IRRATIONALITY OF π

BJORN POONEN

The following is essentially Niven's proof [Niv47], but we simplify by using e^{ix} instead of $\sin x$ and $\cos x$, and by using integration by parts instead of introducing a second auxiliary function out of the blue (Niven's F(x)).

Theorem. The number π is irrational.

Proof. Suppose that $\pi = a/b$ with $a, b \in \mathbb{Z}_{>0}$. Let $n \in \mathbb{Z}_{>0}$ and let

$$f(x) = \frac{b^n x^n (\pi - x)^n}{n!} \in \frac{x^n}{n!} \mathbb{Z}[x],$$

so for all $k \geq 0$, we have $f^{(k)}(0) \in \mathbb{Z}$; also $f^{(k)}(\pi) \in \mathbb{Z}$, since $f(x) = f(\pi - x)$. Let $I = \int_0^{\pi} f(x)e^{ix} dx$. Evaluating I by repeated integration by parts (differentiating f(x) while integrating e^{ix} , and using that $e^{ix} \in \mathbb{Z}$ when x = 0 or $x = \pi$) shows that $I \in \mathbb{Z}[i]$, so im $I \in \mathbb{Z}$. On the other hand,

$$0 < \operatorname{im} I = \int_0^{\pi} f(x) \sin x \, dx \le \int_0^{\pi} \frac{b^n \pi^n \pi^n}{n!} \, dx = \frac{b^n \pi^{2n+1}}{n!} < 1$$

if n is large enough, contradicting im $I \in \mathbb{Z}$.

REFERENCES

[Niv47] Ivan Niven, A simple proof that π is irrational, Bull. Amer. Math. Soc. 53 (1947), 509. MR 21013

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Email address: poonen@math.mit.edu

URL: http://math.mit.edu/~poonen/

Date: December 19, 2025.

This research was supported in part by National Science Foundation grant DMS-2101040 and Simons Foundation grants #402472 and #550033.