been proved diophantine over Q.

If Question 5.3 has a positive answer for the example K = Q and f(x) =
2/(x2 − 2), then it would follow that the ring R = Z[S−1] is diophantine
over Q, where S is the set of primes of the form 8k± 1. If Question 5.3 has
a positive answer in general, then there would exist subsets S of arbitrarily
small positive natural density such that Z[S−1] is diophantine over Q. One
cannot hope to obtain Z as a finite intersection of subrings arising in this
way, however, since if L is the number field generated by the poles of the
corresponding rational functions f , then all the primes splitting completely
in L will remain invertible in the intersection, and these form a set of primes
of positive density, by the Chebotarev Density Theorem.
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