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Abstract. Let X be a subvariety of a commutative algebraic group G over Fq such that X

generates G. Then
⋃
φ∈EndG φ(X(Fq)) = G(Fq). If G is semiabelian, this can be strength-

ened to
⋃
n≥1 nX(Fq) = G(Fq), and there is a density-1 set of primes S such that X(Fq)

projects surjectively onto the S-primary part of G(Fq). These results build on work of
Bogomolov and Tschinkel.

1. Statements of results

This introductory section states our main results; the proofs are contained in later sections.
Throughout this paper, Fq is a finite field of q elements, and Fq is an algebraic closure of Fq.

1.1. A result of Bogomolov and Tschinkel. Bogomolov and Tschinkel proved the fol-
lowing result and used it to deduce the existence of non-uniruled K3 surfaces over Fq whose

rational curves cover all Fq-points.

Theorem 1.1 ([BT03]). Let X be a smooth projective integral curve of genus g ≥ 1 over
Fq, embedded in its Jacobian J in the usual way, using a basepoint O. Then J(Fq) =⋃
φ∈End J φ(X(Fq)).

The first goal of this paper is to give a new proof requiring nothing deeper than the Weil
conjectures for curves and the geometric class field theory fact that if X ↪→ J is a curve
embedded in its Jacobian in the usual way and φ : A→ J is a separable isogeny, then φ−1(X)
is geometrically irreducible.

1.2. Generalizations. Actually this new proof works also for generalized Jacobians, so we
prove the result in this generality, in Section 2.

In later sections, we generalize further to the case of a subvariety X of arbitrary dimension
in an arbitrary commutative algebraic group G, subject to the obviously necessary condition
that X generate G. (In this paper, an algebraic group over a field k is a connected reduced
group scheme of finite type over k. See Section 3 for the definition of “generate”.)

Theorem 1.2. Let G be a commutative algebraic group over Fq. Let X ⊆ G be an irreducible

(but not necessarily closed) subvariety that generates G. Then
⋃
φ∈EndG φ(X(Fq)) = G(Fq).
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Moreover, it suffices to take the union over φ ∈ Z[F ], where F is a Frobenius endomorphism
of G.

Theorem 1.2 shows that each point of G is contained in the image of X under some
endomorphism. In fact, given any finite collection of points of G, we can find a single
endomorphism that works for all of them:

Corollary 1.3. Under the hypotheses of Theorem 1.2, if S ⊆ G(Fq) is finite, then S ⊆
φ(X(Fq)) for some φ ∈ Z[F ] ⊆ EndG.

Proof. Apply Theorem 1.2 to Xs ⊆ Gs where s = #S. �

1.3. Semiabelian varieties. In the case where G is a semiabelian variety, we show below
that instead of using all φ ∈ EndG, it is enough to use the multiplication-by-n maps for
n ∈ Z≥1.

Theorem 1.4. Let G be a semiabelian variety over Fq. Let X ⊆ G be an irreducible

subvariety that generates G. Then
⋃
n≥1 nX(Fq) = G(Fq).

The crucial case where X is a curve was obtained independently by Bogomolov and
Tschinkel [BT05]. (After discovering our proof, we learned that they had found their proof
a few weeks earlier.)

We get a corollary analogous to Corollary 1.3, proved in the same way:

Corollary 1.5. Under the hypotheses of Theorem 1.4, if S ⊆ G(Fq) is finite, then S ⊆
n(X(Fq)) for some n ≥ 1.

Remark 1.6. The semiabelian restriction in Theorem 1.4 is necessary, as the following ex-
ample shows. Let G = Ga × Ga with coordinates x, y, and let p be the characteristic.
Let X be the curve xy = 1 in G. By criterion (i) of Corollary 3.3, X generates G. But⋃
n≥1 nX(Fq) =

⋃p
n=1 nX(Fq), which is an algebraic subset of G of dimension 1. Thus⋃

n≥1 nX(Fq) 6= G(Fq).

Remark 1.7. One faces similar counterexamples if one tries to generalize Theorem 1.4 to
noncommutative groups, such as semisimple algebraic groups. (One interprets n as the
n-th power map in the group.) For instance, for G = SL2 over Fq of characteristic p, if

a =

(
1 α
0 1

)
with α ∈ Fq, then a calculation shows that the only elements of SL2(Fq) having

a power equal to a are those of the form ±
(

1 mα
0 1

)
with m ∈ Fp. If X is an irreducible

curve containing one such element for every α ∈ Fq, then X has infinite intersection with

either

{(
1 x
0 1

)
: x ∈ Fq

}
or

{
−
(

1 x
0 1

)
: x ∈ Fq

}
, so X is a dense open subset of one of

these curves. Thus there is no curve X in SL2 satisfying
⋃
n≥1 nX(Fq) = SL2(Fq), even

though one can easily construct curves that generate SL2 as a group.

1.4. Projections of subvarieties. If ` is a prime and A is a torsion abelian group, let
A{`} =

⋃
e≥1A[`e] be the `-primary part of A. If S is a set of primes, let A{S} =⊕

`∈S A{`} ⊆ A. By the density of S, we mean natural density: see Section 6 for the
definition.
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The paper [BT05] proves, under the assumptions of Theorem 1.4 (for X a curve), that
there exists a set S of positive density such that the restriction of the canonical projection
G(Fq) � G(Fq){S} to X(Fq) is surjective. In fact they can find S containing any given
finite set of primes. Their work extends earlier results for a curve in its Jacobian in [AI85]
(where it is assumed that #S = 1) and [PS03, §2] (where it is observed that the method
of [AI85] works also for finite S). The paper [PS03] also considers (for finite S) the case of
an arbitrary positive-dimensional subvariety X in a simple abelian variety A, by reducing
to the case of curves: because their A is simple, they can sidestep the issue we must face, of
whether a curve in A generates A.

Building on the ideas in [BT05], but with more work, we strengthen the result by con-
structing an S of density 1 for which the conclusion still holds:

Theorem 1.8. Let G be a semiabelian variety over Fq. Let X ⊆ G be an irreducible
subvariety that generates G. Let S0 be any finite set of primes. Then there exists a set
of primes S ⊇ S0 of density 1 such that the composition X(Fq) → G(Fq) � G(Fq){S} is
surjective.

This will be proved in Section 6.

2. Images of a curve under endomorphisms of a generalized Jacobian

The following statement generalizes Theorem 1.1 but we call it a lemma, because it will
be used to prove the more general Theorem 1.2.

Lemma 2.1. Let X ′ be a smooth projective integral curve over Fq. Let m be a modulus, and
let J be the generalized Jacobian of X ′ with respect to m, as defined in [Ser88, Chapter I].
Let X be the image of the map ι : X ′ −m→ J sending x to the class of x−D, where D is
a fixed divisor of degree 1 supported on X ′ −m. Then

⋃
φ∈End J φ(X(Fq)) = J(Fq).

Proof of Theorem 1.1. We may assume dim J > 0; then ι is an embedding. Suppose a ∈
J(Fq); we must find φ ∈ End J and x ∈ X(Fq) such that φ(x) = a. Without loss of generality,
X, J , ι, and a are defined over Fq. Let F be the q-power Frobenius endomorphism of J . We
will seek x ∈ X(Fqn) for some large n; in this case fn := F n − 1 would kill x, while F − 1
kills a, so we try φ := 1 +F + · · ·+F n−1, which is an isogeny since its derivative is nonzero.
In particular, we can choose b ∈ φ−1(a). Then (F n − 1)b = (F − 1)a = 0, so b ∈ J(Fqn).
We hope X(Fqn) meets φ−1(a) = b + kerφ = b + (F − 1)J(Fqn). Equivalently, if we define
g : J → J (over Fqn) by g(z) = b+ (F − 1)z, we hope that Yn := g−1(X) has an Fqn-point.

Over Fq, the curve Yn is isomorphic to the inverse image of X under the separable isogeny
F −1: J → J , so Yn is geometrically irreducible by Proposition 10 in [Ser88, VI.§2.11]. Since
its Fq-isomorphism type is independent of n and b, the Weil conjectures prove Yn(Fqn) 6= ∅
if n is large enough. �

3. The subgroup generated by a subvariety

Lemma 3.1. Let G be a nontrivial algebraic group over an algebraically closed field k. Then
G(k) is not cyclic.

Proof. If G(k) is cyclic, then G is commutative. By the structure theory of algebraic groups,
G contains an algebraic subgroup H isomorphic to Ga, Gm, or a nontrivial abelian variety.
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In each case, H(k) has infinitely many elements of finite order, so H(k) is not cyclic. Thus
G(k) is not cyclic. �

Lemma 3.2. Let G be a commutative algebraic group over an algebraically closed field k.
Let X be an irreducible subvariety of G, not necessarily closed. Let Xn be the image of Xn

under the addition morphism Gn → G. Then there exists an algebraic subgroup H ⊆ G and
a point g ∈ G(k) such that Xn ⊆ ng + H for all n ≥ 1 with equality for n � 1. Moreover,
H is uniquely determined by X ⊆ G.

Proof. Translate X to reduce to the case 0 ∈ X. Then Xn ⊆ Xn+1 for all n. Let Hn be the
Zariski closure of Xn in G. Then Hn is the closure of the image of the irreducible variety Xn,
so Hn is irreducible. Since dimG <∞, the sequence H1 ⊆ H2 ⊆ · · · is eventually constant;
say Hn = Hn+1 = · · · . Define H = Hn. Then H ⊆ H + H = Hn + Hn ⊆ H2n = H, so
H + H = H. If h ∈ H(k), then h + H ⊆ H, but h + H and H are closed subvarieties of G
of the same dimension, so h+H = H. In particular, 0 ∈ h+H, so −h ∈ H. Thus H is an
algebraic subgroup of G.

Let m ≥ 2n. Then given h ∈ H(k), the subvarieties Xm−n and h − Xn are dense in
H = h−H so they intersect. Hence h ∈ Xm−n +Xn = Xm. Thus Xm = H for any m ≥ 2n.
So the first conclusion holds, with g = 0.

Any H satisfying the first conclusion equals the image of Xn ×Xn under the subtraction
map G×G→ G for n� 1, so it is determined. �

Corollary 3.3. Let notation be as in Lemma 3.2. Then the following are equivalent:

(i) The subvariety X is not contained in any translate of an algebraic subgroup H ( G.
(ii) There exists n ≥ 1 such that the addition map Xn → G is surjective.

(iii) The set X(k) generates G(k) as an abstract group.

Proof.
(i) =⇒ (ii): Assuming (i), the H of Lemma 3.2 must be G.
(ii) =⇒ (iii): Trivial.
(iii) =⇒ (i): Suppose X(k) generates G(k). If X were contained in the translate of H ( G

by g, then (G/H)(k) would be generated by the image of g, contradicting Lemma 3.1. �

Definition 3.4. If the equivalent conditions of Corollary 3.3 hold, we say that X generates
G. If X and G are defined over a field that is not necessarily algebraically closed, we say
that X generates G if it is so after extending the base field to an algebraic closure.

4. Generating curves inside generating subvarieties

This section contains the work needed to reduce the case of X of arbitrary dimension to
the case of curves.

Lemma 4.1. Let X be a geometrically irreducible quasi-projective variety over a finite field
Fq. Assume dimX ≥ 1. There exists a finite extension k ⊇ Fq such that for every finite

subset S ⊆ X(k) there exists a geometrically irreducible curve Z ⊆ Xk containing S.

Proof. Without loss of generality, replace X by a projective closure. Replacing Fq by a finite
extension and X by its associated reduced subscheme, we may assume X is geometrically
integral. By [dJ96, Theorem 4.1], after passing to a finite extension k, there exists a smooth
projective geometrically integral X ′ ⊆ Pn and a generically finite proper morphism π : X ′ →
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X. Lift each s ∈ S to get a finite subset S ′ ∈ X ′(k). By [Poo04, Corollary 3.4], there exists a
geometrically irreducible curve Z ′ ⊆ X ′ passing through all points of S ′. Let Z = π(Z ′). �

Remark 4.2. Lemma 4.1 holds also if Fq is replaced by an arbitrary field, because the analogue
of [Poo04, Corollary 3.4] is true (and easier to prove) over infinite fields.

Lemma 4.3. Let G be an d-dimensional commutative algebraic group over Fq. Then

(
√
q − 1)2d ≤ #G(Fq) ≤ (

√
q + 1)2d.

Proof. Using exact sequences and Lang’s theorem on the vanishing of H1(Fq, A) for any
algebraic group A, we reduce to the cases where G is an abelian variety, a torus, or Ga. If
G is an abelian variety, the Weil conjectures give the bounds. If G is a torus, #G(Fq) =

det (q − F |Ĝ) where Ĝ is the character group of G, and F is the q-power Frobenius acting

on it; since some power of F acts trivially on Ĝ, the eigenvalues of F are roots of unity, and
the bound follows. If G = Ga, #G(Fq) = q. �

Lemma 4.4. Let G be a commutative algebraic group over Fq. Let X ⊆ G be an irreducible
subvariety. Suppose that dimX ≥ 1, and X generates G. Then there is an irreducible curve
Z ⊆ X that generates G.

Proof. Without loss of generality, X and G are over Fq. Replace Fq by the k of Lemma 4.1
for X. Enlarge Fq again if necessary so that (

√
q − 1)2d > (

√
q + 1)2d−2, where d = dimG.

For some n ≥ 1, we may express each point in G(Fq) as x1 + · · · + xn with xi ∈ X(Fq).
Lemma 4.1 gives an irreducible curve Z ⊆ X passing through the points of X occurring in
all these expressions. Let H be as in Lemma 3.2 for Z ⊆ G. By choice of Z, H(Fq) = G(Fq).
If H 6= G, Lemma 4.3 applied to G and H gives

(
√
q − 1)2d ≤ #G(Fq) = #H(Fq) ≤ (

√
q + 1)2d−2,

contradicting our earlier inequality. Thus H = G, so Z generates G. �

5. Multiples of subvarieties

If X is any integral curve, let X be the smooth projective curve birational to X, and let
gX be the genus of X.

Proof of Theorem 1.2. If dimX = 0, then dimG = 0 and we are done. Otherwise Lemma 4.4
lets us reduce to the case where X is an irreducible curve. Let X̃ ⊆ X be the normalization
of X. By Theorems 1 and 2 of [Ser88], the composition X̃ → X → G factors through a
generalized Jacobian; i.e., there is a commutative square

X̃
ι //

����

Jm

π
����

X // G

where Jm is the generalized Jacobian of X with respect to some modulus m supported on
X − X̃, the morphism ι is the usual one associated to some divisor of degree 1 supported
on X̃, and π is a homomorphism. Since X generates G, the homomorphism π must be
surjective. The result for X ↪→ G now follows from Lemma 2.1 for X̃ → Jm. �
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The following lemma is more general than what we need to prove Theorem 1.4; we write
it this way so that it can be used also in the proof of Theorem 1.8.

Lemma 5.1. Let X → J be the usual map from a curve over Fq to its generalized Jacobian
with respect to some modulus m. Assume that it is an embedding. Let H be a subgroup of
J(Fq), and let a ∈ J(Fq). If q is sufficiently large relative to (J(Fq) : H), gX , and degm,
then X(Fq) meets H + a.

Proof. Let A = J/H. As usual, F will denote a q-power Frobenius endomorphism on A or
J . Since H is contained in the kernel of F − 1 acting on J , we get the diagonal map φ in
the following commutative diagram of separable isogenies:

J
F−1 //

����

J

����
A

φ

88

F−1
// A.

The kernel A(Fq) of the bottom F−1 map is mapped by φ to the kernel H of the right vertical
map. If we define ψ : A→ J by ψ(z) = φ(z) + a, then ψ(A(Fq)) = H + a. Let Y = ψ−1(X).
By Proposition 10 in [Ser88, I.§2.11], Y is geometrically irreducible. Then gY and #(Y −Y )
do not depend on a, and are bounded in terms of g, degm, and degψ = deg φ = (J(Fq) : H).
Since q is sufficiently large relative to these quantities, the Weil conjectures give #Y (Fq) > 0.
Choose y ∈ Y (Fq), and let x = ψ(y). Then x ∈ X(Fq) and x ∈ ψ(A(Fq)) = H + a. �

If G is a commutative algebraic group over Fq and m ≥ 1, let G[m] be the kernel of

G(Fq)
m→ G(Fq). If S ⊆ G(Fq), let Fq(S) be the extension of Fq generated by the coordinates

of all the points in S. If P ∈ G(Fq), let Fq(P ) = Fq({P}).
Proof of Theorem 1.4. We get a square as in the proof of Theorem 1.2. Because G is semia-
belian, Hom(Ga, G) = 0, so we can replace m by its associated reduced modulus, and hence
Jm by its quotient by its unipotent radical, in order to assume that Jm is semiabelian. Thus
we reduce to the case where X ↪→ G is the usual inclusion ι : X − m ↪→ Jm of a curve with
respect to a reduced modulus into its generalized Jacobian.

Let a ∈ G(Fq). We want to find n ≥ 1 and x ∈ X(Fq) such that nx = a. Without loss
of generality, enlarge q so that X, G, ι, a are all defined over Fq. Choose m ≥ 1 so that
G(Fq) ⊆ G[m]. Since G is semiabelian, G[m2] is finite. Let d = [Fq(G[m2]) : Fq]. Choose
`� 1 with gcd(`, d) = 1.

If P ∈ G(Fq`) and mP ∈ G(Fq), then m2P = 0, so P ∈ G(Fqd), and hence P ∈ G(Fq`) ∩
G(Fqd) = G(Fq). In other words, G(Fq`)/G(Fq) has order prime to m and hence also to
#G(Fq). Thus G(Fq`) ' G(Fq)×H.

If `� 1, Lemma 5.1 applied to Fq` gives x ∈ X(Fq`) and h ∈ H such that x = h+a. Choose
n ∈ Z≥1 with n ≡ 1 (mod m) and n ≡ 0 (mod #H). Then nx = nh+ na = 0 + a = a. �

Remark 5.2. In the corresponding result of Bogomolov and Tschinkel for curves (Theo-
rem 1 of [BT05]), it is shown that the result remains true if

⋃
n≥1 nX(Fq) is replaced by⋃

n≥1
n≡1 (mod d)

nX(Fq) for any d ≥ 1. Our proof gives this as well: when m is chosen in the proof

of Theorem 1.4, choose it to be a multiple of d.
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This can be generalized to an arbitrary arithmetic progressions:

Corollary 5.3. Let notation be as in Theorem 1.4, and let b, d ∈ Z≥1. Then⋃
n≥1

n≡b (mod d)

nX(Fq) = G(Fq).

Proof. Given a ∈ G(Fq), choose a′ ∈ G(Fq) with ba′ = a. Remark 5.2 gives n′ ≥ 1 and

x ∈ X(Fq) with n′ ≡ 1 (mod d) and n′x = a′. Multiply by b to get bn′ ≡ b (mod d) and
(bn′)x = a. Let n = bn′. �

6. Projection

This section proves Theorem 1.8. Throughout this section G is a semiabelian variety over
Fq, and X ⊆ G is an irreducible subvariety that generates G. As usual, we reduce to the
case where X is a curve in a generalized Jacobian. Enlarge q to assume that G and X are
defined over Fq. Let F be the q-power Frobenius endomorphism of G. Let d = dimG. Let
P be the set of prime numbers.

Lemma 6.1. Let ` ∈ P. Let P ∈ G(Fq){`}. Let degP = [Fq(P ) : Fq]. If ` - degP , then

degP divides
∏2d

i=1(`
i − 1).

Proof. Let `s be the order of P . Then degP equals the size of the F -orbit of P , which
divides the order of the image of F in AutG[`s], which divides # AutG[`s], which divides
# GL2d(Z/`sZ) (since G[`s] is a free Z/`sZ-module of rank ≤ 2d), and # GL2d(Z/`sZ) is a

power of ` times
∏2d

i=1(`
i − 1). Finally, gcd(degP, `) = 1. �

If r ∈ P , let Fqr∞ =
⋃
i≥0 Fqri .

Lemma 6.2. If S ⊆ P is finite and r ∈ P − S, then G(Fqr∞ ){S} is finite.

Proof. It suffices to consider S = {`} for a single prime ` 6= r. By Lemma 6.1, the degrees

of points in G(Fqr∞ ){`} are bounded, say by N . Then G(Fqr∞ ){`} ⊆
⋃N
n=1G(Fqn), which is

finite. �

If T ⊆ P , define the upper density of T as

µ(T ) = lim sup
x→∞

#{` ∈ T : ` ≤ x}
#{` ∈ P : ` ≤ x}

.

Define µ(T ) similarly using lim inf instead of lim sup. If µ(T ) = µ(T ), let µ(T ) be the
common value, and call it the density of T . Also define

η(T ) = sup
x∈Z≥1

#{` ∈ T : ` ≤ x}
#{` ∈ P : ` ≤ x}

.

Thus µ(T ) ≤ η(T ).

Lemma 6.3. Let r be prime. Then the set T := {` ∈ P : (∃n ≥ 0) such that ` | #G(Fqrn )}
has density 0.
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Proof. For m ≥ 1, let Tm be the subset of T obtained by discarding r (if it is in T ) and all
primes dividing #G(Fqrm ). Since only finitely many primes were discarded, µ(T ) = µ(Tm).

Suppose ` ∈ Tm. Then there is a point in G(Fqr∞ ){`} of degree rn for some n > m, so
Lemma 6.1 gives

rm | rn |
2d∏
i=1

(`i − 1).

Factor the right hand side as a polynomial in Q[`] into
∏s

j=1(`−ζj) where s = 1+2+ · · ·+2d

and each ζj is in Q. Extend the r-adic valuation on Q to vr : Q× → Q with v(r) = 1. Then
` ∈ Tm implies vr(`− ζj) ≥ m/s for some j. The set of integers ` satisfying vr(`− ζj) ≥ m/s
for a particular j is either empty or a residue class modulo rdm/se, so Tm is contained in a
union of at most s residue classes modulo rdm/se. Dirichlet’s theorem on primes in arithmetic
progressions says that the set of primes in each residue class has density 1/

(
rdm/se(1− r−1)

)
.

Thus
µ(T ) = µ(Tm) ≤ s

rdm/se(1− r−1)
→ 0

as m→∞. �

Lemma 6.4. Given a ∈ G(Fq), ε > 0, and a finite set S0 ⊆ P, there exists a finite set

U ⊆ P − S0 with η(U) < ε and a ∈ X(Fq) +G(Fq){U}.
Proof. Enlarge q to assume a ∈ A(Fq). Pick r ∈ P − S0 with 1/π(r) < ε, where π(r) is the
number of primes ≤ r. The set T defined in Lemma 6.3 satisfies µ(T ) = 0. Define subsets
τ := {` ∈ T : ` ≤ t} − {r} and T ′ := T − τ depending on a parameter t > 0. As t→∞ we
have

η(T ′) ≤ η({r}) + η(T ′ − {r}) −→ η({r}) + µ(T ) =
1

π(r)
+ 0 < ε

so we can choose t > maxS0 such that η(T ′) < ε. Let B = #G(Fqr∞ ){τ}, which is finite
by Lemma 6.2 since r /∈ τ . For all n, the subgroup H := G(Fqrn ){T ′} of G(Fqrn ) has index
#G(Fqrn ){τ}, which is bounded by B. By Lemma 5.1, if n� 1, then X(Fqrn ) meets H + a.
Then a = x − h for some x ∈ X(Fqrn ) and h ∈ H. Let U be the (finite) set of primes
dividing the order of h. Then U ⊆ T ′ ⊆ P − S0, since t > maxS0 and r /∈ S0. Now
a = x− h ∈ X(Fq) +G(Fq){U}, and η(U) ≤ η(T ′) < ε. �

Lemma 6.5. For i ≥ 1, let Ui ⊆ P be finite. If
∑
η(Ui) converges, then µ (

⋃
Ui) = 0.

Proof. The definitions imply

µ
(⋃

Ui

)
= µ

(⋃
i≥N

Ui

)
≤ η

(⋃
i≥N

Ui

)
≤
∑
i≥N

η(Ui)→ 0

as N →∞. �

Lemma 6.6. Given a finite set S0 ⊆ P, there exists U ⊆ P − S0 of density 0 such that
X(Fq) +G(Fq){U} = G(Fq).

Proof. Let a1, a2, . . . be an enumeration of A(Fq). Let Ui be as in Lemma 6.4 for a = ai and
ε = 2−i and S0. By Lemma 6.5, U :=

⋃
Ui has density 0. Each Ui is disjoint from S0, so U

is disjoint from S0. By construction,

ai ∈ X(Fq) +G(Fq){Ui} ⊆ X(Fq) +G(Fq){U}
8



for all i. �

Proof of Theorem 1.8. Let S = P − U where U is as in Lemma 6.6. �
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