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ABSTRACT. We prove that for every smooth projective integral curve X of
genus at least 2 over C, there exists x ∈ X(C) such that no connected finite
étale cover of X − {x} admits a nonconstant morphism to Gm. This has
implications for the applicability of Baker’s method to determining integral
points on curves.

1. INTRODUCTION

It is not known if there is an algorithm to find all the integer solutions to
an arbitrary polynomial equation in two variables. More generally, one can
ask about solutions in a ring of S-integers of a number field. Equivalently,
one can ask about effectively bounding the height of S-integral points on
an affine curve U. One can reduce to the case where U is smooth and
geometrically integral; then U = X − R for some nice curve X and some
finite set R of closed points of X. (Here, “nice” means smooth, projective,
and geometrically integral.) Let g be the genus of X. We assume that the
Euler characteristic χ(U) = 2− 2g − #R is negative; in this case, the set
of S-integral points is finite by Siegel’s theorem [Sie29], but the question is
whether the result can be made effective.

Baker’s method together with Dirichlet’s S-unit theorem handles all cases
with g ≤ 1 [Bak66, Bak68a, Bak68b, Bak68c, BC70]. It also handles some
(X, R) with g ≥ 2, such as those in which X is a cyclic cover of P1 and R is
an orbit of Aut(X/P1) [Bak69]. Bilu [Bil95, Theorem E] generalized Baker’s
approach to handle all cases in which U after base field extension has a
connected finite étale cover with a nondegenerate morphism to Gm ×Gm;
here nondegenerate means that the image is not contained in a coset of a
proper algebraic subgroup. Bilu’s theorem begs the question:
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Question 1.1. Does every smooth integral affine curve of genus at least 2
over Q admit a connected finite étale cover with a nondegenerate morphism
to Gm ×Gm?

We conjecture that the answer is no. In fact, we conjecture the following
stronger statement:

Conjecture 1.2. For any nice curve X of genus at least 2, there exists x ∈ X(Q)
such that the affine curve X− {x} has no connected finite étale cover with
even a single nonconstant morphism to Gm.

As evidence, we prove this statement with C in place of Q:

Theorem 1.3. Let X be a nice curve of genus at least 2 over C. Then there exists
x ∈ X(C) such that X−{x} has no connected finite étale cover with a nonconstant
morphism to Gm.

Thus if, for some g ≥ 2, Question 1.1 has a positive answer for all curves of
genus g over Q, it cannot be because of a universal algebraic construction of
a cover of degree depending only on g, as was the case for g = 1 — instead
the degree would have to depend on the height of the curve as well, as
happens in Belyi’s theorem [Bel79].

Remark 1.4. For a smooth integral affine curve U = X− R as above, having a
nonconstant morphism U → Gm is equivalent to having a nontrivial integer
relation between the classes of the points of R in Pic(X).

For any nice curve X of genus at least 2 over an algebraically closed field
K, let X(K)special be the set of x ∈ X(K) such that X − {x} has a connected
finite étale cover with a nonconstant morphism to Gm. Theorem 1.3 is an
immediate consequence of the following, which we prove in section 2.

Theorem 1.5. Let K be an algebraically closed field of characteristic 0. Let X be a
nice curve of genus at least 2 over K. Then X(K)special is countable.

One approach to proving a negative answer to Question 1.1 (over Q)
might be to prove that for a nice curve X of genus at least 2 over Q, the
set X(Q)special is of bounded height. Our Theorem 3.2 implies the slightly
weaker result that the set of x ∈ X(Q) such that X−{x} admits such a cover
of degree ≤ d is a set of bounded height. Another approach to Question 1.1
might be to prove that X(Q)special is not p-adically dense in X(Q). Perhaps
X(Q)special is even finite for most X.

Example 1.6 (Ihara, Tamagawa). If X is of genus 2, then X(Q)special is infinite,
because it contains the set called M just before Proposition 6.1 in [Bil95].
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(Bilu received this example in a letter from Yasutaka Ihara, who wrote that it
emerged in a discussion with Akio Tamagawa.)

Remark 1.7. Corvaja and Zannier recently gave many new examples of
genus 2 curves punctured at one point that are amenable to the Baker–Bilu
method [CZ23].

One might also ask whether any curve with sufficiently many punctures is
amenable to the Baker–Bilu method. We conjecture that the answer is again
no, in a strong sense:

Conjecture 1.8. For any nice curve X of genus at least 2 over Q, there exist
distinct x1, . . . , xr ∈ X(Q) such that X− {x1, . . . , xr} has no connected finite
étale cover with a nonconstant morphism to Gm.

As evidence, we prove the following:

Theorem 1.9. If g > r ≥ 1, there exist a genus g curve X over C and distinct
x1, . . . , xr ∈ X(C) such that X− {x1, . . . , xr} has no connected finite étale cover
with a nonconstant morphism to Gm.

Proof. We may enlarge r to assume r = g− 1. Let Z be any genus 2 curve
over C. Let z ∈ Z(C) be as in Theorem 1.3. Let X be any connected finite
étale cover of Z of degree g− 1; such a cover exists since the fundamental
group of Z has Z/(g− 1)Z as a quotient. By the Riemann–Hurwitz formula,
X has genus g. Let x1, . . . , xr ∈ X(C) be the preimages of z. Any finite étale
cover of X− {x1, . . . , xr} is also a finite étale cover of Z− {z}, so the result
follows from the conclusion of Theorem 1.3 for Z− {z}. �

Remark 1.10. Theorem 1.3 is related to a number of other conjectures in
algebraic geometry and geometric topology.

Prill’s problem asked whether there is a nice curve X of genus at least
2 and a finite cover f : Y → X such that H0(Y, OY( f−1(x))) ≥ 2 for every
x ∈ X [ACGH85, p. 268, Chapter VI, Exercise D]. Call such a cover Prill
exceptional. Any Prill exceptional cover has the property that for each x ∈ X,
the curve Y − f−1(x) has a nonconstant map to A1. It is known that for
every genus 2 curve X over C, there is a finite étale Prill exceptional cover of
X [LL22c], but it remains wide open whether there exists any X of genus at
least 3 with a Prill exceptional cover.

Moreover, by [LL22a, Lemma 5.5], any Prill exceptional cover f : Y → X
of a general curve X of genus g gives a counterexample to another conjecture
in geometric topology, the Putman–Wieland conjecture, as stated in [PW13,
Conjecture 1.2]. In fact, [LL22b, Lemma 6.10] implies that the Putman–
Wieland conjecture is equivalent to a statement about maps from covers of
curves to abelian varieties (in place of Gm as in Theorem 1.3): the statement is
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that for each g ≥ 2, n ≥ 0, and abelian variety A over C, a general n-pointed
genus g curve X has no finite cover Y → X branched only over the n points
with a nonconstant map Y → A. This statement is false for g = 2 [Mar22,
Theorem 1.3] but open for g ≥ 3. The Putman–Wieland conjecture, in turn,
is closely related to another longstanding conjecture in geometric topology,
Ivanov’s conjecture [PW13, Theorem 1.3].

2. PROOF OF THEOREM 1.5

Idea of proof 2.1. Fix K and X as in Theorem 1.5. First, we reduce to proving
countability of the set X(K)special,G of x ∈ X(K) such that X − {x} has a G-
Galois finite étale cover with a nonconstant morphism to Gm, for each finite
group G. Next, we construct a moduli space M parametrizing G-covers
f : Y → X branched at a varying point x ∈ X, together with a universal
curve S → M. We show that if there is a relation between the points in
f−1(x) for a very general x, then there is a relation between certain divisors
in S. Finally, we rule out such a relation by showing that the intersection
matrix of these divisors is invertible.

Remark 2.2. Since every finite étale cover is dominated by a Galois finite étale
cover,

⋃
G X(K)special,G = X(K)special. From now on, we fix G. It remains to

prove that X(K)special,G is countable.

We next construct a moduli space of G-covers of X branched over at most
one point.

Lemma 2.3. There is a finite-type K-scheme M parametrizing (x, Y, f ,B, y1, . . . , yn),
where x is a point of X, Y is a nice curve, f : Y → X is a Galois cover with Galois
group G that is étale above X− {x} (at least), and B is a basis for J[3], where J is
the Jacobian of Y, and y1, . . . , yn are the distinct points of f−1(x) (here n is constant
on each irreducible component of M ). Each irreducible component of M is a nice
curve.

Proof. This essentially follows from [Wew98, Theorem 4]. Let the D ⊂ X → S
of Wewers be the diagonal ∆ ⊂ X × X → X. By [Wew98, Theorem 4],
there is a finite-type algebraic stack H = HG

X×X(G) over X such that for
any S′ → X, the groupoid H(S′) parameterizes G-Galois finite locally free
covers Y′ → S′×X (X× X) that are tamely ramified above S′×X ∆ and étale
elsewhere. By [Wew98, Theorem 4],H → X is étale. It follows from [Wew98,
Theorem 3.2.4] thatH → X is proper.

By adding the data of B and the sections y1, . . . , yn to our moduli stack, we
obtain a finite étale cover M ofH. Each groupoid M (S′) is a setoid because
Aut Y → Aut J[3] is injective [KS99, 10.5.6], and hence M is represented by
an algebraic space. Since M → H is finite étale andH → X is proper étale,
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M is proper étale over X. By the previous two sentences, M is finite étale
over X and is therefore a scheme. Since M is finite étale over the nice curve
X, each irreducible component of M is a nice curve. �

Notation 2.4. Let M be an irreducible component of M . Then M is a nice
curve. Let η be the generic point of M. Let π : S → M be the universal
morphism whose fiber above m = (x, Y, f ,B, y1, . . . , yn) ∈ M is Y. Thus
S is a nice surface, and π : S → M is a relative curve. Let h : S → X be
the morphism whose restriction to each fiber Y of π is the map f : Y → X.
Let µ : M → X be (x, Y, f ,B, y1, . . . , yn) 7→ x. Let e be the positive integer
such that for any m ∈ M, the ramification index of the corresponding map
f : Y → X at any point above x is e. Let s1, . . . , sn : M → S be the sections
such that si(m) = yi for each i. Let Di = si(M) ∈ Div(S). Let F ∈ Div(S) be
a closed fiber of S→ M. Let NS(S) be the Néron–Severi group of S.

Proposition 2.5. The classes of D1, . . . , Dn, F in NS(S) are Z-independent.

Proof. It suffices to prove that the intersection matrix is nonsingular. We
know Di · Dj = 0 for i 6= j, Di · F = 1, F · F = 0, and D2

i = d for some
d independent of i, because G acts transitively on D1, . . . , Dn. Then the
intersection matrix is 

d 0 0 · · · 0 1
0 d 0 · · · 0 1
0 0 d · · · 0 1
...

...
... . . . ...

...
0 0 0 · · · d 1
1 1 1 · · · 1 0

 ,

which has determinant −ndn−1. In Lemma 2.6, we verify that d 6= 0. �

Lemma 2.6. We have D2
i = (deg µ)(2− 2g)/e < 0.

Proof. Observe that µ = h ◦ si because µ(x, Y, f ,B, y1, . . . , yn) = x = h(yi)
and yi = si(x, Y, f ,B, y1, . . . , yn). Let δ : X → X × X be the diagonal. The
diagram

S M× X X× X

M X

(π,h) µ×id

si
(id,µ)

µ

δ (2.1)

commutes, since π ◦ si = id and h ◦ si = µ.
Let ∆ = δ(X) ⊂ X× X be the diagonal. We will pull back the class of ∆ to

a line bundle on M along the two outer paths in (2.1). First, we determine
the pullback of ∆ to S by calculating its restriction to each fiber of π : S→ M.
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If m = (x, Y, f ,B, y1, . . . , yn) ∈ M, so Y is the fiber of S → M over m, then
the composition

Y ↪→ S
(π,h)−−−→ M× X

µ×id−−→ X× X

is Y
(x, f )−−→ X×X (constant first coordinate), so (π, h)∗(µ× id)∗∆|Y = f−1(x) =

e ∑n
j=1 yj in Div Y. Thus (π, h)∗(µ× id)∗∆ = e ∑n

j=1 Dj in Div S, and pulling
this back to M along si yields Di · (e ∑n

j=1 Dj) ∈ Div M, which has degree eD2
i .

On the other hand, the class of ∆ ⊂ X× X pulls back to a divisor of degree
∆ · ∆ = 2− 2g on X, which pulls back to a divisor of degree (deg µ)(2− 2g)
on M. Thus

eD2
i = (deg µ)(2− 2g), �

which is negative, since g ≥ 2.

Corollary 2.7. The images of D1, . . . , Dn in Pic(Sη) are Z-independent.

Proof. If there were a relation, the exact sequence⊕
t∈M(K)

Z · π−1(t) Pic(S) Pic(Sη) 0 (2.2)

would give a relation between D1, . . . , Dn, F in NS(S), since the class of each
fiber π−1(t) in NS(S) is F. �

End of proof of Theorem 1.5. As mentioned in Remark 2.2, it suffices to show
X(K)special,G is countable. It is the image under M → X of

M (K)′ := {(x, Y, . . .) ∈M (K) : Y has a nonconstant morphism to Gm},
(2.3)

which is the finite union of sets M(K)′ := M (K)′ ∩M. Each M(K)′ is the
union over nonzero a = (a1, . . . , an) ∈ Zn of

Va := {(x, Y, f ,B, y1, . . . , yn) ∈ M(K) :
n

∑
i=1

aiyi = 0 in Pic(Y)},

so it suffices to prove that Va is finite. The set Va is the zero locus of a
section of the relative Picard scheme PicS/M → M, so Va ⊂ M(K) is closed.
If Va = M(K), then ∑n

i=1 aiDi = 0 in Pic(Sη), contradicting Corollary 2.7.
Hence Va is finite. �

3. BOUNDED HEIGHT

In this section, we set K = Q and prove in Theorem 3.2 that each set
X(Q)special,G is of bounded height.

First, we introduce notation for Theorem 3.1, which records known results
about heights and specialization. Let π : S → M be a morphism from a
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nice surface to a nice curve over Q. For each field extension L ⊃ Q and
t ∈ M(L), let St = π−1(t); if St is a nice curve, let Jt be its Jacobian, a
principally polarized abelian variety over L. By a fibral component we mean
an irreducible component of St for some t ∈ M(Q). Let η be the generic
point of M. We assume that Sη is a nice curve (over the function field k(M)).

Let k be a field with a product formula as in [Ser97, §2.1]. Given a polarized
abelian variety A over k, one can enlarge k so that the polarization arises from
a symmetric divisor on A and then define a canonical height pairing on A(k),
or its subgroup A(k), as in [Sil83, pp. 200–201]. Applying this to Jη over k(M)

yields a (geometric) canonical height pairing 〈 , 〉 on Jη(k(M)) = Pic0(Sη)

or on Div0(Sη). For any t ∈ M(Q) such that St is a nice curve, applying this
to Jt (over a number field to which it descends) yields a canonical height
pairing 〈 , 〉t on Jt(Q) = Pic0(St) or on Div0(St).

For each closed point P ∈ Sη, let P be its Zariski closure in S. Extend
Z-linearly to define P ∈ Div S for any P ∈ Div(Sη); then for any t ∈ M(Q),
define the specialization Pt := P|St ∈ Div(St). Let h : M(Q) → R be a Weil
height associated to a divisor of nonzero degree on M, as in [Sil83, p. 205].

Theorem 3.1. Let S, M, π, Sη, St, 〈 , 〉, 〈 , 〉t, and h be as above.

(a) Let P ∈ Div0(Sη). Then there exists a Q-linear combination Φ of fibral
components such that DP := P + Φ ∈ Div(S)⊗Q is orthogonal to each
fibral component. Moreover, Φ is unique modulo π∗Div(M)⊗Q.

(b) For P, P′ ∈ Div0(Sη), we have 〈P, P′〉 = −DP · DP′ .
(c) Fix P, Q ∈ Div0(Sη). Then 〈Pt, Qt〉t/h(t)→ 〈P, Q〉 as h(t)→ ∞.
(d) Let P1, . . . , Pn ∈ Div0(Sη). If the matrix (〈Pi, Pj〉) is positive definite, then

the set of t ∈ M(Q) such that P1,t, . . . , Pn,t are Z-dependent in Pic0(St) is
of bounded height.

Proof.

(a) Let t ∈ M(Q). Let F1, . . . , Fn be the irreducible components of St.
Let F be the class of St in Div(S). The existence and uniqueness of
the part of Φ supported above t follows from the nondegeneracy of
the intersection pairing on (

⊕
QFi)/QF, as in [Gro86, end of §3] (the

finiteness of the residue field assumed there is not needed for this).
(b) This too follows from the same argument as in [Gro86, end of §3].

(The relation between canonical heights and intersection numbers
was discovered earlier in the context of an abelian variety and its dual,
by Manin [Man64] and Néron [Nér65].)
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(c) This is a version of Silverman’s specialization theorem, which ex-
tended ideas of Dem′janenko [Dem68] and Manin [Man69]. Specifi-
cally, the case P = Q is contained in [Sil83, Theorem B]. The general
case follows from this case applied to P, Q, and P + Q.

(d) If h(t) is sufficiently large, then ((c)) implies that (〈Pi,t, Pj,t〉) is positive
definite too, so P1,t, . . . , Pn,t are Z-dependent in Pic0(St). �

Theorem 3.2. Let X be a nice curve of genus at least 2 over Q. Then for each finite
group G, the set X(Q)special,G is of bounded height.

Proof. Let S → M and D1, . . . , Dn be as in Notation 2.4. For i = 2, . . . , n, let
Pi = (Di − D1)|Sη

. Since S→ M has irreducible fibers, we can always take
Φ = 0 in Theorem 3.1((a)). By Lemma 2.6, the matrix (Di · Dj)1≤i,j≤n is dI
for some d < 0, so ((Di − D1) · (Dj − D1))2≤i,j≤n is negative definite too. By
Theorem 3.1((b)), (〈Pi, Pj〉) is positive definite. For t ∈ M(Q), the following
are equivalent:

• t belongs to the subset M(Q)′ defined in (2.3);
• D1|St , . . . , Dn|St are Z-dependent in Pic(St);
• P2, . . . , Pn are Z-dependent in Pic0(St).

By Theorem 3.1((d)), the set of such t is of bounded height. Thus M(Q)′ is
of bounded height, and so is its image in X(Q). Taking the union over the
finitely many irreducible components M of M shows that X(Q)special,G is of
bounded height. �

Remark 3.3. To prove the weaker statement that X(Q)− X(Q)special,G is infi-
nite, one could use Néron’s specialization theorem [Nér52, Théorème 6] in
place of [Sil83, Theorem B].

Question 3.4. Can we refine the proof of Theorem 3.2 to obtain a height
bound that is uniform in G? If so, then Question 1.1 has a negative answer.
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