VARIETIES WITHOUT EXTRA AUTOMORPHISMS III: HYPERSURFACES

BJORN POONEN

Abstract

For any field k and integers $n \geq 1, d \geq 3$, with (n, d) not equal to $(1,3)$ or $(2,4)$, we exhibit a smooth hypersurface X over k of degree d in \mathbf{P}^{n+1} such that X has no nontrivial automorphisms over \bar{k}. For $(n, d)=(2,4)$, we find a smooth hypersurface X with the weaker property of having no nontrivial automorphism induced by an automorphism of the ambient \mathbf{P}^{n+1}.

1. Introduction

Let k be a field, and let p be its characteristic, which may be 0 . Fix an algebraic closure \bar{k} of k. Let X in \mathbf{P}^{n+1} be a smooth hypersurface of degree d over k. Let $\bar{X}=X \times_{k} \bar{k}$. Let Aut \bar{X} be the group of automorphisms of \bar{X} over \bar{k}. Call $\gamma \in \operatorname{Aut} \bar{X}$ linear with respect to the embedding $X \hookrightarrow \mathbf{P}^{n+1}$ if γ is induced by an automorphism of \mathbf{P}^{n+1} over \bar{k}, i.e., by a linear transformation of the homogeneous coordinates. The linear automorphisms form a subgroup $\operatorname{Lin} \bar{X}$ of Aut \bar{X}.

We will study Lin \bar{X} primarily. Before stating our main result, Theorem 1.6, let us briefly survey known related results. First, it is known that for most (n, d), there is no difference between Aut \bar{X} and $\operatorname{Lin} \bar{X}$:

Theorem 1.1. If X is a smooth hypersurface in \mathbf{P}^{n+1} of degree d, where $n \geq 1, d \geq 3$, and (n, d) does not equal $(1,3)$ or $(2,4)$, then $\operatorname{Aut} \bar{X}=\operatorname{Lin} \bar{X}$.

Proof. The case $n=1$ is Theorem 1 of [Cha78]. The case $n \geq 2$ is Theorem 2 of [MM63].
Remark 1.2. The exclusion of $(1,3)$ and $(2,4)$ in Theorem 1.1 is necessary. When $(n, d)=(1,3)$, a choice of flex in $X(\bar{k})$ makes \bar{X} an elliptic curve, and if $P \in X(\bar{k})$ satisfies $3 P \neq 0$, then translation by P is a nonlinear automorphism of \bar{X}. (See the proof of Theorem 1.3 below.) For $(n, d)=(2,4)$, the equality fails only for certain X; an example due to Fano and Severi is described in the proof of Theorem 4 in [MM63], for instance. What makes the proofs fail for $(n, d)=(2,4)$ is that the canonical bundle is trivial, and that $\operatorname{Pic} \bar{X}$ can be larger than \mathbf{Z}. In fact, the Tate conjecture predicts that the latter is automatic for X over $\overline{\mathbf{F}}_{p}$ with $(n, d)=(2,4)$.
Theorem 1.3. If $n \geq 1$ and $d \geq 3$, then $\operatorname{Lin} \bar{X}$ is finite.
Proof. See the "Historical Remarks" section at the end of [OS77]. The result has apparently been known for at least one hundred years, at least when $p=0$. Matsumura and Monsky [MM63] give a proof in arbitrary characteristic, at least when $n \geq 2$. If $n=1$ and $d \geq 4$, then X is a curve of genus $g=(d-1)(d-2) / 2 \geq 2$, so Aut \bar{X} is finite [Sch38].

We are left with the easiest case, in which $n=1$ and $d=3$. Without loss of generality, $k=\bar{k}$. We can make X an elliptic curve by choosing a flex P as origin. The automorphism group

[^0]$\operatorname{Aut}(X, P)$ of the elliptic curve is finite and of order dividing 24 [Sil92, Theorem III.10.1]. Also, $\operatorname{Aut}(X, P) \subseteq \operatorname{Lin} X$, since $\mathcal{O}_{X}(1)$ for the embedding $X \hookrightarrow \mathbf{P}^{2}$ is the line sheaf $\mathcal{L}(3 P)$ on X. The orbit of P under Lin X is contained in the set of points $P^{\prime} \in X(k)$ such that $\mathcal{L}\left(3 P^{\prime}\right) \cong \mathcal{L}(3 P)$; this is the set of 3 -torsion points of the elliptic curve (X, P), which is of size at most 9 . Hence $(\operatorname{Lin} X: \operatorname{Aut}(X, P)) \leq 9$, so $\#(\operatorname{Lin} X) \leq 216$ (with equality if and only if X is supersingular and $p=2$).
Remark 1.4. Suppose that $p=0$ and $d \geq 3$. In unpublished work, Bott and Tate [BT61] used homological methods to show that there exists an upper bound for $\#(\operatorname{Lin} \bar{X})$ depending only on n and d. For $n=1$ and $d \geq 4$, one can use Hurwitz's theorem that $\#($ Aut $\bar{X}) \leq 84(g-1)$ for any curve X of genus g. For $n \geq 2$, Howard and Sommese [HS81] prove that there is a constant c_{n} depending only on n such that $\#(\operatorname{Lin} \bar{X}) \leq c_{n} d^{n}$.

Let $N=\binom{d+n+1}{d}$ be the number of monomials of degree d in variables x_{0}, \ldots, x_{n+1}. Over any field k, smooth hypersurfaces of degree d in \mathbf{P}^{n+1} correspond to the points of a dense open subset $\mathcal{H}_{n, d}$ of \mathbf{P}^{N-1}, on which the homogeneous coordinates are the coefficients of the polynomial defining the hypersurface. For $n \geq 1, d \geq 3$, and $(n, d) \neq(1,3)$, Katz and Sarnak [KS99, Lemma 11.8.5] show that there is an open subset $U_{n, d} \subset \mathcal{H}_{n, d}$ whose points correspond to the smooth hypersurfaces X with $\operatorname{Lin} \bar{X}=\{1\}$.
Theorem 1.5. Suppose that $n \geq 1, d \geq 3$, and $(n, d) \neq(1,3)$. Then $U_{n, d}$ is nonempty. In other words, the generic hypersurface X of degree d in \mathbf{P}^{n+1} has $\operatorname{Lin} \bar{X}=\{1\}$.
Proof. Matsumura and Monsky [MM63] prove this for $n \geq 2, d \geq 3$, and their methods can be adapted to the case $n=1, d \geq 4$. A proof for $n=1, d \geq 4$ written out in full can be found in [Cha78] for $p=0$, and in [KS99, 10.6.18] for arbitrary p using an alternative method.

Combining Theorem 1.5 with the Lang-Weil method as in Corollary 11.8.7 of [KS99], one can show that for these (n, d), there exists $N_{n, d}>0$ such that for any field k with $\# k>N_{n, d}$ (in particular, any infinite field), there exists a smooth hypersurface X of degree d in \mathbf{P}^{n+1} over k with $\operatorname{Lin} \bar{X}=\{1\}$. Our main result is that the same conclusion holds for all k :

Theorem 1.6. For any field k and integers $n \geq 1, d \geq 3$ with $(n, d) \neq(1,3)$, there exists a smooth hypersurface X over k of degree d in \mathbf{P}^{n+1} such that $\operatorname{Lin} \bar{X}=\{1\}$.
Remark 1.7. The exclusion of $(1,3)$ is necessary. If $(n, d)=(1,3)$, then we may choose a flex to make X an elliptic curve, and then multiplication by -1 on the elliptic curve is a nontrivial linear automorphism.

Remark 1.8. There is a small overlap between Theorem 1.6 and the main result of [Poo00a], since a smooth hypersurface X of degree 4 in \mathbf{P}^{2} with $\operatorname{Lin} \bar{X}=\{1\}$ is the same thing as a genus 3 curve X with Aut $\bar{X}=\{1\}$.

Our proof of Theorem 1.6 does not use Theorem 1.5, so it gives a new proof of Theorem 1.5. We can also combine Theorems 1.1 and 1.6 to obtain the following:
Corollary 1.9. For any field k and integers $n \geq 1$, $d \geq 3$ with (n, d) not equal to $(1,3)$ or $(2,4)$, there exists a smooth hypersurface X over k of degree d in \mathbf{P}^{n+1} such that Aut $\bar{X}=\{1\}$.
Remark 1.10. Remark 1.7 shows that the exclusion of $(1,3)$ in Corollary 1.9 is necessary. But it may be that Corollary 1.9 holds for $(n, d)=(2,4)$.

Section 2 gives the definition of X for Theorem 1.6, which will depend on n, d, and p. Section 3 proves that X is smooth. Most of the rest of the paper is devoted to proving that Lin \bar{X} is trivial in the various cases. Finally, in Section 11, we mention a few consequences for the automorphism group scheme Aut \bar{X}.

2. Construction of X

The hypersurface X in Theorem 1.6 will be the subvariety of \mathbf{P}^{n+1} defined by a homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)$. In order to help us control the automorphisms, we will choose an f that "endows the variables with an ordering." As a first attempt, we could try

$$
x_{0} x_{1}^{d-1}+x_{1} x_{2}^{d-1}+\cdots+x_{n} x_{n+1}^{d-1},
$$

but this fails for two reasons: first, the resulting hypersurface is singular at ($1: 0: 0: \cdots: 0$); and second, it has nontrivial automorphisms if $d-1$ is not a power of p, since one can multiply x_{n+1} by a nontrivial $(d-1)$-th root of unity. In fact, if we choose any form with $n+1$ or fewer monomials, there will be a nontrivial diagonal action of \mathbf{G}_{m} on X in which $\lambda \in \bar{k}^{*}$ acts as

$$
\left(x_{0}: x_{1}: \cdots: x_{n+1}\right) \mapsto\left(\lambda^{a_{0}} x_{0}: \lambda^{a_{1}} x_{1}: \cdots: \lambda^{a_{n+1}} x_{n+1}\right),
$$

for some integers a_{i} not all equal.
These problems can be fixed for most triples (n, d, p) by adding a few terms to the "ends" of f. In particular, we will show that adding $c x_{0}^{d}$ and x_{n+1}^{d} to f will work when $d \not \equiv 0,1(\bmod p)$, if we choose $c \in k \backslash\left\{0, c_{\text {bad }}\right\}$, where

$$
c_{\mathrm{bad}}:=-d^{(1-d)^{n+1}-1}(1-d)^{\frac{(1-d)^{n+2}-(1-d)}{d}} \in k^{*},
$$

except that we must also avoid $c=2^{4} 3^{-9}$ if $(n, d)=(2,3)$. The hypersurface in Case I becomes singular for $c=0$ or $c=c_{\text {bad }}$. If $(n, d, c)=\left(2,3,2^{4} 3^{-9}\right)$, then the resulting cubic surface in any characteristic not 2 or 3 has a nontrivial linear automorphism given by

$$
\left[\begin{array}{cccc}
324 & 6561 & 1458 & 4374 \\
16 & 324 & -72 & -216 \\
0 & 0 & 648 & 0 \\
48 & -972 & -216 & 0
\end{array}\right] \in P G L_{4}(k)
$$

When $d \equiv 0(\bmod p)$, we need to add a term to rule out automorphisms mapping $x_{0} \mapsto x_{0}+\lambda x_{1}$ and fixing all other x_{i}. (Actually such automorphisms create a problem only when d is a power of p.) When $d \equiv 1(\bmod p)$, we add a few terms in order that some of the second partial derivatives of f be nonvanishing, because our method for controlling the automorphisms relies on the fact that most, but not all, of the second partial derivatives of f vanish.

The definition of f in all cases is given in Table 1. The congruence conditions on d defining the cases are congruences modulo p. Note that in Cases I and II, we have $p \neq 2$, and if $(n, d)=(2,3)$ in Case I, then $p \neq 3$ also, so there is always at least one choice for $c \in k$. The reader who prefers to have c prescribed explicitly may take $c=2 c_{\text {bad }}$ in Case I and $c=2(-2)^{d-2}$ in Case II.

3. Smoothness of X

This section proves that X is smooth in each case. This is not especially difficult. The hard part was finding the f for which this would be easy, and for which our methods for controlling the automorphisms would apply.

Case I: $d \not \equiv 0,1(\bmod p)$

	Case	f	Conditions
I	$d \neq 0,1$	$c x_{0}^{d}+\left(\sum_{i=0}^{n} x_{i} x_{i+1}^{d-1}\right)+x_{n+1}^{d}$	$c \neq 0, c_{\text {bad }}$ $(n, d, c) \neq\left(2,3,2^{4} 3^{-9}\right)$
II	$d \equiv 0$ $p \neq 2$	$c x_{0}^{d}+x_{0}^{2} x_{1}^{d-2}+\left(\sum_{i=0}^{n} x_{i} x_{i+1}^{d-1}\right)+x_{n+1}^{d}$	$c \neq 0,(-2)^{d-2}$
III	$d \equiv 0$ $p=2$	$x_{0}^{d-1} x_{1}+c\left(x_{1}^{d}+x_{2}^{d}\right)+\left(\sum_{i=0}^{n} x_{i} x_{i+1}^{d-1}\right)+x_{n+1}^{d}$	$c=\left\{\begin{array}{l}0, \text { if } n=1 \\ 1, \text { if } n \geq 2\end{array}\right.$
IV	$d \equiv 1$ $p \neq 2$	$x_{0}^{d}+\left(\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} x_{2 i}^{2} x_{2 i+1}^{d-2}\right)+\left(\sum_{i=0}^{n} x_{i} x_{i+1}^{d-1}\right)+x_{n+1} x_{0}^{d-1}$	
V	$d \equiv 1$ $p=2$ $n=1$	$x_{0} x_{1}^{d-2} x_{2}+x_{0} x_{1}^{d-1}+x_{1} x_{2}^{d-1}+x_{2} x_{0}^{d-1}+x_{1}^{2} x_{2}^{d-2}$	
VI	$d \equiv 1$ $p=2$ $n>1$	$x_{1}^{d}+\left(\sum_{i=0}^{\left\lfloor\frac{n-1}{3}\right\rfloor} x_{3 i} x_{3 i+1}^{d-2} x_{3 i+2}\right)+\left(\sum_{i=1}^{n} x_{i} x_{i+1}^{d-1}\right)+x_{n+1} x_{0}^{d-1}$	

Table 1. Definition of $f\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)$.

Suppose P is a singular point. At P the derivative $\partial f / \partial x_{i}$ must vanish for each i :

$$
\begin{align*}
& 0=c d x_{0}^{d-1}+x_{1}^{d-1} \\
& 0=(d-1) x_{0} x_{1}^{d-2}+x_{2}^{d-1} \\
& 0=(d-1) x_{1} x_{2}^{d-2}+x_{3}^{d-1} \tag{1}\\
& \quad \vdots \\
& 0=(d-1) x_{n-1} x_{n}^{d-2}+x_{n+1}^{d-1} \\
& 0=(d-1) x_{n} x_{n+1}^{d-2}+d x_{n+1}^{d-1} .
\end{align*}
$$

Note that if $0 \leq i \leq n$, and $x_{i}=0$ at P, then $x_{i+1}=0$ by the equation

$$
0=(d-1) x_{i-1} x_{i}^{d-2}+x_{i+1}^{d-1}
$$

(or the first equation, if $i=0$), so that by induction $x_{j}=0$ for all $j \geq i$. On the other hand, if $2 \leq i \leq n+1$, and $x_{i}=0$, we find from

$$
0=(d-1) x_{i-2} x_{i-1}^{d-2}+x_{i}^{d-1}
$$

that either $x_{i-1}=0$ or $x_{i-2}=0$, and the latter also implies $x_{i-1}=0$ by what we just proved, so that $x_{i-1}=0$ in any case. Also, if $x_{1}=0$, then $x_{0}=0$ by the first equation in (1).

Thus if any x_{i} is zero at P, all are zero at P. Hence if there is a singular point P, all its projective coordinates are nonzero. Without loss of generality, assume $x_{n+1}=1$. Then from the last equation in (1) we find

$$
x_{n}=d(1-d)^{-1} .
$$

Substituting into the penultimate equation in (1), we find

$$
x_{n-1}=d_{4}^{2-d}(1-d)^{d-3} .
$$

Working our way up the list of equations, using all of them up to but not including the first, we prove by induction on i that

$$
x_{n+1-i}=d^{\frac{1-(1-d)^{i}}{d}}(1-d)^{\frac{1-(i+1) d-(1-d)^{i+1}}{d^{2}}}
$$

for $i=1,2, \ldots, n+1$. The values of x_{0} and x_{1} so computed contradict the first equation in (1), provided that $c \neq c_{\text {bad }}$.

Case II: $d \equiv 0(\bmod p), p \neq 2$
This time, the vanishing of the derivatives gives rise to the system

$$
\begin{align*}
& 0=2 x_{0} x_{1}^{d-2}+x_{1}^{d-1} \\
& 0=-x_{0} x_{1}^{d-2}-2 x_{0}^{2} x_{1}^{d-3}+x_{2}^{d-1} \\
& 0=-x_{1} x_{2}^{d-2}+x_{3}^{d-1} \tag{2}\\
& \quad \vdots \\
& 0=-x_{n-1} x_{n}^{d-2}+x_{n+1}^{d-1} \\
& 0=-x_{n} x_{n+1}^{d-2} .
\end{align*}
$$

As in Case I, if $2 \leq i \leq n$ and $x_{i}=0$, then $x_{i+1}=0$ by the equation

$$
0=-x_{i-1} x_{i}^{d-2}+x_{i+1}^{d-1} .
$$

On the other hand, if $4 \leq i \leq n+1$ and $x_{i}=0$, then from

$$
0=-x_{i-2} x_{i-1}^{d-2}+x_{i}^{d-1}
$$

we obtain $x_{i-1}=0$ or $x_{i-2}=0$, and the latter also implies $x_{i-1}=0$ by what we just proved, so that $x_{i-1}=0$ in any case.

From the last equation in (2), we obtain $x_{n}=0$ or $x_{n+1}=0$, so we immediately deduce $x_{i}=0$ for $3 \leq i \leq n+1$. If $x_{1}=0$, then we obtain $x_{0}=0$ from the original equation $f=0$, and $x_{2}=0$ from the second equation in (2), which is a contradiction, as desired. Thus we may assume $x_{1}=1$, and then the first and third equations in (2) yield $x_{0}=-1 / 2$ and $x_{2}=0$. For ($\left.-\frac{1}{2}: 1: 0: 0: \cdots: 0\right)$ to be a point on X we must have

$$
c\left(-\frac{1}{2}\right)^{d}+\frac{1}{4}-\frac{1}{2}=0,
$$

so we obtain the desired contradiction, provided that $c \neq(-2)^{d-2}$.
Case III: $d \equiv 0(\bmod p), p=2$
The vanishing of the derivatives gives rise to the system

$$
\begin{align*}
0 & =x_{0}^{d-2} x_{1}+x_{1}^{d-1} \\
0 & =x_{0}^{d-1}+x_{0} x_{1}^{d-2}+x_{2}^{d-1} \\
0 & =x_{1} x_{2}^{d-2}+x_{3}^{d-1} \tag{3}\\
& \quad \vdots \\
0 & =x_{n-1} x_{n}^{d-2}+x_{n+1}^{d-1} \\
0 & =x_{n} x_{n+1}^{d-2} .
\end{align*}
$$

We deduce as in Case II that $x_{3}=x_{4}=\cdots=x_{n+1}=0$. If $x_{1}=0$, then we obtain $x_{2}=0$ from the original equation $f=0$, and $x_{0}=0$ from the second equation in (3), so all x_{i} are zero, a contradiction. Thus we may assume $x_{1}=1$, and the third and first equations in (3) yield $x_{2}=0$ and $x_{0}^{d-2}=1$. The original equation $f=0$ becomes

$$
x_{0}+1(1+0)+x_{0}+0+0+\cdots+0=0
$$

a contradiction in characteristic 2 .
Case IV: $d \equiv 1(\bmod p), p \neq 2$
The vanishing of the derivatives gives rise to the system

$$
\begin{align*}
& 0=x_{1}^{d-1}+2 x_{0} x_{1}^{d-2}+x_{0}^{d-1} \\
& 0=x_{2}^{d-1}-x_{0}^{2} x_{1}^{d-3} \\
& 0=x_{3}^{d-1}+2 x_{2} x_{3}^{d-2} \\
& 0=x_{4}^{d-1}-x_{2}^{2} x_{3}^{d-3} \tag{4}\\
& 0=x_{n+1}^{d-1} \quad\left(-x_{n-1}^{2} x_{n}^{d-3} \quad \text { if } n \text { is odd }\right) \\
& 0=x_{0}^{d-1} \text {. }
\end{align*}
$$

The last equation implies $x_{0}=0$. The first then implies $x_{1}=0$, and going down the list of equations we show by induction that $x_{i}=0$ for all i. (Note that the conditions defining this case imply $d \geq 4$, so the exponent $d-3$ and anything larger will be positive.)

Case V: $d \equiv 1(\bmod p), p=2, n=1$
The vanishing of the derivatives gives rise to the system

$$
\begin{align*}
& 0=x_{1}^{d-2} x_{2}+x_{1}^{d-1} \\
& 0=x_{0} x_{1}^{d-3} x_{2}+x_{2}^{d-1} \tag{5}\\
& 0=x_{0} x_{1}^{d-2}+x_{0}^{d-1}+x_{1}^{2} x_{2}^{d-3} .
\end{align*}
$$

Working from the bottom up, we find

$$
x_{1}=0 \Longrightarrow x_{0}=0 \Longrightarrow x_{2}=0 \Longrightarrow x_{1}=0
$$

Thus if any x_{i} is zero, all the x_{i} are zero, a contradiction. Hence all the x_{i} are nonzero. Then the first equation in (5) implies $x_{1}=x_{2}$. Substituting $x_{2}=x_{1}$ in the second equation yields $0=x_{0} x_{1}^{d-2}+x_{1}^{d-1}$, so $x_{0}=x_{1}=x_{2}$. Substituting these into the third equation, we find $x_{0}^{d-1}=0$, so $x_{0}=0$, a contradiction.

Case VI: $d \equiv 1(\bmod p), p=2, n>1$

The vanishing of the derivatives gives rise to the system

$$
\begin{align*}
& 0=\quad x_{1}^{d-2} x_{2} \\
& 0=x_{2}^{d-1}+x_{0} x_{1}^{d-3} x_{2}+x_{1}^{d-1} \\
& 0=x_{3}^{d-1}+x_{0} x_{1}^{d-2} \\
& 0=x_{4}^{d-1}+x_{4}^{d-2} x_{5} \\
& 0=x_{5}^{d-1}+x_{3} x_{4}^{d-3} x_{5} \tag{6}\\
& 0=x_{6}^{d-1}+x_{3} x_{4}^{d-2} \\
& 0=x_{0}^{d-1} \quad\left(+x_{n-1} x_{n}^{d-2} \quad \text { if } n \equiv 1 \quad(\bmod 3)\right)
\end{align*}
$$

(To see the pattern, pretend that the exceptional term x_{1}^{d-1} in the second equation were actually in the first, and group the equations in threes.) Let $m=3\left\lfloor\frac{n+2}{3}\right\rfloor$. There are zero, one, or two equations past the first m equations, and these final ones are those that are missing a "second term," i.e., that are simply of the form $0=x_{i}^{d-1}$ for some i.

By the first equation, either x_{1} or x_{2} is zero. If $x_{2}=0$, then $x_{1}=0$ by the second equation, so $x_{1}=0$ in any case. The third equation then yields $x_{3}=0$. For $i=3,6, \ldots, m-3$, the $(i+2)$-th, $(i+1)$-th, and $(i+3)$-th equations show that

$$
x_{i}=0 \Longrightarrow x_{i+2}=0 \Longrightarrow x_{i+1}=0 \Longrightarrow x_{i+3}=0
$$

where we should interpret x_{n+2} as x_{0} if necessary. Thus we deduce $x_{i}=0$ for $3 \leq i \leq m$.
If $m=n$, we have $x_{m+1}=0$ and $x_{0}=0$ automatically from the last two equations in (6). If $m=n+1$, we have $x_{0}=0$ automatically from the last equation. If $m=n+2$, we have already shown $x_{0}=x_{n+2}=0$. Thus in every case we have $x_{i}=0$ for all i except possibly $i=2$. Finally, we obtain $x_{2}=0$ from the second equation in (6).

4. Controlling the automorphisms: the idea

The remainder of the paper is devoted to proving that $\operatorname{Lin} \bar{X}$ is trivial in each case. In this section, we explain the main tool to be used, and introduce some notation.

Suppose we are in Case I. Then $\partial f / \partial x_{0}$ is killed by $\partial / \partial x_{i}$ for all $i \geq 2$. If we have a linear automorphism of X given by the matrix $L=\left(\ell_{i j}\right) \in \mathrm{GL}_{n+2}(\bar{k})$, and if we set $y_{i}=\sum_{j=0}^{n+1} \ell_{i j} x_{j}$, then

$$
\begin{equation*}
f\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)=\alpha f\left(y_{0}, y_{1}, \ldots, y_{n+1}\right) \tag{7}
\end{equation*}
$$

for some nonzero scalar $\alpha \in \bar{k}^{*}$, and

$$
\frac{\partial}{\partial x_{0}} f\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)=\alpha \sum_{i=0}^{n+1} \ell_{i 0} \frac{\partial f\left(y_{0}, y_{1}, \ldots, y_{n+1}\right)}{\partial y_{i}}
$$

is killed by at least an $(n-2)$-dimensional subspace of the span of the operators $\partial / \partial x_{j}$, which is also the span of the $\partial / \partial y_{i}$. Such considerations will severely constrain the possibilities for the entries of the matrix L.

In general, let A denote the Hessian matrix of f, with entries $a_{i j}:=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$. For (column) vectors $v=\left(v_{0}, v_{1}, \ldots, v_{n+1}\right)$ and $w=\left(w_{0}, w_{1}, \ldots, w_{n+1}\right)$ in \bar{k}^{n+2}, we define a symmetric \bar{k}-linear pairing

$$
\langle v, w\rangle:=v^{\mathrm{t}} A w=\sum_{\substack{i=0 \\ 7}}^{n+1} \sum_{j=0}^{n+1} v_{i} w_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

taking values in $\bar{k}\left[x_{0}, x_{1}, \ldots, x_{n+1}\right]$. If $L=\left(\ell_{i j}\right) \in \mathrm{GL}_{n+2}(\bar{k})$ gives an automorphism of X, then $\langle v, w\rangle$ is a scalar multiple of the result of replacing each x_{i} by $\sum_{j=0}^{n+1} \ell_{i j} x_{j}$ in $\langle L v, L w\rangle$. In particular, and this is mainly what we will use,

$$
\langle L v, L w\rangle=0 \Longleftrightarrow\langle v, w\rangle=0 .
$$

For a vector $v \in \bar{k}^{n+2}$, define a subspace

$$
v^{\perp}:=\left\{w \in \bar{k}^{n+2}:\langle v, w\rangle=0\right\} .
$$

For any subspace V, let $\operatorname{codim} V$ denote the codimension of V as a subspace of \bar{k}^{n+2}. In the subsequent sections we will repeatedly use the following (trivial) observation.

Lemma 4.1. The number codim v^{\perp} equals the dimension of the \bar{k}-vector space spanned by the (polynomial) entries of the column vector $A v$.

Proof. Both numbers equal the dimension of the image of $(A v)^{\mathrm{t}}$, considered as a linear function on \bar{k}^{n+2}.

For a subspace $V \subseteq \bar{k}^{n+2}$, define a subspace

$$
V^{\perp}:=\left\{w \in \bar{k}^{n+2}:\langle v, w\rangle=0 \text { for all } v \in V\right\}
$$

If L gives an automorphism of X, then for all vectors v and subspaces V,

$$
\begin{equation*}
(L v)^{\perp}=L\left(v^{\perp}\right) \quad \text { and } \quad(L V)^{\perp}=L\left(V^{\perp}\right) \tag{8}
\end{equation*}
$$

so in particular

$$
\begin{equation*}
\operatorname{codim}(L v)^{\perp}=\operatorname{codim} v^{\perp} \quad \text { and } \quad \operatorname{codim}(L V)^{\perp}=\operatorname{dim} V^{\perp} \tag{9}
\end{equation*}
$$

We let $\left\{e_{0}, e_{1}, \ldots, e_{n+1}\right\}$ denote the standard basis for \bar{k}^{n+2}.
For $0 \leq m \leq n+1$, define subspaces

$$
S_{m}:=\sum_{i=0}^{m} \bar{k} \cdot e_{i}, \quad T_{m}:=\sum_{i=m}^{n+1} \bar{k} \cdot e_{i} .
$$

Also set $S_{m}=0$ if $m<0$, and $T_{m}=0$ if $m>n+1$.
Once we have taken full advantage of the fact that L respects the pairing, we can usually complete the proof that L is a scalar multiple of the identity simply by equating various coefficients in (7).

5. Controlling the automorphisms: Case I

In this case we have

$$
A=\left[\begin{array}{ccccccc}
h_{0} & g_{1} & 0 & 0 & \cdots & 0 & 0 \\
g_{1} & h_{1} & g_{2} & 0 & \cdots & 0 & 0 \\
0 & g_{2} & h_{2} & g_{3} & \cdots & 0 & 0 \\
0 & 0 & g_{3} & h_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & h_{n} & g_{n+1} \\
0 & 0 & 0 & 0 & \cdots & g_{n+1} & h_{n+1}
\end{array}\right]
$$

where $g_{i}:=(d-1) x_{i}^{d-2}$ and

$$
h_{i}:= \begin{cases}c d(d-1) x_{0}^{d-2} & \text { if } i=0 \\ (d-1)(d-2) x_{i-1} x_{i}^{d-3} & \text { if } 1 \leq i \leq n \\ d(d-1) x_{n+1}^{d-2}+(d-1)(d-2) x_{n} x_{n+1}^{d-3} & \text { if } i=n+1\end{cases}
$$

We will subdivide Case I as follows (recall that $p \neq 2$ throughout this case):

- Case I.1: $d \not \equiv 0,1,2(\bmod p)$ and $d \neq 3$
- Case I.2: $d \equiv 2(\bmod p)$ and $p \neq 2$
- Case I.3: $d=3 ; p \neq 2,3$; and $n \geq 2$.

Case I.1: $d \not \equiv 0,1,2(\bmod p)$ and $d \neq 3$
In this subcase, $g_{1}, \ldots, g_{n+1}, h_{0}, h_{1}, \ldots, h_{n+1}$ are linearly independent over \bar{k}. In particular, note that e_{m}^{\perp} equals $S_{m-2}+T_{m+2}$, which is the \bar{k}-vector space spanned by all the e_{i} except e_{m-1}, e_{m}, and e_{m+1}.

Lemma 5.1. For any $v=\left(v_{0}, v_{1}, \ldots, v_{n+1}\right) \in \bar{k}^{n+2}$,

$$
v^{\perp}=\bigcap_{i: v_{i} \neq 0} e_{i}^{\perp}
$$

Proof. Suppose $w=\left(w_{0}, w_{1}, \ldots, w_{n+1}\right) \in \bar{k}^{n+2}$. If the i-th coordinate of $A w$ is nonzero, then at least one of w_{i-1}, w_{i}, w_{i+1} is nonzero. If w_{i} is nonzero, then h_{i} occurs in the i-th coordinate of $A w$ and in no other coordinates. If $w_{i}=0$ but $w_{i-1} \neq 0$, then then g_{i} occurs in the i-th coordinate of $A w$ and in no other coordinates. If $w_{i}=0$ but $w_{i+1} \neq 0$, then then g_{i+1} occurs in the i-th coordinate of $A w$ and in no other coordinates. The nonzero coordinates of $A w$ are thus linearly independent over \bar{k}, since each involves a g or h not present in the other coordinates. In other words, the polynomials $\left\langle e_{i}, w\right\rangle$ for $i=0,1, \ldots, n+1$ that are nonzero are linearly independent. Thus if $\langle v, w\rangle=0$ and $v_{i} \neq 0$, then $\left\langle e_{i}, w\right\rangle=0$.

Lemma 5.1 and the remark preceding it let us immediately calculate v^{\perp} for any vector v, and also V^{\perp} for any subspace V, since $V^{\perp}=\bigcap_{v \in V} v^{\perp}$. In particular, we obtain the following corollaries.
Corollary 5.2. If $v \in \bar{k}^{n+2}$ is nonzero, then $\operatorname{codim} v^{\perp} \geq 2$, with equality if and only if v is a multiple of e_{0} or e_{n+1}.

Note that for $0 \leq m \leq n$, the $(m+1)$-dimensional subspace $S_{m} \subset \bar{k}^{n+2}$ has $S_{m}^{\perp}=T_{m+2}$, and $\operatorname{codim} S_{m}^{\perp}=m+2$.
Corollary 5.3. Suppose $0 \leq m \leq n-2$. Let V be an $(m+2)$-dimensional subspace of \bar{k}^{n+2} containing S_{m}. Then codim $V^{\perp} \geq m+3$, with equality if and only if $V=S_{m+1}$.
Proof. Write $V=S_{m}+\bar{k} \cdot v$, so $V^{\perp}=S_{m}^{\perp} \cap v^{\perp}$. If v has any nonzero coordinate v_{i} with $m+2 \leq i \leq n$, then the condition that an element w of S_{m}^{\perp} be in v^{\perp} places at least two linear conditions on w, namely $w_{i}=0$ and $w_{i+1}=0$, so codim $V^{\perp} \geq \operatorname{codim} S_{m}^{\perp}+2=m+4$ in this case. Similarly, if $v_{n+1} \neq 0$, then the condition that an element w of S_{m}^{\perp} be in v^{\perp} places the new conditions $w_{n}=0$ and $w_{n+1}=0$ on w, so that $\operatorname{codim} V^{\perp} \geq m+4$ again. The only remaining possibility is that $v_{i}=0$ for all $i \geq m+2$, in which case we must have $V=S_{m+1}$ and $\operatorname{codim} V^{\perp}=\operatorname{codim} T_{m+3}=m+3$.

Corollary 5.4. Suppose $3 \leq m \leq n+1$. Let V be an $(n-m+3)$-dimensional subspace of \bar{k}^{n+2} containing T_{m}. Then codim $V^{\perp} \geq n-m+4$, with equality if and only if $V=T_{m-1}$.

Proof. The proof is completely analogous to that of Corollary 5.3.
Corollary 5.5. The vectors $L e_{0}$ and $L e_{n+1}$ are multiples of e_{0} and e_{n+1} in some order.
Proof. This follows from (9) and Corollary 5.2.

We may now subdivide Case I. 1 further into two subcases.

Case I.1.a: $L e_{0}$ is a multiple of e_{0}

Corollary 5.3 gives a characterization of the flag $S_{1} \subset S_{2} \subset \cdots \subset S_{n-1}$ of vector spaces containing S_{0} that involves only dimensions and the \perp-operation. Since L preserves S_{0} by assumption, we have $L\left(S_{m}\right)=S_{m}$ for $0 \leq m \leq n-1$. Similarly by Corollary $5.4, L\left(T_{m}\right)=T_{m}$ for $2 \leq m \leq n+1$. Together, these imply that L is of the form ${ }^{1}$

$$
L=\left[\begin{array}{ccccccc}
* & * & 0 & \cdots & 0 & 0 & 0 \\
0 & * & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & * & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & * & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & * & 0 \\
0 & 0 & 0 & \cdots & 0 & * & *
\end{array}\right],
$$

with zeros off the diagonal except possibly in positions ℓ_{01} and $\ell_{n+1, n}$. Since L is nonsingular, $\ell_{i i} \neq 0$ for all i, and by scaling L, we may assume $\ell_{n+1, n+1}=1$. By equating coefficients of x_{n+1}^{d} in (7), we see that $\alpha=1$. Equating coefficients of x_{n}^{d} and of $x_{n}^{d-1} x_{n+1}$ in

$$
f\left(x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right)=f\left(\ell_{00} x_{0}+\ell_{01} x_{1}, \ell_{11} x_{1}, \ldots, \ell_{n n} x_{n}, \ell_{n+1, n} x_{n}+x_{n+1}\right),
$$

we obtain

$$
\begin{aligned}
& 0=\ell_{n n} \ell_{n+1, n}^{d-1}+\ell_{n+1, n}^{d} \\
& 0=(d-1) \ell_{n n} \ell_{n+1, n}^{d-2}+d \ell_{n+1, n}^{d-1} .
\end{aligned}
$$

Multiply the first by ($d-1$) and the second by $\ell_{n+1, n}$, and subtract to deduce $\ell_{n+1, n}=0$. For $i=n, n-1, \ldots, 1$ in turn, we equate coefficients of $x_{i} x_{i+1}^{d-1}$ to find $\ell_{i i}=1$. Equate coefficients of $x_{0}^{d-1} x_{1}$ and use $\ell_{00} \neq 0$ and $d \not \equiv 0(\bmod p)$ to deduce $\ell_{01}=0$. Finally equate coefficients of $x_{0} x_{1}^{d-1}$ to deduce $\ell_{00}=1$. Thus L is the identity, as desired.

Case I.1.b: $L e_{0}$ is a multiple of e_{n+1}
This time Corollaries 5.3 and 5.4 imply that $L\left(S_{m}\right)=T_{n+1-m}$ for $0 \leq m \leq n-1$ and $L\left(T_{m}\right)=$ S_{n+1-m} for $2 \leq m \leq n+1$, so that L is of the form

$$
L=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 0 & * & * \\
0 & 0 & 0 & \cdots & 0 & * & 0 \\
0 & 0 & 0 & \cdots & * & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & * & \cdots & 0 & 0 & 0 \\
0 & * & 0 & \cdots & 0 & 0 & 0 \\
* & * & 0 & \cdots & 0 & 0 & 0
\end{array}\right],
$$

with nonzero entries on the reverse diagonal, and zero entries off it, except possibly at $\ell_{0 n}$ and $\ell_{n+1,1}$. We may assume $\ell_{0, n+1}=1$. Equating coefficients of x_{n}^{d} and of $x_{n}^{d-1} x_{n+1}$ in

$$
f\left(x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right)=f\left(\ell_{0 n} x_{n}+x_{n+1}, \ell_{1 n} x_{n}, \ldots, \ell_{n 1} x_{1}, \ell_{n+1,0} x_{0}+\ell_{n+1,1} x_{1}\right)
$$

[^1]we find
\[

$$
\begin{aligned}
& 0=c \ell_{0 n}^{d}+\ell_{0 n} \ell_{1 n}^{d-1} \\
& 0=c d \ell_{0 n}^{d-1}+\ell_{1 n}^{d-1}
\end{aligned}
$$
\]

Subtracting $\ell_{0 n}$ times the second from the first, we find $c(1-d) \ell_{0 n}^{d}=0$, so $\ell_{0 n}=0$. Substituting back into the second, we find $\ell_{1 n}=0$ as well. But this contradicts the nonsingularity of L.

Case I.2: $d \equiv 2(\bmod p)$ and $p \neq 2$
We have

$$
A=\left[\begin{array}{cccccccc}
2 c g_{0} & g_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
g_{1} & 0 & g_{2} & 0 & \cdots & 0 & 0 & 0 \\
0 & g_{2} & 0 & g_{3} & \cdots & 0 & 0 & 0 \\
0 & 0 & g_{3} & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & g_{n} & 0 \\
0 & 0 & 0 & 0 & \cdots & g_{n} & 0 & g_{n+1} \\
0 & 0 & 0 & 0 & \cdots & 0 & g_{n+1} & 2 g_{n+1}
\end{array}\right]
$$

and $g_{0}, g_{1}, \ldots, g_{n+1}$ are linearly independent over \bar{k}.
Lemma 5.6. If $v \in \bar{k}^{n+2}$ is nonzero, then $\operatorname{codim} v^{\perp} \geq 1$, with equality if and only if v is a multiple of e_{n+1}.

Proof. By Lemma 4.1, codim $e_{n+1}^{\perp}=1$, and the same is true for any multiple of e_{n+1}.
Now assume instead that the first nonzero coordinate v_{i} in v occurs for $i \leq n$. Then g_{i} appears exactly once in the coordinates of $A v$, namely in the $(i-1$)-th coordinate (or in the 0 -th coordinate if $i=0$). If $i<n$, then g_{i+1} appears in the $(i+1)$-th coordinate of $A v$, since $a_{i+1, i}$ is independent of the other entries of its row in A, so the span of the coordinates of $A v$ has dimension at least 2 . If $i=n$, then g_{n+1} appears in either the n-th or the $(n+1)$-th coordinate of $A v$, so again the span of the coordinates of $A v$ has dimension at least 2. Thus codim $v^{\perp} \geq 2$ by Lemma 4.1.

Corollary 5.7. We have $L\left(T_{n+1}\right)=T_{n+1}$.
The $(n-m+2)$-dimensional space T_{m} satisfies $T_{m}^{\perp}=S_{m-2}$ if $2 \leq m \leq n$.
Lemma 5.8. For nonzero $v \in \bar{k}^{n+2}$, we have $\operatorname{codim} v^{\perp} \leq 2$ if and only if v is a multiple of some e_{i} or is a linear combination of e_{n} and e_{n+1}.

Proof. The "if" direction is clear from Lemma 4.1. Now suppose codim $v^{\perp} \leq 2$ and that the first nonzero v_{i} in v occurs for $i<n$. We must show that v is a multiple of e_{i}. As in the proof of Lemma $5.6, g_{i}$ appears exactly once in the coordinates of $A v$, namely in the $(i-1)$-th coordinate (or the 0 -th coordinate if $i=0$), and g_{i+1} appears in the $(i+1)$-th coordinate, so at least these two coordinates are linearly independent. Suppose for sake of contradiction that $v_{j} \neq 0$ for some $j>i$, and choose the largest such j. If $j \leq n$, then g_{j+1} appears in the $(j+1)$-th coordinate of $A v$ but not before, so it is independent of the $(i-1)$-th and $(i+1)$-th coordinates, and the span is of dimension at least 3 , as desired. If $j=n+1$, then g_{n+1} appears in the n-th coordinate of $A v$ and not before, so we are again done, unless $i+1=n$.

To handle the remaining case $i=n-1, j=n+1$ we break into cases according as $v_{n}=0$ or not. If $v_{n}=0$, then g_{n-1} appears only in the $(n-2)$-th coordinate of $A v, g_{n}$ appears only in the n-th coordinate of $A v$, and g_{n+1} appears in the $(n+1)$-th coordinate of $A v$, so these three coordinates are independent. If $v_{n} \neq 0$, then g_{n-1} appears only in the $(n-2)$-th coordinate of $A v$,
a pure multiple of g_{n} occurs in the $(n-1)$-th coordinate, and a non-pure combination of g_{n} and g_{n+1} occurs in the n-th coordinate, so again the span of the coordinates is at least 3-dimensional. Hence codim $v^{\perp} \geq 3$.

Corollary 5.9. We have $L\left(T_{n}\right)=T_{n}$.
Proof. Lemma 5.8 shows that T_{n} is the only 2-dimensional subspace consisting entirely of vectors v for which $\operatorname{codim} v^{\perp} \leq 2$.

Lemma 5.10. For $0 \leq i \leq n-1, L e_{i}$ is a multiple of e_{i}.
Proof. By Lemma 5.8 and Corollary 5.9, L acts on $e_{0}, e_{1}, \ldots, e_{n-1}$ by scaling them independently and then permuting them. Equating coefficients of x_{0}^{d} in (7) we see that $L e_{0}$ must be a multiple of e_{0}. By induction on i for $1 \leq i \leq n-1$, equating coefficients of $x_{i-1} x_{i}^{d-1}$ shows that $L e_{i}$ must be a multiple of e_{i}.

Lemma 5.10 and Corollaries 5.7 and 5.9 together imply that L is of the form

$$
L=\left[\begin{array}{ccccccc}
* & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & * & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & * & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & * & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & * & 0 \\
0 & 0 & 0 & \cdots & 0 & * & *
\end{array}\right] .
$$

The argument at the end of Case I.1.a now implies that L is (a scalar multiple of) the identity.
Case I.3: $d=3 ; p \neq 2,3 ;$ and $n \geq 2$
We have

$$
A=2\left[\begin{array}{ccccccccc}
3 c x_{0} & x_{1} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
x_{1} & x_{0} & x_{2} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & x_{2} & x_{1} & x_{3} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & x_{3} & x_{2} & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & x_{n-3} & x_{n-1} & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & x_{n-1} & x_{n-2} & x_{n} & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & x_{n} & x_{n-1} & x_{n+1} \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & x_{n+1} & x_{n}+3 x_{n+1}
\end{array}\right] .
$$

Lemma 5.11. If $n>2$, then $\operatorname{codim} v^{\perp} \leq 2$ if and only if v is a multiple of one of the following:

$$
e_{0}, \quad e_{0} \pm \sqrt{3 c} e_{1}, \quad 3 e_{n}-e_{n+1}, \quad e_{n+1} .
$$

If $n=2$, the same is true, except that multiples of $e_{0} \pm \sqrt{3 c}\left(e_{1}+3 e_{3}\right)$ are also possible.
Proof. We may assume $v \neq 0$. Let j be the largest integer such that v_{j} is nonzero.
If $j=0$, then v is a multiple of e_{0}, and $\operatorname{codim} v^{\perp}=2$.
If $j=1$, then to have $\operatorname{codim} v^{\perp} \leq 2$, we must have $v_{0} \neq 0$, since codim $e_{1}^{\perp}=3$. Assume $v_{0}=1$. Then

$$
A v=2\left(3 c x_{0}+v_{1} x_{1}, v_{1} x_{0}+x_{1}, v_{1} x_{2}, 0,0, \ldots, 0\right) .
$$

In order for the span of the coordinates to have dimension at most 2, the first two coordinates must be dependent. By looking at the coefficients of x_{1}, we see that this would imply

$$
3 c x_{0}+v_{1} x_{1}=v_{1}\left(v_{1} x_{0}+x_{1}\right),
$$

which holds if and only if $v_{1}= \pm \sqrt{3 c}$.
If $2 \leq j \leq n$, then x_{j+1} appears in the $(j+1)$-th coordinate of $A v$ but not before, and the j-th coordinate is a nonzero combination of x_{j-1} and x_{j}, so if codim $v^{\perp} \leq 2$, then the 0 -th, 1 -st, \ldots, ($j-1$)-th coordinates of $A v$ are all multiples of the j-th coordinate. In particular, x_{j-2} does not appear in the $(j-1)$-th coordinate of $A v$, so $v_{j-1}=0$. Thus the j-th coordinate of $A v$ is a multiple of x_{j-1}. But the $(j-1)$-th coordinate involves x_{j}, so it cannot be a multiple of the j-th coordinate, a contradiction.

Finally we have the case $j=n+1$. Suppose codim $v^{\perp} \leq 2$. If $v_{n} \neq 0$, then x_{n-1} appears in the n-th coordinate of $A v$ and not afterwards, and the $(n+1)$-th coordinate is nonzero, so these coordinates already span a 2-dimensional space, and all others must be dependent on them. In this case, all coordinates must be combinations of x_{n-1}, x_{n}, and x_{n+1} only. If furthermore $0 \leq i<n$ and $v_{i} \neq 0$, we get a contradiction by observing that $x_{i-1}\left(x_{0}\right.$ if $\left.i=0\right)$ appears in the i-th coordinate of $A v$. Thus, from our assumption $v_{n} \neq 0$ we deduce that v is a combination of e_{n} and e_{n+1} in which both appear. The $(n-1)$-th coordinate of $A v$ is a nonzero multiple of x_{n}, and this can be in the span of the n-th and $(n+1)$-th coordinates only if the $(n+1)$-th coordinate also is a multiple of x_{n}, which happens if and only if v is a multiple of $3 e_{n}-e_{n+1}$.

Thus from now on, we may assume $j=n+1$ and $v_{n}=0$. If $v_{n-1} \neq v_{n+1} / 3$, then the last two coordinates of $A v$ are independent, so in order to have codim $v^{\perp} \leq 2$, all other coordinates must be combinations of these last two. In particular, they would all be combinations of x_{n} and x_{n+1} only. For $0 \leq i \leq n-1$, the non-appearance of x_{i-1} (of x_{0} if $i=0$) in the i-th coordinate of $A v$ then forces $v_{i}=0$, so that v is a multiple of e_{n+1}, and in this case $\operatorname{codim} v^{\perp}=2$.

Finally we have the case $v_{n}=0, v_{n-1}=v_{n+1} / 3 \neq 0$. The $(n-1)$-th coordinate of $A v$ is a combination of x_{n-1} and x_{n-2} in which the latter appears, and the $(n+1)$-th coordinate is a multiple of $x_{n}+3 x_{n+1}$. These already span a 2 -dimensional space, so if $\operatorname{codim} v^{\perp} \leq 2$, all other coordinates must be combinations of x_{n-2}, x_{n-1}, x_{n}, and x_{n+1}. Suppose that $n>2$. Then for $0 \leq i \leq n-2$, the non-appearance of x_{i-1} (of x_{0} if $i=0$) in the i-th coordinate of $A v$ forces $v_{i}=0$. The $(n-2)$-th, $(n-1)$-th, and $(n+1)$-th coordinates of $A v$ are now nonzero multiples of x_{n-1}, x_{n-2}, and $x_{n}+3 x_{n+1}$, respectively, so there are independent, and codim $v^{\perp} \geq 3$.

We are left with the case $n=2, v_{2}=0, v_{1}=v_{3} / 3$. If $v_{1} \neq \pm \sqrt{3 c} v_{0}$, then the 0 -th and 1 -st coordinates of $A v$ are independent, and neither involves x_{3}, so the last coordinate is independent of both of them, yielding $\operatorname{codim} v^{\perp} \geq 3$. Otherwise, if $v_{1}= \pm \sqrt{3 c} v_{0}$, then v is a nonzero multiple of $e_{0} \pm \sqrt{3 c}\left(e_{1}+3 e_{3}\right)$, and we check that in this case codim $v^{\perp}=2$.

We next subdivide Case I. 3 according as $n=2$ or $n>2$.
Case I.3.a: $n>2$
Corollary 5.12. We have $L\left(S_{1}\right)=S_{1}$ and $L\left(T_{n}\right)=T_{n}$.
Proof. By (8), L must permute the five lines generated by the vectors listed in Lemma 5.11. The only 2-dimensional subspace of \bar{k}^{n+2} containing three of these five lines in S_{1}, so $L\left(S_{1}\right)=S_{1}$. The subspace spanned by the other two lines is T_{n}, so $L\left(T_{n}\right)=T_{n}$.
Lemma 5.13. The vectors $L e_{n}$ and $L e_{n+1}$ are nonzero multiples of e_{n} and e_{n+1}, respectively.
Proof. By Corollary 5.12, we know $L\left(T_{n}\right)=T_{n}$. Hence $y_{0}, y_{1}, \ldots, y_{n-1}$ are linear combinations of $x_{0}, x_{1}, \ldots, x_{n-1}$ only.

Substituting $x_{0}=x_{1}=\cdots=x_{n-1}=0$ in (7), we find

$$
\begin{equation*}
\left(x_{n}+x_{n+1}\right) x_{n+1}^{2}=\alpha\left(z_{n}+z_{n+1}\right) z_{n+1}^{2}, \tag{10}
\end{equation*}
$$

where z_{i} denotes the part of the linear form y_{i} involving x_{n} and x_{n+1}. By unique factorization, this implies that z_{n+1} is a nonzero scalar multiple of x_{n+1}. Without loss of generality, we may assume $z_{n+1}=x_{n+1}$; i.e. $\ell_{n+1, n+1}=1$. Equating coefficients of x_{n+1}^{3} in (10), we obtain $\alpha=1$. Now (10) implies $z_{n}=x_{n}$. This gives the desired result.

Corollary 5.14. We have $L\left(S_{n-2}\right)=S_{n-2}$ and $L\left(S_{n-1}\right)=S_{n-1}$.
Proof. This follows from Lemma 5.13, since $e_{n}^{\perp}=S_{n-2}$ and $e_{n+1}^{\perp}=S_{n-1}$.
Lemma 5.15. For $1 \leq m \leq n+1, T_{m}^{\perp}=S_{m-2}$.
Proof. We use backwards induction on m. Clearly $T_{n+1}^{\perp}=S_{n-1}$. For $1 \leq m \leq n$,

$$
T_{m}^{\perp}=T_{m+1}^{\perp} \cap e_{m}^{\perp}=S_{m-1} \cap\left(S_{m-2}+T_{m+2}\right)=S_{m-2}
$$

Lemma 5.16. For $2 \leq m \leq n+1, L e_{m}$ is a multiple of e_{m}.
Proof. We know it already for $m=n+1$ and $m=n$. We use backwards induction on m. Suppose $2 \leq m \leq n-1$, and that $L e_{m^{\prime}}$ is a multiple of $e_{m^{\prime}}$ for $m^{\prime}>m$. Then T_{m+1} and T_{m+2} are each preserved by L, and so are $S_{m-1}=T_{m+1}^{\perp}$ and $S_{m}=T_{m+2}^{\perp}$ by Lemma 5.15. Hence if $v=L e_{m}$, then $v \in S_{m}$, since $e_{m} \in S_{m}$. Also $v \notin S_{m-1}$, since otherwise $L\left(S_{m}\right) \subset S_{m-1}$, and L would not be invertible. Moreover $v^{\perp} \cap S_{m-1}$ has codimension 1 in S_{m-1}, since $e_{m}^{\perp} \cap S_{m-1}$ has codimension 1 in S_{m-1}. In other words, the span of the 0 -th, 1 -st, $\ldots,(m-1)$-th coordinates of $A v$ is 1-dimensional. But x_{m} appears in the ($m-1$)-th coordinate of $A v$ (since $v \in S_{m} \backslash S_{m-1}$), and not before, so the 0 -th, 1 -st, $\ldots,(m-2)$-th coordinates must all be zero. This forces $v_{0}=v_{1}=\cdots=v_{m-1}=0$, so $v=L e_{m}$ is a multiple of e_{m}.

We have $S_{0}=S_{1} \cap e_{2}^{\perp}$, so S_{0} also is fixed by L. Putting this together with Corollary 5.12 and Lemma 5.16, we see that L is of the form

$$
L=\left[\begin{array}{ccccccc}
* & * & 0 & \cdots & 0 & 0 & 0 \\
0 & * & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & * & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & * & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & * & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & *
\end{array}\right] .
$$

The argument at the end of Case I.1.a now implies that L is (a scalar multiple of) the identity.
Case I.3.b: $n=2$
The form defining X is

$$
f:=c x_{0}^{3}+x_{0} x_{1}^{2}+x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3}^{3} .
$$

For future convenience, we will make the change of coordinates

$$
\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{0}, x_{1}, x_{3},-x_{2}-x_{3} / 3\right),
$$

and for the rest of Case I.3.b, we will work with the new f, which is

$$
f:=c x_{0}^{3}+x_{0} x_{1}^{2}-x_{2}^{3}+\left(\frac{3 x_{1}+x_{2}}{3}\right) x_{3}^{2}+\frac{2 x_{3}^{3}}{27} .
$$

The new A is

$$
A=2\left[\begin{array}{cccc}
3 c x_{0} & x_{1} & 0 & 0 \\
x_{1} & x_{0} & 0 & x_{3} \\
0 & 0 & -3 x_{2} & \frac{1}{3} x_{3} \\
0 & x_{3} & \frac{1}{3} x_{3} & x_{1}+\frac{1}{3} x_{2}+\frac{2}{9} x_{3}
\end{array}\right] .
$$

The set W of vectors $v \in \bar{k}^{4}$ such that $\operatorname{codim} v^{\perp} \leq 2$ is the union of seven lines, the transform of those generated by the seven vectors in Lemma 5.11. They are the lines $E_{1}, E_{2}, \ldots, E_{7}$ generated by $e_{0}, e_{0}+\sqrt{3 c} e_{1}, e_{0}-\sqrt{3 c} e_{1}, e_{3}, e_{2}, e_{0}+\sqrt{3 c}\left(e_{1}-3 e_{2}\right)$, and $e_{0}-\sqrt{3 c}\left(e_{1}-3 e_{2}\right)$, respectively. By (8), L must permute the E_{i}.

There are four 2-dimensional subspaces of \bar{k}^{4} containing exactly three of these lines, namely

$$
\begin{aligned}
& W_{1}:=S_{1} \supset E_{1}, E_{2}, E_{3} \\
& W_{2}:=\bar{k} e_{0}+\bar{k}\left(e_{1}-3 e_{2}\right) \supset E_{1}, E_{6}, E_{7} \\
& W_{3}:=\bar{k}\left(e_{0}+\sqrt{3 c} e_{1}\right)+\bar{k} e_{2} \supset E_{2}, E_{5}, E_{6} \\
& W_{4}:=\bar{k}\left(e_{0}-\sqrt{3 c} e_{1}\right)+\bar{k} e_{2} \supset E_{3}, E_{5}, E_{7} .
\end{aligned}
$$

The only E_{i} not contained in any W_{j} is E_{4}, so $L\left(E_{4}\right)=E_{4}$. The span of the other six E_{i} is S_{2}, so $L\left(S_{2}\right)=S_{2}$.

We now know that L has the form

$$
L=\left[\begin{array}{llll}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
0 & 0 & 0 & *
\end{array}\right]
$$

Without loss of generality we may assume $\ell_{33}=1$. Equating coefficients of x_{3}^{3} in (7), we find $\alpha=1$. By viewing both sides of (7) as polynomials in x_{3}, we see that the forms $c x_{0}^{3}+x_{0} x_{1}^{2}-x_{2}^{3}$ and $3 x_{1}+x_{2}$ are each preserved by L.

If $\gamma \in \bar{k}^{*}$ and the plane cubic

$$
\begin{equation*}
\left(c x_{0}^{3}+x_{0} x_{1}^{2}-x_{2}^{3}\right)+\gamma\left(3 x_{1}+x_{2}\right)^{3}=0 \tag{11}
\end{equation*}
$$

has a unique singularity ${ }^{2}$, then that singularity is preserved by the automorphism induced by L. A short calculation shows that the singularities on these curves are at the points ($x_{0}: x_{1}: x_{2}$) = $\left(-9 s^{2}: 2: 2 s\right)$, where $s \in \bar{k} \backslash\{0,-3\}$ satisfies $c=-\frac{4}{243 s^{4}}$ and $\gamma=\left(\frac{s}{3+s}\right)^{2}$.

For $c \neq-2^{2} 3^{-9}, 2^{4} 3^{-9}$, we find that there are four possibilities for s, giving rise to four distinct values of γ for which the curve has a unique singularity. The four distinct points so obtained are in general position in \mathbf{P}^{2}, since they lie on the conic $2 x_{0} x_{1}+9 x_{2}^{2}=0$. Hence an automorphism of \mathbf{P}^{2} that fixes them is trivial. Together with the fact that L preserves the form $3 x_{1}+x_{2}$ (and not just up to scalar multiple), this implies that the upper left 3×3 block of L is the identity, so L is the identity.

If $c=-2^{2} 3^{-9}$, then we may assume $p \neq 5$ in addition to $p \neq 2,3$, since $c_{\text {bad }}=-2^{6} 3^{-9}$ coincides with this c in characteristic 5 . We dehomogenize the cubic

$$
-2^{2} 3^{-9} x_{0}^{3}+x_{0} x_{1}^{2}-x_{2}^{3}=0
$$

by setting $x=x_{2} / x_{0}$ and $y=x_{1} / x_{0}$, to obtain the elliptic curve in Weierstrass form

$$
E: y^{2}=x^{3}+2^{2} 3^{-9} .
$$

[^2](As usual, we choose the point at infinity as origin O on E, to make E an algebraic group.) Then L induces an automorphism σ of \mathbf{P}^{2} preserving E. The automorphism σ also preserves the line $3 y+x=0$, which is tangent to E at $P:=(2 / 27,-2 / 81)$ and meets E again at $[-2] P=$ $(-1 / 27,1 / 81)$. Hence $\sigma(P)=P$. The action of σ on E is the composition of an automorphism η of E as an elliptic curve (i.e. fixing O), and a translation on E. Since σ preserves the class of a line section, which is the class of the divisor $3 \cdot O$, the translation must be a translation by a 3 -torsion point T. It follows that η fixes $[3] P=(-2 / 81,10 / 729)$. The six automorphisms of E have the form $(x, y) \mapsto(\pm x, \omega y)$, where $\omega^{3}=1$, but $x([3] P)$ and $y([3] P)$ are finite and nonzero in k, so η must be the identity. Since $\sigma(P)=P$, it then follows that $T=O$. Thus σ fixes E pointwise, and hence is the identity. Since L does not scale $3 x_{1}+x_{2}$, this implies that L is the identity.

The last case $c=2^{4} 3^{-9}$ (in which two of the four s-values, namely $-3 / 2+3 i / 2$ and $-3 / 2-3 i / 2$ give rise to the same γ) was ruled out by assumption at the very beginning, so we are done with Case I.3.b, and indeed we are done with all of Case I.

6. Controlling the automorphisms: Case II

We will subdivide Case II as follows (recall that $p \neq 2$ throughout this case):

- Case II.1: $d \equiv 0(\bmod p) ; d \neq 3 ;$ and $p \neq 2,3$
- Case II.2: $d \equiv 0(\bmod p) ; d \neq 3 ;$ and $p=3$
- Case II.3: $d=3, p=3$, and $n \geq 2$.

Case II.1: $d \equiv 0(\bmod p) ; d \neq 3 ;$ and $p \neq 2,3$
We have

$$
A=\left[\begin{array}{ccccccc}
h_{0} & g_{1} & 0 & 0 & \cdots & 0 & 0 \\
g_{1} & h_{1} & g_{2} & 0 & \cdots & 0 & 0 \\
0 & g_{2} & h_{2} & g_{3} & \cdots & 0 & 0 \\
0 & 0 & g_{3} & h_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & h_{n} & g_{n+1} \\
0 & 0 & 0 & 0 & \cdots & g_{n+1} & h_{n+1}
\end{array}\right]
$$

where

$$
g_{i}:= \begin{cases}-x_{1}^{d-2}-4 x_{0} x_{1}^{d-3} & \text { if } i=1 \\ -x_{i}^{d-2} & \text { if } 2 \leq i \leq n+1\end{cases}
$$

and

$$
h_{i}:= \begin{cases}2 x_{1}^{d-2} & \text { if } i=0 \\ 2 x_{0} x_{1}^{d-3}+6 x_{0}^{2} x_{1}^{d-4} & \text { if } i=1 \\ 2 x_{i-1} x_{i}^{d-3} & \text { if } 2 \leq i \leq n+1 .\end{cases}
$$

The polynomials $g_{1}, \ldots, g_{n+1}, h_{0}, \ldots, h_{n+1}$ are linearly independent, and hence the same proof as in Case I. 1 shows that L must be of the form

$$
L=\left[\begin{array}{ccccccc}
* & * & 0 & \cdots & 0 & 0 & 0 \\
0 & * & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & * & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & * & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & * & 0 \\
0 & 0 & 0 & \cdots & 0 & * & *
\end{array}\right],
$$

or of the form

$$
L=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 0 & * & * \\
0 & 0 & 0 & \cdots & 0 & * & 0 \\
0 & 0 & 0 & \cdots & * & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & * & \cdots & 0 & 0 & 0 \\
0 & * & 0 & \cdots & 0 & 0 & 0 \\
* & * & 0 & \cdots & 0 & 0 & 0
\end{array}\right] .
$$

The second case is easily ruled out, since equating coefficients of $x_{n}^{d-2} x_{n+1}^{2}$ in

$$
f\left(x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right)=f\left(\ell_{0 n} x_{n}+\ell_{0, n+1} x_{n+1}, \ell_{1 n} x_{n}, \ldots, \ell_{n 1} x_{1}, \ell_{n+1,0} x_{0}+\ell_{n+1,1} x_{1}\right)
$$

yields $0=\ell_{1 n}^{d-2} \ell_{0, n+1}^{2}$, which contradicts the nonsingularity of L.
In the first case, since L is nonsingular, $\ell_{i i} \neq 0$ for all i. By scaling L, we may assume $\ell_{n+1, n+1}=$ 1. By equating coefficients of x_{n+1}^{d} in (7), we see that $\alpha=1$. Equating coefficients of $x_{n}^{d-1} x_{n+1}$ in

$$
f\left(x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right)=f\left(\ell_{00} x_{0}+\ell_{01} x_{1}, \ell_{11} x_{1}, \ldots, \ell_{n n} x_{n}, \ell_{n+1, n} x_{n}+x_{n+1}\right),
$$

we obtain

$$
0=(d-1) \ell_{n n} \ell_{n+1, n}^{d-2}
$$

Since $d-1$ and $\ell_{n n}$ are nonzero in \bar{k}, we have $\ell_{n+1, n}=0$. For $i=n, n-1, \ldots, 1$ in turn, we equate coefficients of $x_{i} x_{i+1}^{d-1}$ to find $\ell_{i i}=1$. Equate coefficients of $x_{0}^{2} x_{1}^{d-2}$, of $x_{0} x_{1}^{d-1}$ and of x_{1}^{d} to obtain

$$
\begin{aligned}
\ell_{00}^{2} & =1 \\
2 \ell_{00} \ell_{01}+\ell_{00} & =1 \\
c \ell_{01}^{d}+\ell_{01}^{2}+\ell_{01} & =0 .
\end{aligned}
$$

The first two equations yield the possibilities $(1,0)$ and $(-1,-1)$ for $\left(\ell_{00}, \ell_{01}\right)$, but only $(1,0)$ is consistent with the third equation. Thus L is the identity.

Case II.2: $d \equiv 0(\bmod p) ; d \neq 3 ;$ and $p=3$
When $p=3$, there is a single linear relation between the g 's and h 's (as defined in Case II.1), namely $g_{1}=h_{0}+h_{1}$.

Lemma 6.1. For nonzero $v \in \bar{k}^{n+2}$, we have $\operatorname{codim} v^{\perp} \geq 2$, with equality if and only if v is a multiple of $e_{0}, e_{0}+e_{1}$, or e_{n+1}.

Proof. The values of codim v^{\perp} will be exactly the same as in Case I. 1 except possibly for v 's for which the appearances of g_{1}, h_{0}, h_{1} in the coordinates of $A v$ are dependent due to the new relation between them. This happens when $v_{0} h_{0}+v_{1} g_{1}$ is a scalar multiple of $v_{0} g_{1}+v_{1} h_{1}$ and both are nonzero. Using $g_{1}=h_{0}+h_{1}$, we see that this holds exactly when $v_{0}=v_{1} \neq 0$. We may assume this from now on, since otherwise the inequality and the equality cases are the same as in Case I.1.

Let j be the largest integer such that $v_{j} \neq 0$. If $j \leq 1$, then v is a multiple of $e_{0}+e_{1}$ and we are done. If $j>1$, then g_{j} appears in the $(j-1)$-th coordinate of $A v$ but not before, and h_{j} appears in the j-th coordinate of $A v$ but not before, and the 0 -th coordinate of $A v$ is nonzero, so these three coordinates are linearly independent, and $\operatorname{codim} v^{\perp} \geq 3$.

Corollary 6.2. The vector $L e_{n+1}$ is a multiple of e_{n+1}, and $L\left(S_{1}\right)=S_{1}$.

Proof. We have

$$
\begin{aligned}
\left\langle e_{0}, e_{0}+e_{1}\right\rangle & =h_{0}+g_{1}=x_{1}^{d-2}-x_{0} x_{1}^{d-3}, \\
\left\langle e_{0}, e_{n+1}\right\rangle & =0, \\
\left\langle e_{0}+e_{1}, e_{n+1}\right\rangle & =0,
\end{aligned}
$$

unless $n=1$, in which case $\left\langle e_{0}+e_{1}, e_{n+1}\right\rangle=-x_{n+1}^{d-2}$ instead. If $n>1$, the multiples of e_{n+1} are distinguished from the multiples of e_{0} and $e_{0}+e_{1}$ by the fact that they pair to give zero with the latter two, so L maps e_{n+1} to itself, and fixes the subspace S_{1} generated by the multiples of the other two. If $n=1$, then the multiples of e_{n+1} are distinguished by the fact that they pair with multiples of e_{0} or $e_{0}+e_{1}$ to give perfect ($d-2$)-th powers always, so the result again follows.

Any easy induction on m proves that for $0 \leq m \leq n, S_{m}^{\perp}=T_{m+2}$, which is of codimension $m+2$.
Lemma 6.3. Suppose $1 \leq m \leq n-2$. Let V be an ($m+2$)-dimensional subspace of \bar{k}^{n+2} containing S_{m}. Then $\operatorname{codim} V^{\perp} \geq m+3$, with equality if and only if $V=S_{m+1}$.

Proof. Write $V=S_{m}+\bar{k} \cdot v$, so

$$
V^{\perp}=S_{m}^{\perp} \cap v^{\perp}=T_{m+2} \cap v^{\perp}
$$

If v has any nonzero coordinate v_{i} with $m+2 \leq i \leq n$, then the condition that an element w of T_{m+2} be in v^{\perp} places at least two linear conditions on w, namely $w_{i}=0$ and $w_{i+1}=0$, so $\operatorname{codim} V^{\perp} \geq \operatorname{codim} T_{m+2}+2=m+4$ in this case. Similarly, if $v_{n+1} \neq 0$, then the condition that an element w of S_{m}^{\perp} be in v^{\perp} places the new conditions $w_{n}=0$ and $w_{n+1}=0$ on w, so that $\operatorname{codim} V^{\perp} \geq m+4$ again. The only remaining possibility is that $v_{i}=0$ for all $i \geq m+2$, in which case we must have $V=S_{m+1}$ and $\operatorname{codim} V^{\perp}=\operatorname{codim} T_{m+3}=m+3$.

Corollary 6.4. We have $L\left(S_{m}\right)=S_{m}$ for $1 \leq m \leq n-1$.
Lemma 6.5. We have $L\left(T_{m}\right)=T_{m}$ for $2 \leq m \leq n+1$.
Proof. Suppose $n=1$. Then the needed fact $L\left(T_{2}\right)=T_{2}$ follows from the first half of Corollary 6.2.
Suppose $n \geq 2$. Using $S_{m}^{\perp}=T_{m+2}$ and Corollary 6.4 proves the result for all the required m except $m=2$. We know that $L\left(T_{2}\right)$ is an n-dimensional subspace of \bar{k}^{n+2} containing $L\left(T_{3}\right)=T_{3}$ such that $\operatorname{codim} L\left(T_{2}\right)^{\perp}=n+1$. Write $L\left(T_{2}\right)=T_{3}+\bar{k} \cdot v$, where $v_{i}=0$ for $i \geq 3$. Since $T_{3}^{\perp}=S_{1}$, which has codimension n, in order to have codim $L\left(T_{2}\right)^{\perp}=n+1$, the first two coordinates of $A v$ must be linearly dependent. This is possible only if v is a multiple of $e_{0}+e_{1}$ or a multiple of e_{2}. But $L\left(T_{2}\right) \cap S_{1}=L\left(T_{2} \cap S_{1}\right)=\{0\}$, so $e_{0}+e_{1} \notin L\left(T_{2}\right)$. Thus $L\left(T_{2}\right)=T_{3}+\bar{k} \cdot e_{2}=T_{2}$.

Corollary 6.6. We have $L\left(S_{m}\right)=S_{m}$ for $0 \leq m \leq n-1$.
Proof. The new result, $L\left(S_{0}\right)=S_{0}$, follows from $L\left(T_{2}\right)=T_{2}$ and $T_{2}^{\perp}=S_{0}$.
By Lemma 6.5 and Corollary 6.6, L is of the form

$$
L=\left[\begin{array}{ccccccc}
* & * & 0 & \cdots & 0 & 0 & 0 \\
0 & * & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & * & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & * & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & * & 0 \\
0 & 0 & 0 & \cdots & 0 & * & *
\end{array}\right]
$$

Repeating the argument at the end of Case II. 1 completes the proof in this case.

Case II.3: $d=3, p=3, n \geq 2$
In this case we have

$$
A=-\left[\begin{array}{cccccccc}
x_{1} & x_{0}+x_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
x_{0}+x_{1} & x_{0} & x_{2} & 0 & \cdots & 0 & 0 & 0 \\
0 & x_{2} & x_{1} & x_{3} & \cdots & 0 & 0 & 0 \\
0 & 0 & x_{3} & x_{2} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & x_{n-2} & x_{n} & 0 \\
0 & 0 & 0 & 0 & \cdots & x_{n} & x_{n-1} & x_{n+1} \\
0 & 0 & 0 & 0 & \cdots & 0 & x_{n+1} & x_{n}
\end{array}\right] .
$$

Lemma 6.7. For nonzero $v \in \bar{k}^{n+2}$, we have $\operatorname{codim} v^{\perp} \geq 2$, with equality if and only if v is a multiple of $e_{0}, e_{0}+e_{1}$, or e_{n+1}.

Proof. Let i be the smallest integer such that v_{i} is nonzero. Let j be the largest integer such that v_{j} is nonzero.

If $i=0$ and $j=0$, then v is a multiple of e_{0}, and $\operatorname{codim} v^{\perp}=2$.
If $i=0$ and $j=1$, then we may assume $v=e_{0}+\gamma e_{1}$ for some $\gamma \in \bar{k}^{*}$. If codim $v^{\perp} \leq 2$, then the first two coordinates of $A v$ must be linearly dependent, which implies $\gamma^{2}+\gamma+1=0$, which yields $\gamma=1$ (since we are in characteristic 3). Hence v is a multiple of $e_{0}+e_{1}$.

If $i=0$ and $2 \leq j \leq n$, then x_{j+1} appears only in the $(j+1)$-th coordinate of $A v, x_{j}$ appears in the $(j-1)$-th coordinate of $A v$ and not before, and the 0 -th coordinate of $A v$ is nonzero, so these three coordinates are independent, and $\operatorname{codim} v^{\perp} \geq 3$.

If $i=0$ and $j=n+1$, then we branch according as v_{n} is zero or not. If $v_{n}=0$, then the $(n+1)$-th coordinate of $A v$ is a nonzero multiple of x_{n}, the n-th coordinate of $A v$ is a combination of x_{n} and x_{n+1} in which x_{n+1} appears, and the 0 -th coordinate is a nonzero combination of x_{0} and x_{1}, so these three coordinates are independent, and $\operatorname{codim} v^{\perp} \geq 3$. If $v_{n} \neq 0$ and $n>2$, then the $(n+1)$-th coordinate is a nonzero combination of x_{n} and x_{n+1}, the 0 -th coordinate is a nonzero combination of x_{0} and x_{1}, and the n-th coordinate involves x_{n-1}, which appears in neither the 0 -th nor the $(n+1)$-th coordinate, so these three coordinates are independent, and codim $v^{\perp} \geq 3$. Finally suppose $v_{n} \neq 0$ and $n=2$. The 0 -th coordinate of $A v$ is a nonzero combination of x_{0} and x_{1}, and the 3 -rd coordinate of $A v$ is a nonzero combination of x_{2} and x_{3}, so these two coordinates are independent. If moreover $\operatorname{codim} v^{\perp} \leq 2$, then the 2 -nd coordinate must be a linear combination of the 0 -th and 3 -rd. The 0 -th coordinate must appear in this combination since x_{1} appears in the 2 -nd coordinate of $A v$. But x_{0} does not appear in the 2 -nd coordinate, so x_{0} cannot appear in the 0 -th coordinate, and this implies $v_{1}=0$. Then x_{3} appears while x_{2} does not appear in the 2 -nd coordinate, making it impossible for the 2 -nd coordinate to be a combination of the 0 -th and 3 -rd coordinates.

If $i \geq 1$ and $j \leq n$, then the $(i-1)$-th coordinate of $A v$ is nonzero, and the i-th coordinate is not a multiple of it, so these two coordinates are independent. Also, the $(j+1)$-th coordinate of $A v$ is a multiple of x_{j+1}, which does not appear anywhere else in $A v$, so the $(i-1)$-th, i-th, and $(j+1)$-th coordinates are independent, and $\operatorname{codim} v^{\perp} \geq 3$.

If $1 \leq i \leq n-1$ and $j=n+1$, then the $(i-1)$-th coordinate of $A v$ is a nonzero multiple of x_{i} (or of $x_{0}+x_{1}$ if $i=1$), the i-th coordinate of $A v$ is a nonzero combination of x_{i-1} and x_{i+1}, and the n-th coordinate of $A v$ involves x_{n+1}, which does not appear earlier, so these three coordinates are independent, and $\operatorname{codim} v^{\perp} \geq 3$.

If $i=n$ and $j=n+1$, then x_{n-1} appears only in the n-th coordinate of $A v$, the $(n-1)$-th coordinate is a nonzero multiple of x_{n}, and the $(n+1)$-th coordinate is a combination of x_{n} and x_{n+1} in which both appear, so these three coordinates are independent, and $\operatorname{codim} v^{\perp} \geq 3$.

If $i=n+1$ and $j=n+1$, then v is a multiple of e_{n+1}, and $\operatorname{codim} v^{\perp}=2$.
Corollary 6.8. The vector $L e_{n+1}$ is a multiple of e_{n+1}, and $L\left(S_{1}\right)=S_{1}$.
Proof. Since $n \geq 2$, we have

$$
\begin{aligned}
\left\langle e_{0}, e_{0}+e_{1}\right\rangle & =-x_{0}-2 x_{1}, \\
\left\langle e_{0}, e_{n+1}\right\rangle & =0, \\
\left\langle e_{0}+e_{1}, e_{n+1}\right\rangle & =0,
\end{aligned}
$$

so the multiples of e_{n+1} are distinguished from the multiples of e_{0} and $e_{0}+e_{1}$ by the fact that they pair to give zero with the latter two. Thus L maps e_{n+1} to itself, and fixes the subspace S_{1} generated by the multiples of the other two.
Lemma 6.9. Suppose $1 \leq m \leq n-2$. Let V be an ($m+2$)-dimensional subspace of \bar{k}^{n+2} containing S_{m}. Then $\operatorname{codim} V^{\perp} \geq m+3$, with equality if and only if $V=S_{m+1}$.

Proof. Write $V=S_{m}+\bar{k} \cdot v$, so

$$
V^{\perp}=S_{m}^{\perp} \cap v^{\perp}=T_{m+2} \cap v^{\perp} .
$$

We may assume $v_{i}=0$ for $i \leq m$. We must show that the codimension of $T_{m+2} \cap v^{\perp}$ in T_{m+2} is at least 1 , with equality if and only if v is a nonzero multiple of e_{m+1}. This is the same as showing that the span of the $(m+2)$-th, $\ldots,(n+1)$-th coordinates of $A v$ is of dimension at least 1, with equality if and only if v is a nonzero multiple of e_{m+1}.

Let j be the largest integer such that v_{j} is nonzero. If $j=m+1$, then v is a nonzero multiple of e_{m+1}, the $(m+2)$-th coordinate of $A v$ is a nonzero multiple of x_{m+2}, and all later coordinates are zero, so we have equality, as desired.

If $m+2 \leq j \leq n$, then the $(j+1)$-th coordinate of $A v$ is a nonzero multiple of x_{j+1}, but the j-th coordinate of $A v$ involves x_{j-1}, so the span is of dimension at least 2 .

If $j=n+1$ and $v_{n}=0$, then the $(n+1)$-th coordinate of $A v$ is a nonzero multiple of x_{n}, but the n-th coordinate involves x_{n+1}, so the span is of dimension at least 2 .

If $j=n+1$ and $v_{n} \neq 0$, then x_{n-1} appears in the n-th coordinate of $A v$, and the $(n+1)$ th coordinate of $A v$ is nonzero but does not involve x_{n-1}, so again the span is of dimension at least 2.

The rest of the proof of this case is exactly analogous to the corresponding final section of the proof in Case II.2, from Corollary 6.4 on.

7. Controlling the automorphisms: Case III

We have

$$
A=\left[\begin{array}{cccccccc}
0 & g_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
g_{1} & 0 & g_{2} & 0 & \cdots & 0 & 0 & 0 \\
0 & g_{2} & 0 & g_{3} & \cdots & 0 & 0 & 0 \\
0 & 0 & g_{3} & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & g_{n} & 0 \\
0 & 0 & 0 & 0 & \cdots & g_{n} & 0 & g_{n+1} \\
0 & 0 & 0 & 0 & \cdots & 0 & g_{n+1} & 0
\end{array}\right],
$$

where

$$
g_{i}:= \begin{cases}x_{0}^{d-2}+x_{1}^{d-2} & \text { if } i=1 \\ x_{i}^{d-2} & \text { if } 2 \leq i \leq n+1 .\end{cases}
$$

Note that g_{1}, \ldots, g_{n+1} are linearly independent over \bar{k}.

Lemma 7.1. Suppose $n \geq 4$. If $v \in \bar{k}^{n+2}$ is nonzero and $\operatorname{codim} v^{\perp} \leq 2$ then v is a multiple of some e_{i}, or v is a combination of e_{0} and e_{1}, or a combination of e_{0} and e_{2}, or a combination of e_{n} and e_{n+1}, or a combination of e_{n-1} and e_{n+1}, or a combination of e_{0} and e_{n+1}.

If $n=2$ or $n=3$, then the same result holds, except that combinations of e_{0}, e_{n-1}, e_{n+1} and combinations of e_{0}, e_{2}, e_{n+1} are also possible.

For all $n \geq 2$, only the multiples of e_{0} and the multiples of e_{n+1} satisfy $\operatorname{codim} v^{\perp}=1$.

Proof. It is clear that the listed v 's satisfy codim $v^{\perp} \leq 2$. Now suppose codim $v^{\perp} \leq 2$.
Let i be the smallest integer such that v_{i} is nonzero. Let j be the largest integer such that v_{j} is nonzero.

If $i=0$ and $j \leq 1$, then v is a combination of e_{0} and e_{1}. If v is a multiple of e_{0}, then codim $v^{\perp}=1$; otherwise, the 0 -th and 2 -nd coordinates of $A v$ are independent and $\operatorname{codim} v^{\perp}=2$.

If $i=0$ and $j=2$, then $v_{1}=0$, since otherwise, the 0 -th coordinate of $A v$ is a multiple of g_{1}, the 2 -nd coordinate of $A v$ is a multiple of g_{2}, and the 3 -rd coordinate of $A v$ is a multiple of g_{3}, which makes codim $v^{\perp} \geq 3$. Hence v is a combination of e_{0} and e_{2}. The 0 -th and 2-nd coordinates of $A v$ are independent unless v is a multiple of e_{0}, in which case $\operatorname{codim} v^{\perp}=1$.

If $i=0$ and $3 \leq j \leq n$, then g_{j+1} appears in the $(j+1)$-th coordinate of $A v$ but not before, g_{j} appears in the $(j-1)$-th coordinate of $A v$ but not before, and the 1-st coordinate of $A v$ is nonzero, so these three coordinates are independent, and $\operatorname{codim} v^{\perp} \geq 3$.

If $i=0$ and $j=n+1$, then the 1 -st and n-th coordinates of $A v$ are nonzero and independent because x_{n+1} appears only in the latter. Thus codim $v^{\perp} \geq 2$. Hence if $\operatorname{codim} v^{\perp} \leq 2$, then every other coordinate of $A v$ must be a combination of the 1 -st and n-th. In particular, each nonzero coordinate of $A v$ involves g_{1} or g_{n+1}, so the 2-nd, 3-rd, $\ldots,(n-1)$-th coordinates of $A v$ must be zero. If $n \geq 4$ this forces $v_{1}=v_{2}=\cdots=v_{n}=0$, as desired. If $n=3$, then the vanishing of the 2 -nd coordinate of $A v$ forces only $v_{1}=v_{3}=0$, so that v is a combination of e_{0}, e_{2}, and e_{4}, as desired. Finally, if $n=2$, then either $v_{1}=0$ or $v_{2}=0$, since if all v_{i} were nonzero, then for $m=1,2,3$, the term g_{m} occurs in the m-th coordinate of $A v$ but not afterwards, making codim $v^{\perp} \geq 3$. Thus v is a combination of e_{0}, e_{1}, and e_{3}, or a combination of e_{0}, e_{2}, and e_{3}, as desired.

We have now completely finished the case $i=0$, and symmetrical considerations prove all cases in which $j=n+1$. Therefore, from now on, we assume $1 \leq i \leq j \leq n$. If $i=j$, then v is a multiple of e_{i}, and $\operatorname{codim} v^{\perp}=2$, as desired. Otherwise, if $1 \leq i<j \leq n$, then g_{i} appears only in the $(i-1)$-th coordinate of $A v, g_{j+1}$ appears only in the $(j+1)$-th coordinate of $A v$, and g_{i+1} appears in the $(i+1)$-th coordinate of $A v$, so these three coordinates are independent, and $\operatorname{codim} v^{\perp} \geq 3$.

Lemma 7.2. The matrix L is of the form

$$
L=\left[\begin{array}{ccccccccc}
* & * & * & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & * & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & * & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & * & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & * & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & * & * & *
\end{array}\right]
$$

or of the form

$$
L=\left[\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & \cdots & 0 & * & * & * \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & * & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & * & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & * & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & * & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & * & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
* & * & * & 0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right]
$$

In other words, either L has nonzero entries on the diagonal and zeros elsewhere except possibly at $\ell_{01}, \ell_{02}, \ell_{n+1, n-1}, \ell_{n+1, n}$, or L has nonzero entries on the reverse diagonal and zeros elsewhere except possibly at $\ell_{0, n-1}, \ell_{0, n}, \ell_{n+1,1}, \ell_{n+1,2}$.
Proof. If $n=1$, then the nonzero $v \in \bar{k}^{n+2}$ for which $\operatorname{codim} v^{\perp}=1$ are exactly the combinations of e_{0} and e_{2}, so L must preserve the subspace $S_{0}+T_{2}$; i.e., L must have the form

$$
L=\left[\begin{array}{lll}
* & * & * \\
0 & * & 0 \\
* & * & *
\end{array}\right]
$$

and this is what Lemma 7.2 is claiming in this case.
For $n \geq 2$, Lemma 7.1 implies that L maps e_{0} and e_{n+1} to themselves or interchanges them, up to scalar multiple. By symmetry, we may assume that $L e_{0}$ is a multiple of e_{0}, and that $L e_{n+1}$ is a multiple of e_{n+1}. (The possibilities where $L e_{0}$ is a multiple of e_{n+1} will give rise to the mirror reflections of the possibilities for L in the first case.) The subset $W:=\left\{v: \operatorname{codim} v^{\perp} \leq 2\right\}$ of \bar{k}^{n+2} is preserved by L, and Lemma 7.1 gives an explicit description of W.

If $n=2$, then $e_{1} \in e_{3}^{\perp}$, so $L e_{1} \in\left(L e_{3}\right)^{\perp}=e_{3}^{\perp}=S_{1}+T_{3}$. Similarly $L e_{2} \in e_{0}^{\perp}=S_{0}+T_{2}$. This completes the proof in the case $n=2$.

If $n=3$, then the subspace V of \bar{k}^{n+2} generated by e_{0}, e_{2}, and e_{4} is preserved by L, since by Lemma 7.1 it is the only 3 -dimensional subspace contained in W. Also, L preserves S_{1} (resp. T_{3}), since by Lemma 7.1 this is the only 2 -dimensional subspace that contains $\bar{k} e_{0}$ (resp. $\bar{k} e_{4}$), that is not contained in V, and that is contained in W. These restrictions together imply that L has the desired shape.

From now on, we assume $n \geqq 4$. By Lemma 7.1, the 2-dimensional subspaces containing $\bar{k} e_{0}$ and contained in W are $S_{1}=\overline{\bar{k}} e_{0}+\bar{k} e_{1}$ and $R:=\bar{k} e_{0}+\bar{k} e_{2}$. Hence L preserves $\left\{S_{1}, R\right\}$, and preserves their sum, which is S_{2}. Similarly L preserves T_{n-1}. It then follows from Lemma 7.1 that L permutes $e_{3}, e_{4}, \ldots, e_{n-2}$ up to scalar multiple, since these (and their multiples) are the only vectors of W outside $S_{2}+T_{n-1}$.

We next prove by induction on i that $L\left(S_{i}\right)=S_{i}$ for $2 \leq i \leq n-2$, and that $L e_{i}$ is a multiple of e_{i} for $3 \leq i \leq n-2$. The base case $L\left(S_{2}\right)=S_{2}$ is already known. Suppose $3 \leq i \leq n-2$, and $L\left(S_{i-1}\right)=S_{i-1}$, and $L\left(e_{j}\right)$ is a multiple of e_{j} for $3 \leq j \leq i-1$. We know already that $L e_{i}$ is a multiple of some $e_{k}, k \geq i$, but the only such e_{k} that can pair with some vector in S_{i-1} to give something nonzero is e_{i}, so $L e_{i}$ must be a multiple of e_{i}. Hence also $L\left(S_{i}\right)=S_{i}$, which completes the induction step.

In particular, we now know that $L\left(T_{3}\right)=T_{3}$. The subspaces S_{1} and R can be distinguished using the fact that only the latter contains elements that can pair with some vector in T_{3} to give something nonzero, so $L\left(S_{1}\right)=S_{1}$ and $L(R)=R$. Similarly we deduce that $L\left(T_{n}\right)=T_{n}$ and that L preserves the subspace $R^{\prime}:=\bar{k} e_{n-1}+\bar{k} e_{n+1}$. The restrictions we have deduced, taken together, imply that L has the desired shape.

Case III.1: $n=1$
Equation (7) becomes

$$
\begin{align*}
& x_{0}^{d-1} x_{1}+x_{0} x_{1}^{d-1}+x_{1} x_{2}^{d-1} \tag{12}\\
&=\alpha\left[\left(x_{2}^{d}\right.\right. \\
&=\alpha{ }_{00} x_{0}+\ell_{01} x_{1}\left.+\ell_{02} x_{2}\right)^{d-1} \ell_{11} x_{1}+\left(\ell_{00} x_{0}+\ell_{01} x_{1}+\ell_{02} x_{2}\right)\left(\ell_{11} x_{1}\right)^{d-1} \\
&\left.+\ell_{11} x_{1}\left(\ell_{20} x_{0}+\ell_{21} x_{1}+\ell_{22} x_{2}\right)^{d-1}+\left(\ell_{20} x_{0}+\ell_{21} x_{1}+\ell_{22} x_{2}\right)^{d}\right] .
\end{align*}
$$

Equating coefficients of x_{0}^{d} yields $0=\alpha \ell_{20}^{d}$, so $\ell_{20}=0$. Since L is nonsingular, $\ell_{00} \neq 0$. Equating coefficients of $x_{0}^{d-2} x_{1}^{2}$ yields $0=\alpha \ell_{00}^{d-2} \ell_{01} \ell_{11}$, but $\alpha, \ell_{00}, \ell_{11}$ must all be nonzero, so $\ell_{01}=0$. Equating coefficients of $x_{0}^{d-2} x_{1} x_{2}$ yields $0=\alpha \ell_{00}^{d-2} \ell_{02} \ell_{11}$, so $\ell_{02}=0$. Equating coefficients of $x_{1}^{d-1} x_{2}$ yields $0=\alpha \ell_{11} \ell_{21}^{d-2} \ell_{22}$, and $\ell_{11}, \ell_{22} \neq 0$ by nonsingularity, so $\ell_{21}=0$. We now know that L is diagonal. Without generality assume $\ell_{22}=1$. Equating coefficients of x_{2}^{d} in (12) shows $\alpha=1$. Equating coefficients of $x_{1} x_{2}^{d-1}$ shows $\ell_{11}=1$. Equating coefficients of $x_{0} x_{1}^{d-1}$ shows $\ell_{00}=1$. Thus L is the identity.

Case III.2: $n \geq 2$
Equating coefficients of x_{0}^{d} in (7) rules out the second possibility in Lemma 7.2, so L is of the form

$$
L=\left[\begin{array}{ccccccccc}
* & * & * & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & * & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & * & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & * & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & * & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & * & * & *
\end{array}\right],
$$

and (7) becomes

$$
\begin{align*}
& f\left(x_{0}, x_{1}, \ldots, x_{n+1}\right) \tag{13}\\
& \quad=\alpha f\left(\ell_{00} x_{0}+\ell_{01} x_{1}+\ell_{02} x_{2}, \ell_{11} x_{1}, \ldots, \ell_{n n} x_{n}, \ell_{n+1, n-1} x_{n-1}+\ell_{n+1, n} x_{n}+\ell_{n+1, n+1} x_{n+1}\right) .
\end{align*}
$$

Note that $\ell_{i i} \neq 0$ for all i, since L is nonsingular. Equating coefficients of $x_{0}^{d-2} x_{1}^{2}$ in (13) yields $0=\alpha \ell_{00}^{d-2} \ell_{01} \ell_{11}$ so $\ell_{01}=0$. Equating coefficients of $x_{0}^{d-2} x_{1} x_{2}$ yields $0=\alpha \ell_{00}^{d-2} \ell_{02} \ell_{11}$ so $\ell_{02}=0$.

Equating coefficients of $x_{n}^{d-1} x_{n+1}$ yields $0=\alpha \ell_{n n} \ell_{n+1, n}^{d-2} \ell_{n+1, n+1}$ so $\ell_{n+1, n}=0$. Equating coefficients of $x_{n-1}^{d-2} x_{n} x_{n+1}$ yields $0=\alpha \ell_{n n} \ell_{n+1, n-1}^{d-2} \ell_{n+1, n+1}$ so $\ell_{n+1, n-1}=0$. We now know that L is diagonal. Without loss of generality assume $\ell_{n+1, n+1}=1$. Equating coefficients of x_{n+1}^{d} in (13) shows $\alpha=1$. We now prove $\ell_{i i}=1$ for all i by backwards induction, by equating coefficients of $x_{i} x_{i+1}^{d-1}$. Thus L is the identity.

8. Controlling the automorphisms: Case IV

The matrix A will have $\left\lfloor\frac{n+1}{2}\right\rfloor$ nonzero 2×2 blocks along the diagonal, and zeros elsewhere. For odd i, define $g_{i}:=-2 x_{i-1} x_{i}^{d-3}$. Also define

$$
h_{i}:= \begin{cases}2 x_{i+1}^{d-2} & \text { if } i \text { is even } \\ 2 x_{i-1}^{2} x_{i}^{d-4} & \text { if } i \text { is odd }\end{cases}
$$

(Note that $d \geq 4$ in Case IV.) The g 's and h 's are linearly independent over \bar{k}.
Case IV.1: n is odd
We have

$$
A=\left[\begin{array}{cccccccc}
h_{0} & g_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
g_{1} & h_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & h_{2} & g_{3} & \cdots & 0 & 0 & 0 \\
0 & 0 & g_{3} & h_{3} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & h_{n-1} & g_{n} & 0 \\
0 & 0 & 0 & 0 & \cdots & g_{n} & h_{n} & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0
\end{array}\right] .
$$

Clearly $L e_{n+1}$ is a multiple of e_{n+1}, because only the multiples of e_{n+1} pair under \langle,$\rangle with all$ vectors to give zero. For $i=0,2,4, \ldots, n-1$, let V_{i} be the \bar{k}-vector space spanned by e_{i}, e_{i+1}, and e_{n+1}. It is clear that $V_{0}, V_{2}, V_{4}, \ldots, V_{n-1}$ are the only 3 -dimensional subspaces V of \bar{k}^{n+2} such that $\operatorname{codim} V^{\perp}=2$. Thus $L\left(V_{i}\right)=V_{\pi(i)}$ for some permutation π of $\{0,2,4, \ldots, n-1\}$. In other words, L has the form of a permutation matrix, except with 2×2 blocks, and with an added row at the bottom with potentially nonzero entries, and with zeros in an added final column on the right (except for the lower right corner, which must be nonzero).

If we view both sides of (7) as polynomials in x_{n+1} and equate coefficients of x_{n+1}^{d-1}, we find that y_{n} is a nonzero multiple of x_{n}. Thus $L\left(V_{n-1}\right)=V_{n-1}$. If we instead equate coefficients of x_{n+1}, we find that y_{0} is a nonzero multiple of x_{0}. Thus $L\left(V_{0}\right)=V_{0}$.

We now prove by backwards induction that y_{i} is a nonzero multiple of x_{i} for $i=n-1, n-2, \ldots, 1$. (We already know it for $i=n$ and $i=0$.) First suppose i is even. By assumption, y_{i+1} is a multiple of x_{i+1}, so $\pi(i)=i$. It follows that y_{i} is a linear combination of x_{i} and x_{i+1}. Moreover, x_{i} occurs in this combination, since otherwise L would be singular. Suppose $\ell_{i, i+1} \neq 0$. Then for each $j<i$, equating coefficients of $x_{j} x_{i+1}^{d-1}$ in (7) yields

$$
0=\alpha \ell_{i-1, j} \ell_{i, i+1}^{d-1}
$$

so $\ell_{i-1, j}=0$. The block form of L implies $\ell_{i-1, j}=0$ for $j \geq i$ as well, so L has a row of zeros, which is a contradiction. Thus $\ell_{i, i+1}$ must have been zero, and hence y_{i} is a (nonzero) multiple of x_{i}.

Next suppose i is odd, $1 \leq i \leq n-2$. For $j<i$, equating coefficients of $x_{j} x_{i+1}^{d-1}$ in (7) yields $0=\alpha \ell_{i, j} \ell_{i+1, i+1}^{d-1}$, and $\ell_{i+1, i+1}$ is nonzero (since y_{i+1} is a nonzero multiple of x_{i+1}), so $\ell_{i, j}=0$ for $j<i$. On the other hand, the block form of L implies $\ell_{i, j}=0$ for $j>i$ also, so y_{i} is a (nonzero) multiple of x_{i}.

Equating coefficients of x_{n}^{d} in (7) yields $0=\alpha \ell_{n n} \ell_{n+1, n}^{d-1}$, so $\ell_{n+1, n}=0$. For each $j<n$, equating coefficients of $x_{j}^{d-1} x_{n}$ shows that $0=\alpha \ell_{n n} \ell_{n+1, j}^{d-1}$, so $\ell_{n+1, j}=0$. Thus y_{n+1} is a (nonzero) multiple of x_{n+1}.

We now know that L is diagonal. We may assume $\ell_{00}=1$. Equating coefficients of x_{0}^{d} in (7) shows $\alpha=1$. Equating coefficients of $x_{n+1} x_{0}^{d-1}$ in (7) shows $\ell_{n+1, n+1}=1$. We can now show $\ell_{i i}=0$ for $i=n, n-1, \ldots, 1$ as well, by backwards induction: equating coefficients of $x_{i} x_{i+1}^{d-1}$ in (7) yields $\ell_{i i} \ell_{i+1, i+1}^{d-1}=1$, so if $\ell_{i+1, i+1}=1$, then $\ell_{i i}=1$. Thus L is the identity.

Case IV.2: n is even

The matrix A has the same form as in Case IV. 1 except that it ends with two final rows of zeros and two final columns of zeros, instead of only one of each.

The subspace of v in \bar{k}^{n+2} such that $\langle v, w\rangle=0$ for all w in \bar{k}^{n+2} is T_{n}, so $L\left(T_{n}\right)=T_{n}$. For $i=0,2,4, \ldots, n-1$, let V_{i} be the \bar{k}-vector space spanned by e_{i}, e_{i+1}, e_{n}, and e_{n+1}. It is clear that $V_{0}, V_{2}, V_{4}, \ldots, V_{n-2}$ are the only 4-dimensional subspaces V of \bar{k}^{n+2} such that codim $V^{\perp}=2$. Thus $L\left(V_{i}\right)=V_{\pi(i)}$ for some permutation π of $\{0,2,4, \ldots, n-2\}$. In other words, L has the form of a permutation matrix, except with 2×2 blocks, and with two added rows at the bottom with potentially nonzero entries, and with zeros in two added final columns on the right (except for the lower right 2×2 block, which may have nonzero entries).

If we substitute $x_{0}=x_{1}=\cdots=x_{n-1}=0$ in (7), we obtain

$$
x_{n} x_{n+1}^{d-1}=\alpha\left(\ell_{n n} x_{n}+\ell_{n, n+1} x_{n+1}\right)\left(\ell_{n+1, n} x_{n}+\ell_{n+1, n+1} x_{n+1}\right)^{d-1} .
$$

By unique factorization, $\ell_{n n} x_{n}+\ell_{n, n+1} x_{n+1}$ is a nonzero multiple of x_{n}, and $\ell_{n+1, n} x_{n}+\ell_{n+1, n+1} x_{n+1}$ is a nonzero multiple of x_{n+1}. Hence the lower right 2×2 block of L is diagonal, with nonzero entries on the diagonal.

View both sides of (7) as polynomials in x_{n+1}. Equating coefficients of x_{n+1}^{d-1} shows that y_{n} is a nonzero multiple of x_{n}. Equating coefficients of x_{n+1} shows that y_{0}^{d-1} is a nonzero multiple of x_{0}^{d-1}, so y_{0} is a nonzero multiple of x_{0}.

Now view both sides of (7) as polynomials in x_{n}. Equating coefficients of x_{n} shows that y_{n+1}^{d-1} is a nonzero multiple of x_{n+1}^{d-1}, so y_{n+1} is a nonzero multiple of x_{n+1}. Equating coefficients of x_{n}^{d-1} shows that y_{n-1} is a nonzero multiple of x_{n-1}.

The same backwards induction on i as in Case IV. 1 now shows that y_{i} is a nonzero multiple of x_{i} for all i. (We already know it for $i=0, n-1, n, n+1$.) Thus L is diagonal. We deduce that L is (a scalar multiple of) the identity as in the end of Case IV.1.

9. Controlling the automorphisms: Case V

Note that $d \geq 5$ in Case V. We have

$$
A=\left[\begin{array}{ccc}
0 & x_{1}^{d-3} x_{2} & x_{1}^{d-2} \\
x_{1}^{d-3} x_{2} & 0 & x_{0} x_{1}^{d-3} \\
x_{1}^{d-2} & x_{0} x_{1}^{d-3} & 0
\end{array}\right]
$$

The greatest common divisor of the entries of A is x_{1}^{d-3}, so y_{1}^{d-3} must be a nonzero multiple of x_{1}^{d-3}. Hence y_{1} is a nonzero multiple of x_{1}. Without loss of generality we may assume $y_{1}=x_{1}$.

Then (7) becomes

$$
\begin{equation*}
f\left(x_{0}, x_{1}, x_{2}\right)=\alpha f\left(\ell_{00} x_{0}+\ell_{01} x_{1}+\ell_{02} x_{2}, x_{1}, \ell_{20} x_{0}+\ell_{21} x_{1}+\ell_{22} x_{2}\right) . \tag{14}
\end{equation*}
$$

If we set $x_{1}=0$ and use the definition of f, we obtain

$$
x_{2} x_{0}^{d-1}=\alpha\left(\ell_{20} x_{0}+\ell_{22} x_{2}\right)\left(\ell_{00} x_{0}+\ell_{02} x_{2}\right)^{d-1} .
$$

By unique factorization, we deduce that $\ell_{20}=0$ and $\ell_{02}=0$. Now (14) becomes

$$
\begin{align*}
& \alpha^{-1}\left(x_{0} x_{1}^{d-2} x_{2}+x_{0} x_{1}^{d-1}+x_{1} x_{2}^{d-1}+x_{2} x_{0}^{d-1}+x_{1}^{2} x_{2}^{d-2}\right) \tag{15}\\
& =\left(\ell_{00} x_{0}+\ell_{01} x_{1}\right) x_{1}^{d-2}\left(\ell_{21} x_{1}+\ell_{22} x_{2}\right)+\left(\ell_{00} x_{0}+\ell_{01} x_{1}\right) x_{1}^{d-1}+x_{1}\left(\ell_{21} x_{1}+\ell_{22} x_{2}\right)^{d-1} \\
& \quad+\left(\ell_{21} x_{1}+\ell_{22} x_{2}\right)\left(\ell_{00} x_{0}+\ell_{01} x_{1}\right)^{d-1}+x_{1}^{2}\left(\ell_{21} x_{1}+\ell_{22} x_{2}\right)^{d-2}
\end{align*}
$$

Equating coefficients of $x_{0}^{d-1} x_{1}$ yields $0=\ell_{21} \ell_{00}^{d-1}$. The nonsingularity of L guarantees $\ell_{00} \neq 0$, so $\ell_{21}=0$. Equating coefficients of x_{1}^{d} yields $0=\ell_{01}$, so L is diagonal.

Equating coefficients of $x_{1} x_{2}^{d-1}$ and of $x_{1}^{2} x_{2}^{d-2}$ yields

$$
\begin{aligned}
\alpha^{-1} & =\ell_{22}^{d-1} \\
\alpha^{-1} & =\ell_{22}^{d-2} .
\end{aligned}
$$

Dividing, we find $\ell_{22}=1$, and then $\alpha=1$. Equating coefficients of $x_{0} x_{1}^{d-1}$ now shows $\ell_{00}=1$. Thus L is the identity.

10. Controlling the automorphisms: Case Vi

Let $m=3\left\lfloor\frac{n+2}{3}\right\rfloor$. For $i=0,3,6, \ldots, m-3$, define $f_{i}:=x_{i+1}^{d-3} x_{i+2}, g_{i}:=x_{i+1}^{d-2}$, and $h_{i}:=x_{i} x_{i+1}^{d-3}$. We have

$$
A=\left[\begin{array}{ccccccc}
0 & f_{0} & g_{0} & 0 & 0 & 0 & \cdots \\
f_{0} & 0 & h_{0} & 0 & 0 & 0 & \cdots \\
g_{0} & h_{0} & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & f_{3} & g_{3} & \cdots \\
0 & 0 & 0 & f_{3} & 0 & h_{3} & \cdots \\
0 & 0 & 0 & g_{3} & h_{3} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

in which there are $\left\lfloor\frac{n+2}{3}\right\rfloor 3 \times 3$ blocks along the diagonal, and zeros elsewhere. (There will be $(n+2-m)$ rows of zeros at the bottom, and also $(n+2-m)$ columns of zeros at the right.) Note that $f_{0}, g_{0}, h_{0}, f_{3}, g_{3}, h_{3}, \ldots$ are linearly independent over \bar{k}.

The set of v in \bar{k}^{n+2} such that $\langle v, w\rangle=0$ for all w in \bar{k}^{n+2} is T_{m}, so $L\left(T_{m}\right)=T_{m}$. Note that $\operatorname{dim} T_{m}=(n+2) \bmod 3=n+2-m$. For $i=0,3,6, \ldots, m-3$, let V_{i} be the $(n+2-m)+3-$ dimensional vector space spanned by T_{m}, e_{i}, e_{i+1}, and e_{i+2}.
Lemma 10.1. If $\operatorname{codim} v^{\perp} \leq 3$, then $v \in V_{i}$ for some i.
Proof. If v is not contained in any V_{i}, then there are at least two distinct $i, j \in\{0,3,6, \ldots, m-3\}$ such that v equals a nonzero combination w of e_{i}, e_{i+1}, e_{i+2}, plus a nonzero combination w^{\prime} of e_{j}, e_{j+1}, e_{j+2}, plus an element of T_{m}. Any nonzero combination of the three columns A_{i}, A_{i+1}, A_{i+2} will have entries spanning a vector space of dimension at least 2, because there will be at least two nonzero entries, and there will be one form f_{i}, g_{i}, or h_{i} that appears in some but not all of these nonzero entries. The span of the nonzero entries of this combination does not intersect the span of the entries of a nonzero combination of A_{j}, A_{j+1}, A_{j+2}, so we see that codim $v^{\perp} \geq 2+2=4$.
Corollary 10.2. We have $L\left(V_{i}\right)=V_{\pi(i)}$ for some permutation π of $\{0,3,6, \ldots, m-3\}$.

Proof. By Lemma 10.1, the V_{i} are the only $((n+2-m)+3)$-dimensional subspaces V such that $\operatorname{codim} V^{\perp}=3$.

Corollary 10.3. For $i=0,3,6, \ldots, m-3$, each of y_{i}, y_{i+1}, y_{i+2} is a linear combination of x_{j}, x_{j+1}, x_{j+2}, where $j=\pi^{-1}(i)$.

Proof. This is a direct consequence of Corollary 10.2 and the fact $L\left(T_{m}\right)=T_{m}$.
Before proceeding further, we subdivide Case VI as follows.

- Case VI.1: $n \equiv 0(\bmod 3)$
- Case VI.2: $n \equiv 1(\bmod 3)$ and $n \geq 4$
- Case VI.3: $n \equiv 2(\bmod 3)$.
(Also, remember that throughout Case VI, $p=2, d$ is odd, and $n>1$.)
Case VI.1: $n \equiv 0(\bmod 3)$
We have $m=n$. Each of $y_{0}, y_{1}, \ldots, y_{n-1}$ is a linear combination of $x_{0}, x_{1}, \ldots, x_{n-1}$, by Corollary 10.3. Thus if we substitute $x_{0}=x_{1}=\cdots=x_{n-1}=0$ in (7), we obtain

$$
x_{n} x_{n+1}^{d-1}=\alpha\left(\ell_{n, n} x_{n}+\ell_{n, n+1} x_{n+1}\right)\left(\ell_{n+1, n} x_{n}+\ell_{n+1, n+1} x_{n+1}\right)^{d-1} .
$$

By unique factorization, $\ell_{n, n+1}=\ell_{n+1, n}=0$.
If we consider both sides of (7) as polynomials in x_{n+1} and equate coefficients of x_{n+1}^{d-1}, we deduce that y_{n} is a multiple of x_{n}. In particular, the only y_{i} in which x_{n} appears is y_{n}. If we consider both sides of (7) as polynomials in x_{n} and equate coefficients of x_{n}, we deduce that y_{n+1}^{d-1} is a multiple of x_{n+1}^{d-1}, so y_{n+1} is a multiple of x_{n+1}.

If we again consider both sides of (7) as polynomials in x_{n+1}, but this time equate coefficients of x_{n+1}, we deduce that y_{0}^{d-1} is a multiple of x_{0}^{d-1}, so y_{0} is a multiple of x_{0}. Corollary 10.3 implies $\pi(0)=0$.

Similarly if we consider both sides of (7) as polynomials in x_{n} and equate coefficients of x_{n}^{d-1}, we deduce that y_{n-1} is a multiple of x_{n-1}, and $\pi(m-3)=m-3$.

We now prove $\pi(i)$ for all $i=0,3,6, \ldots, m-3$ by induction. Suppose $i \geq 3$, and we know $\pi(j)=j$ for $j<i$. By Corollary 10.3, the only y-monomial of $f\left(y_{0}, y_{1}, \ldots, y_{n+1}\right)$ whose expansion can contain $x_{i-1} x_{i}^{d-1}$ is $y_{i-1} y_{i}^{d-1}$. It follows that y_{i} must involve x_{i}, so $\pi(i)=i$ by Corollary 10.3.

Fix $i \in\{3,6,9, \ldots, m-6\}$. If we expand $f\left(y_{0}, y_{1}, \ldots, y_{n+1}\right)$ and discard all monomials unless they involve both one of $x_{i-3}, x_{i-2}, x_{i-1}$ and one of x_{i}, x_{i+1}, x_{i+2}, then what remains, by Corollary 10.3, is exactly the expansion of $y_{i-1} y_{i}^{d-1}$. Hence $y_{i-1} y_{i}^{d-1}$ is a multiple of $x_{i-1} x_{i}^{d-1}$, and by unique factorization, we see that y_{i-1} is a multiple of x_{i-1} and y_{i} is a multiple of x_{i}.

We now know that L is of the form

$$
L=\left[\begin{array}{cccccccccccc}
* & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
* & * & * & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & * & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & * & * & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & * & \cdots & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & * & * & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & *
\end{array}\right],
$$

and the diagonal entries must be nonzero, since L is nonsingular.
Equating coefficients of $x_{0} x_{1}^{d-1}$ in (7) yields

$$
0=\alpha \ell_{10} \ell_{11}^{d-1}
$$

so $\ell_{10}=0$. Equating coefficients of $x_{1}^{d-1} x_{2}$ yields

$$
0=\alpha \ell_{11}^{d-1} \ell_{12}
$$

so $\ell_{12}=0$.
Let i be a positive multiple of 3 . Equating coefficients of x_{i}^{d} yields

$$
0=\alpha \ell_{i, i} \ell_{i+1, i}^{d-1},
$$

so $\ell_{i+1, i}=0$. Similarly, equating coefficients of x_{i+2}^{d} yields

$$
0=\alpha \ell_{i+1, i+2} \ell_{i+2, i+2}^{d-1}
$$

so $\ell_{i+1, i+2}=0$.
We now know that L is diagonal. Without loss of generality suppose $\ell_{11}=1$. Equating coefficients of x_{1}^{d} in (7) shows $\alpha=1$. Equating coefficients of $x_{n+1} x_{0}^{d-1}$ shows $\ell_{n+1, n+1}=\ell_{00}^{1-d}$. Equating coefficients of $x_{n} x_{n+1}^{d-1}$ shows

$$
\ell_{n, n}=\ell_{n+1, n+1}^{1-d}=\ell_{00}^{(1-d)^{2}}
$$

By backwards induction on i, we show

$$
\begin{equation*}
\ell_{i, i}=\ell_{00}^{(1-d)^{n+2-i}} \tag{16}
\end{equation*}
$$

for all $i \geq 1$. In particular,

$$
1=\ell_{11}=\ell_{00}^{(1-d)^{n+1}}
$$

On the other hand, equating coefficients of $x_{0} x_{1}^{d-3} x_{2}$, we find

$$
1=\ell_{00} \ell_{22}=\ell_{00}^{1+(1-d)^{n}}
$$

Since the exponents $(1-d)^{n+1}$ and $1+(1-d)^{n}$ are relatively prime, it follows that $\ell_{00}=1$, and then by (16), $\ell_{i, i}=1$ for all i. Thus L is the identity.

Case VI.2: $n \equiv 1(\bmod 3)$ and $n \geq 4$
We have $m=n+2$. In what follows, subscripts are to be considered modulo m. Suppose $i \in\{0,3,6, \ldots, m-3\}$. Because of Corollary 10.3, the only y-monomials in $f\left(y_{0}, y_{1}, \ldots, y_{n+1}\right)$ whose expansions could possibly contain $x_{i-1} x_{i}^{d-1}$ are those of the form $y_{j-1} y_{j}^{d-1}$ for some $j \in$ $\{0,3,6, \ldots, m-3\}$. Moreover, for fixed i, at most one of these y-monomials can contribute an $x_{i-1} x_{i}^{d-1}$ term. On the other hand, by (7), $x_{i-1} x_{i}^{d-1}$ must appear in one of them, since it appears in $f\left(x_{0}, x_{1}, \ldots, x_{n+1}\right)$. Suppose it appears in $y_{j-1} y_{j}^{d-1}$. Then, again by Corollary 10.3, the monomials in the expansion of $y_{j-1} y_{j}^{d-1}$ are exactly those monomials in the expansion of $f\left(y_{0}, y_{1}, \ldots, y_{n+1}\right)$ involving both one of $x_{i-3}, x_{i-2}, x_{i-1}$ and one of x_{i}, x_{i+1}, x_{i+2}. By (7) it then follows that $y_{j-1} y_{j}^{d-1}$ is a multiple of $x_{i-1} x_{i}^{d-1}$. By unique factorization, we deduce that y_{j-1} is a multiple of x_{j-1} and y_{j} is a multiple of x_{j}. By Corollary 10.3, it follows that $\pi(i)=j$ and $\pi(i-3)=j-3$. (We should identify -3 with $m-3$ when necessary.) Thus π acts as a rotation of $\{0,3,6, \ldots, m-3\}$, and there exists an integer r divisible by 3 , determined up to a multiple of m, such that if $j \not \equiv 1(\bmod 3)$, then y_{j} is a multiple of x_{j+r}. If $j \equiv 1(\bmod 3)$, then by Corollary $10.3, y_{j}$ is a combination of x_{j+r-1}, x_{j+r}, and x_{j+r+1}.

It follows that the only y-monomial on the right hand side of (7) whose expansion could contain x_{1}^{d} is y_{1}^{d}. Thus $r \equiv 0(\bmod m)$.

Equating coefficients of x_{0}^{d} in (7), we find $\ell_{10}=0$. Equating coefficients of $x_{0} x_{2}^{d-1}$, we find $\ell_{12}=0$. Thus y_{1} is a multiple of x_{1}.

Now suppose $j \in\{4,7,10, \ldots, m-2\}$. Equating coefficients of x_{j-1}^{d} in (7), we deduce that $\ell_{j, j-1}=0$. Equating coefficients of x_{j+1}^{d}, we deduce that $\ell_{j, j+1}=0$.

We now know that L is diagonal. The same proof as at the end of Case VI. 1 shows that L is (a scalar multiple of) the identity.

Case VI.3: $n \equiv 2(\bmod 3)$
We have $m=n+1$. Since T_{m} is the one-dimensional vector space generated by e_{n+1}, we know that $L e_{n+1}$ is a multiple of e_{n+1}. In other words, the only y_{i} that involves x_{n+1} is y_{n+1}.

If we view both sides of (7) as polynomials in x_{n+1}, and equate coefficients of x_{n+1}^{d-1} in (7), we deduce that y_{n} is a multiple of x_{n}. Similarly, equating coefficients of x_{n+1} shows that y_{0} is a multiple of x_{0}. In particular, we have $\pi(0)=0$ and $\pi(m-3)=m-3$.

We now show $\pi(i)=i$ for all $i \in\{0,3,6, \ldots, m-3\}$ by induction on i. Suppose $i \geq 3$, and we know $\pi(j)=j$ for $j<i$. By Corollary 10.3, the only y-monomial in the right hand side of (7) whose expansion can contain $x_{i-1} x_{i}^{d-1}$ is $y_{i-1} y_{i}^{d-1}$. It follows that y_{i} involves x_{i}, and $\pi(i)=i$, as desired. In fact, the monomials in the expansion of $y_{i-1} y_{i}^{d-1}$ are exactly those monomials in the expansion of $f\left(y_{0}, y_{1}, \ldots, y_{n+1}\right)$ involving both one of $x_{i-3}, x_{i-2}, x_{i-1}$ and one of x_{i}, x_{i+1}, x_{i+2}, and in which the exponents of x_{i}, x_{i+1}, x_{i+2} are even. By (7) it then follows that $y_{i-1} y_{i}^{d-1}$ is a multiple of $x_{i-1} x_{i}^{d-1}$. By unique factorization, we deduce that y_{i-1} is a multiple of x_{i-1} and y_{i} is a multiple of x_{i}.

We now know that L is of the form

$$
L=\left[\begin{array}{ccccccccccc}
* & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
* & * & * & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & * & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & * & * & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & * & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & * & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & * & * & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & * & 0 \\
* & * & * & * & * & * & \cdots & * & * & * & *
\end{array}\right],
$$

and the diagonal entries must be nonzero, since L is nonsingular.
Equating coefficients of $x_{0} x_{1}^{d-1}$ in (7), we find $0=\alpha \ell_{10} \ell_{11}^{d-1}$, so $\ell_{10}=0$. Equating coefficients of x_{0}^{d}, we find $0=\alpha \ell_{n+1,0} \ell_{00}^{d-1}$, so $\ell_{n+1,0}=0$. Thus y_{0} is the only y_{i} that involves x_{0}.

If we view both sides of (7) as polynomials in x_{0}, and equate coefficients of x_{0}^{d-1}, we deduce that y_{n+1} is a multiple of x_{n+1}.

Equating coefficients of $x_{1}^{d-1} x_{2}$, we find $0=\alpha \ell_{11}^{d-1} \ell_{12}$, so $\ell_{12}=0$.
Now suppose $j \in\{4,7,10, \ldots, m-2\}$. Equating coefficients of x_{j-1}^{d} in (7), we deduce that $\ell_{j, j-1}=0$. Equating coefficients of x_{j+1}^{d}, we deduce that $\ell_{j, j+1}=0$.

We now know that L is diagonal. The same proof as at the end of Case VI. 1 shows that L is (a scalar multiple of) the identity.

11. The automorphism group scheme

Finally, we consider the automorphism group scheme Aut \bar{X} of a smooth hypersurface \bar{X} over \bar{k}. One can recover Aut \bar{X} as the group of \bar{k}-points of $\operatorname{Aut} \bar{X}$, but the triviality of Aut \bar{X} cannot be deduced immediately from the triviality of Aut \bar{X}, because a priori Aut \bar{X} could be non-reduced. Fortunately, it is usually reduced:

Theorem 11.1. If X is a smooth hypersurface in \mathbf{P}^{n+1} of degree d, where $n \geq 1, d \geq 3$, and (n, d) does not equal $(1,3)$, then the connected component of the identity of Aut \bar{X} is trivial.
Proof. Let $T_{\bar{X}}$ denote the tangent sheaf of \bar{X} over \bar{k}. Under the hypotheses on (n, d), we have $H^{0}\left(\bar{X}, T_{\bar{X}}\right)=0$ by [KS99, Theorem 11.5.2]. Thus the tangent space at the identity of Aut \bar{X} is trivial, so the connected component of the identity of $\operatorname{Aut} \bar{X}$ is trivial.

Combining Corollary 1.9 and Theorem 11.1, we obtain:
Corollary 11.2. For any field k and integers $n \geq 1, d \geq 3$ with (n, d) not equal to $(1,3)$ or $(2,4)$, there exists a smooth hypersurface X over k of degree d in \mathbf{P}^{n+1} such that Aut \bar{X} is trivial.

Acknowledgements

I thank Nick Katz for bringing the problem considered in this paper to my attention, and for referring me to [MM63]. I thank Nick Shepherd-Barron for several discussions, and in particular for the suggestion to discuss the automorphism group scheme in addition to the automorphism group.

References

[BT61] Raoul Bott and John Tate, 1961 (approximately). Colloquium lecture, University of Pennsylvania.
[Cha78] H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), no. 2, 185-189.MR 80f:14012
[HS81] Alan Howard and Andrew John Sommese, On the orders of the automorphism groups of certain projective manifolds, Manifolds and Lie groups (Notre Dame, Ind., 1980), 1981, pp. 145-158.MR 84e:14011
[KS99] Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999.MR 2000b:11070
[MM63] Hideyuki Matsumura and Paul Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963/1964), 347-361.MR 29 \#5819
[OS77] Peter Orlik and Louis Solomon, Singularities. II. Automorphisms of forms, Math. Ann. 231 (1977/78), no. 3, 229-240.MR 57 \#16292b
[Poo00a] Bjorn Poonen, Varieties without extra automorphisms. I. Curves, Math. Res. Lett. 7 (2000), no. 1, 6776.MR 2001g:14052a
[Poo00b] , Varieties without extra automorphisms. II. Hyperelliptic curves, Math. Res. Lett. 7 (2000), no. 1, 77-82.MR 2001g:14052b
[Sch38] Hermann Ludwig Schmid, Über die Automorphismen eines algebraischen Funktionenkörpers von Primzahlcharakteristik, J. Reine Angew. Math. 179 (1938), 5-15.
[Si192] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, SpringerVerlag, New York, 1992. Corrected reprint of the 1986 original.MR 95m:11054

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
E-mail address: poonen@math.berkeley.edu
URL: http://math.berkeley.edu/~poonen

[^0]: Date: December 25, 2004.
 2000 Mathematics Subject Classification. Primary 14J50; Secondary 14J70.
 Key words and phrases. Hypersurface, automorphism, automorphism group scheme.
 This research was initiated at Princeton University where the author was supported in part by an NSF Mathematical Sciences Postdoctoral Research Fellowship, and was continued at the University of California at Berkeley, supported in part by NSF grants DMS-9801104 and DMS-0301280, a Sloan Fellowship, and a Packard Fellowship. This article has been published in Finite Fields and their Applications 11 (2005), no. 2, 230-268.

[^1]: ${ }^{1}$ Each asterisk in a matrix denotes an element of \bar{k} which may or may not be zero.

[^2]: ${ }^{2}$ There is automatically at most one singularity if the cubic is irreducible.

