
COMPUTING RATIONAL POINTS ON CURVES

BJORN POONEN

Abstract. We give a brief introduction to the problem of explicit

determination of rational points on curves, indicating some recent

ideas that have led to progress.

1. Introduction

The solution of diophantine equations (such as x13 +y13 = z13) over the
integers often reduces to the problem of determining the rational number
solutions to a single polynomial equation in two variables. Such an equation
describes a curve, and the problem of finding rational number solutions can
be interpreted geometrically as finding the rational points on the curve, i.e.,
the points on the curve with rational coordinates.

Despite centuries of effort, we still do not know if there is a general
algorithm that takes the equation of a curve, and outputs a list of its
rational points, in the cases where the list is finite1. On the other hand,
qualitative results such as Faltings’ Theorem [Fa1] on the finiteness of the
number of rational points on curves of genus at least 2, the wide variety of
conjectural effective approaches, and the practical success of recent efforts
in determining the rational points on individual curves, have led many to
believe that such an algorithm exists.

The reader expecting a thorough introduction or a comprehensive survey
of known results may be disappointed by this article. We have selected only
a few of the many aspects of the subject that we could have discussed. On
the other hand, as we go along, we provide pointers to the literature for the
reader wishing to delve more deeply in some particular direction. Finally,
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most of what we say for the field Q of rational numbers can be generalized
easily to arbitrary number fields.

2. Hilbert’s 10th Problem and undecidability

First2, let us consider the problem of what can be computed in theory,
and let us broaden the perspective to millennial proportions by considering
not only curves, but also higher dimensional varieties. Also, before asking
whether we can compute all rational points, let’s ask first whether we can
determine whether a variety has a rational point. This leads to “Hilbert’s
10th Problem over Q”3:

Is there an algorithm for deciding whether a system of poly-
nomial equations with integer coefficients

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0

has a solution with x1, x2, . . . , xn ∈ Q?

The system of equations defines a variety4 over Q, so equivalently we may
ask, does there exist an algorithm for deciding whether a variety over Q
has a rational point?

By “algorithm” we mean Turing machine: see [HU] for a definition. The
machine is to be fed (for instance) a finite stream of characters containing
the TEX code for a system of polynomial equations over Q, and is supposed
to output yes or no in a finite amount of time, according to whether there
is a rational solution or not. There is no insistence that the running time of
the algorithm be bounded by a fixed polynomial in the length of the input
stream; in Hilbert’s 10th Problem, we are happy as long as the algorithm
terminates after some unspecified number of steps on each input.

The answer to Hilbert’s 10th Problem over Q is not known. This can
be stated in logical terms as follows: we do not know whether there exists
an algorithm for deciding the truth of all sentences such as

(∃x)(∃y)((2 ∗ x ∗ x+ y = 0) ∧ (x+ y + 3 = 0))

2This section is not prerequisite for the rest of the article.
3The analogous problem with Q replaced by Z was Problem 10 in the list of 23

problems that Hilbert presented to the mathematical community in 1900. This question

over Z was settled in the negative [Mati] around 1970.
4In this article, varieties will not be assumed to be irreducible or reduced unless so

specified.
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involving only rational numbers, the symbols +, ∗,=,∃, logical relations ∧
(“and”), ∨ (“or”), and variables x, y, . . . bound by existential quantifiers.
One can try asking for more, namely, for an algorithm to decide the entire
first order theory of (Q, 0, 1,+, ∗); this would mean an algorithm for decid-
ing the truth of sentences such as the one above, but in which in addition
the symbols ∀ (“for all”) and ¬ (“not”) are allowed to appear. For this
more general problem, it is known that there is no algorithm that solves
it [Ro].

To put the situation in perspective, we list the answers for the analo-
gous questions about the existence of algorithms for deciding Hilbert’s 10th
Problem (existence of solutions to a polynomial system) or for deciding the
first order theory, over other commutative rings.5 Here YES means that
there is an algorithm, NO means that no algorithm exists (i.e., Hilbert’s
10th Problem of the first order theory is undecidable), and ? means that
it is not known whether an algorithm exists.

Ring Hilbert’s 10th Problem First order theory

C YES YES
R YES YES
Fp YES YES
Qp YES YES
Q ? NO

Fp(t) NO NO
Z NO NO

The rings are listed approximately in order of increasing “arithmetic
complexity.” There is no formal definition of arithmetic complexity, but
roughly we can measure the complexity of fields k by the “size” of the
absolute Galois group, i.e., the Galois group of the algebraic closure k over
k. And nonfields can be thought of as more complex than their fields
of fractions, for instance because there is “extra structure” coming from
the nontriviality of the divisibility relation. Whether or not Fp(t) is more
complex than Q is debatable, but it is the extra structure coming from the

5A technical point: in the cases where the commutative ring R is uncountable (C,
R, Qp), we must be careful with our statement of the problem, because for instance, a
classical Turing machine cannot examine the entirety of an infinite precision real number
in a finite number of steps, and hence cannot even decide equality of two real numbers

if fed the strings of their decimal digits on two infinite input tapes. To circumvent
the problem, in the uncountable cases we restrict attention to decidability questions in

which the constants appearing in the input polynomial system or first order sentence
are integers. We still, however, require the machine to decide the existence of solutions
or truth of the sentence with the variables ranging over all of R. It makes sense to ask
this, since the output is to be simply yes or no.
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p-th power map on the former that enabled the proof of undecidability of
Hilbert’s 10th Problem for it.

For the complex numbers C, the fact that the first order theory (and
hence also Hilbert’s 10th Problem) is decidable is a consequence of classical
elimination theory. The first order theory has elimination of quantifiers:
this means that a first order sentence involving n ≥ 1 quantifiers (∃,∀) can
be transformed into a sentence with n − 1 quantifiers, in an algorithmic
way, such that the latter sentence is true if and only if the former is.
Algebraically, this corresponds to the elimination of a single variable from
a system of equations, and geometrically it amounts to the fact that the
projection from Cn to Cn−1 of a Boolean combination of algebraic subsets
of Cn can be written as a Boolean combination of algebraic subsets of Cn−1.
See [Ha, Exercise II.3.19] and the references [CC, Exposé 7] and [Mats,
Chapter 2, §6] listed there for a generalization due to Chevalley, which
shows that for the same reasons, the first order theory of any algebraically
closed field is decidable.

The analogous statement about the decidability of the first order theory
of the real numbers R was proved by Tarski [Ta] using the theory of Sturm
sequences. Again there is an elimination of quantifiers, provided that one
augments the language by adding a symbol for ≤. The proof generalizes
to real closed fields: see [Ja].

For the finite field Fp of p elements, the decidability results are obvious,
since a Turing machine can simply loop over all possible values of the
variables.

Tarski conjectured that the only fields with a decidable first order the-
ory were the algebraically closed, real closed, and finite fields. This turned
out to be false: Ax and Kochen [AK1] proved decidability for the field
Qp of p-adic numbers, which is the completion of Q with respect to the
p-adic absolute value. (See [Kob] for the definition and basic properties of
Qp.) Then [AK2] gave several other examples of decidable fields. Macin-
tyre [Mac] showed that there is an elimination of quantifiers for Qp analo-
gous to that for R.

It is not known whether Hilbert’s 10th Problem over the field Q of
rational numbers is decidable or not; see [Maz2] for a survey. On the other
hand, Robinson [Ro] proved the undecidability of the first order theory of
Q, using the Hasse principle for quadratic forms. For a statement and
proof of the latter, see [Ser1, Chapter IV, §3, Theorem 8].

For the field Fp(t) of rational functions with coefficients in Fp, Phei-
das [Ph] proved the undecidability of Hilbert’s 10th Problem, at least for
p 6= 2. The p = 2 case was settled shortly thereafter by Videla [Vi]. The
simpler problem of proving undecidability of the first order theory was done
earlier, by Ershov [Er] and Penzin [Pe] for p 6= 2 and p = 2, respectively.
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Undecidability of Hilbert’s 10th Problem itself (over the ring Z of inte-
gers) was proved by Matiyasevich [Mati]. The undecidability of the first
order theory followed earlier from the fundamental work of Gödel [Gö].
Hilbert’s 10th Problem for the ring of integers ZK of a number field K is
expected to be undecidable, but has been proved so only for certain K. For
an up-to-date account of results in this direction, see [Shl]. For a survey of
Hilbert’s 10th Problem over commutative rings in general, see [PZ].

3. Rational points on varieties of arbitrary dimension

As discussed in the previous section, we do not know if there is an
algorithm to decide in general whether a variety X over Q has a rational
point. In order to pinpoint what is known and what is not, let us subdivide
the problem according to the dimension of X. As usual, X(Q) will denote
the set of rational points of X, i.e., the set of rational solutions to the
system of polynomials defining X.

dimX ∃ algorithm to decide if X(Q) 6= ∅?
0 YES

1 not known, but probably YES

≥ 2 ?

If dimX = 0, then elimination theory lets us reduce to the case where X
is a 0-dimensional subset of the affine line, and hence the problem becomes
that of deciding whether a polynomial f ∈ Q[x] has a rational root. The
latter can be done effectively, even in polynomial time [LLL].

The dimX = 1 case is the main subject of this article. Details follow in
later sections.

For varieties of higher dimension, very little has been proved about
X(Q). On the other hand, below is a sample of some qualitative con-
jectures/questions that have been thrown around. All of these are known
for dimX ≤ 1, and for certain varieties of higher dimension. No counterex-
amples are known.

3.1. Bombieri, Lang (independently). Define the special set S ⊂ X
as the Zariski closure of the union of all positive dimensional images of
morphisms of abelian varieties to X. Is it true that all but finitely many
rational points of X lie in S?

The dimX = 1 case is equivalent to the Mordell conjecture [Mo1], now
Faltings’ Theorem [Fa1]: it states that a curve of genus at least 2 has at
most finitely many rational points. Faltings [Fa2] used diophantine approx-
imation methods of Vojta to prove more generally that the answer is yes
whenever X can be embedded in an abelian variety. For more conjectures
along these lines, see [La, Chapter I, §3].
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3.2. Colliot-Thélène and Sansuc. If X is smooth and projective, and X
is birational to Pd over Q (for instance, X could be a smooth cubic surface
in P3), is the Brauer-Manin obstruction to the Hasse principle the only
one? Actually, this was posed originally only for surfaces, as question (k1)
in [CS] but as Colliot-Thélène has pointed out, the answer could be yes in
higher dimensions as well.

The Hasse principle is the statement that X(Q) 6= ∅ if and only if
X(Qp) 6= ∅ for all primes p ≤ ∞. (By convention, Q∞ = R.) This state-
ment is proven for some varieties X (e.g., all degree 2 hypersurfaces in
Pn) and is known to be false for others (e.g., certain genus 1 curves). In
1970, Manin [Man2] discovered a possible obstruction to the Hasse prin-
ciple coming from elements of the Brauer group of X, and he and others
subsequently showed that this obstruction accounted for all violations of
the Hasse principle known at the time. Much later, Skorobogatov [Sk] con-
structed an example of a surface X with no rational points, even though
there was no Brauer-Manin obstruction; in other words, one could say that
other nontrivial obstructions exist. Nevertheless, it is conceivable, and this
is the point of the question of Colliot-Thélène and Sansuc, that for geomet-
rically rational varieties, the nonexistence of a Brauer-Manin obstruction
is a necessary and sufficient condition for the existence of rational points.

3.3. Mazur. Does the topological closure of X(Q) in X(R) have at most
finitely many connected components?

See [Maz1] and [Maz3] for this and related questions. In [CSSD] a coun-
terexample is given to the following stronger version: If X is a smooth
integral variety over Q such that X(Q) is Zariski dense in X, then the
topological closure of X(Q) in X(R) is a union of connected components
of X(R). The end of the paper [CSSD] also suggests some other variants.

Even if the three questions above were answered tomorrow, we still would
not know whether there exists an algorithm for deciding the existence of
rational points on varieties.

4. Rational points on curves

For the rest of this article, we consider the problem of determining X(Q)
in the case dimX = 1, i.e., the case of curves. We begin with a few re-
ductions, so that in the future we need consider only “nice” curves. Com-
putational algebraic geometry provides algorithms for decomposing X into
irreducible components over Q and over Q. Clearly then we can reduce
to the case that X is irreducible over Q. If X is irreducible over Q, but
not over Q, then the action of Galois acts transitively on the Q-irreducible
components, but rational points are fixed by Galois, so X(Q) is contained
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in the intersection of the Q-irreducible components; thus in this case we
reduce to the 0-dimensional problem, which according to Section 3 is eas-
ily solved. Hence from now on, we will assume that X is geometrically
integral.

Taking a projective closure and blowing up singularities changes X only
by 0-dimensional sets, whose rational points we understand. Therefore,
from now on, all our curves will be assumed to be smooth, projective, and
geometrically integral. (Alternatively, at the expense of introducing nodes
(violating smoothness), we could project X to a curve in P2 so that X
would be described by a single polynomial equation. But in this article
we prefer to talk about the smooth curves, except when presenting a curve
explicitly, in which case we sometimes give an equation for an affine plane
curve birational to the smooth projective curve that we are really interested
in.)

The most important geometric invariant of a (smooth, projective, and
geometrically integral) curve over Q is its genus g, which has several equiv-
alent definitions:

(1) g = dimQ Ω where Ω is the vector space of everywhere regular
differentials on X. (Here regular means “no poles.”) See [Ha,
Chapter II, §8, p. 181] or [Si1, Chapter II, §5, p. 39] for more
details.

(2) g is the topological genus of the compact Riemann surface X(C).
(3) g is the dimension of the sheaf cohomology group H1(X,OX).

See [Ha, Chapter III] for definitions.

(4) g =
(d− 1)(d− 2)

2
− (terms for singularities)

where Y is a (possibly singular) plane curve of degree d birational
to X (e.g., the image of X under a sufficiently generic projection
to P2). In this formula one subtracts a computable positive integer
for each singularity. The integer depends on the complexity of the
singularity: for nodes (ordinary double points), the integer is 1.
See [Ha, Chapter V, Example 3.9.2, p. 393] for more details.

(The equivalence of these is certainly not obvious.)
Although the genus is a measure of geometric complexity, it has been

discovered over the years that the geometry also influences the rational
points. Hence we subdivide the problem of determining X(Q) according
to the genus. We summarize the situation in the following table:

genus g ∃ algorithm to determine X(Q)?

0 YES

1 YES, if X(JacX) is finite

≥ 2 Not known, but probably YES
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4.1. Genus zero. In this case, one shows using the Riemann-Roch Theo-
rem [Ha, Chapter IV, §1] that the anticanonical divisor class on X induces
an embedding of X as a degree 2 curve in P2. In other words, X is
isomorphic to a conic, the zero locus in P2 of an absolutely irreducible
homogeneous polynomial f ∈ Q[x, y, z] of degree 2. By a linear change of
variables, we may assume that f has the form ax2 + by2 + cz2 for some
nonzero a, b, c ∈ Z. Conversely, nonsingular degree 2 curves in P2 are
curves of genus zero, by the fourth definition of g above. Over an alge-
braically closed field, we could say further that X is isomorphic to the
projective line P1, but this is not necessarily the case for genus zero curves
over Q: for instance, the conic defined by x2 + y2 + z2 = 0 in P2 is not
isomorphic to P1 over Q, because the latter has rational points, whereas
the former does not.

As mentioned in Section 3.2, degree 2 curves in P2 (and more generally
degree 2 hypersurfaces in P2) satisfy the Hasse principle, so we can decide
the existence of a rational point by checking the existence of a Qp-point
for each prime p ≤ ∞. And the latter is in fact a finite problem since
one can show a priori that ax2 + by2 + cz2 = 0 has Qp-points for p not
dividing 2abc, and for each of the finitely many remaining p (including ∞)
one has an algorithm for deciding the existence of a Qp-point, as explained
in Section 2. For a more explicit criterion, see [Mo2], for instance.

In the case where X does have a rational point P , there is an isomor-
phism P1 → X defined as follows: thinking of P1 as the set of lines in P2

through P , map the line L to the point Q ∈ L ∩X not equal to P . (If L
is the tangent line to X at P , take Q = P .) Hence we obtain an explicit
parameterization of X(Q).

4.2. Genus one. A genus one curve over Q with a rational point is called
an elliptic curve over Q. One shows using the Riemann-Roch Theorem
that an elliptic curve E over Q is isomorphic to the projective closure of
the affine curve y2 = x3 +Ax+B for some A,B ∈ Z with 4A3 + 27B2 6= 0.
More importantly, it can be shown that E can be given the structure of
an algebraic group [Si1, Chapter 3]. Roughly, this means that there are
rational functions that induce a group structure on the set E(k) for any
field k containing Q. The Mordell-Weil Theorem6 states that the set E(Q)
of rational points on an elliptic curve form a finitely generated abelian
group [Si1, Chapter 8]. The group E(Q) is called the Mordell-Weil group,
and its rank is called the Mordell-Weil rank or simply the rank of E. The
torsion subgroup of E(Q) is easy to compute. But the equivalent problems

6Actually Mordell alone proved this fact. Weil generalized Mordell’s result in two
directions: elliptic curves were replaced by abelian varieties of arbitrary dimension, and

Q was replaced by an arbitrary number field.
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of determining the rank of E(Q) and of determining a list of generators
have not yet been solved. There is a proposed method, “descent,” for
solving these problems, which is a generalization of the infinite descent
method used by Fermat. Descent usually works well in practice when A
and B are not too large (see [Cr]), but its success in general relies upon
the conjecture that the Shafarevich-Tate group X(E), a certain abelian
group associated to E, is finite, or at least that the p-primary part of
X(E) is finite for some prime p. Using the modularity of elliptic curves
over Q [BCDT] and the work of Kolyvagin [Kol] supplemented by [BFH]
or [MM], we know #X(E) < ∞ for infinitely many E, namely, those for
which ords=1 LE(s) ≤ 1, where LE(s) is the L-function of E. (See [Si1,
Appendix C, §16] for a definition of LE(s).)

A general genus one curve X over Q need not have a rational point.
In fact, Lind [Lin] and Reichardt [Rei] independently discovered examples
where X does not satisfy the Hasse principle. Explicitly, the smooth projec-
tive models of the affine curves 2y2 = 1−17x4 and 3x3+4y3 = 5 (from [Rei]
and [Sel], respectively) are curves having Qp-points for all p ≤ ∞, but no
rational points. To any genus one curve X one can associate an elliptic
curve E, namely the Jacobian of X. The Jacobian JacX of a curve X
of genus g is an abelian variety (irreducible projective algebraic group) of
dimension g, whose geometric points correspond to elements of Pic0(XQ),

i.e., to divisor classes of degree zero on XQ. (Note: XQ denotes the same
variety as X except where the defining polynomials are viewed as having
coefficients in Q, even though the coefficients actually are in the subfield
Q. See [Si1, Chapter 2] for a definition of Pic0, and see [Mi] for details
about Jacobians.) In the case where g = 1, X is a principal homogeneous
space [Si1, Chapter 10], or torsor, of its Jacobian E. This means that
there is an isomorphism EQ ' XQ over Q, and a morphism of varieties

E × X → X over Q, which when considered over Q becomes equivalent
(after identifying XQ with EQ) to the addition morphism EQ×EQ → EQ.

Then X(E) is defined as the set of principal homogeneous spaces for E that
have Qp-points for all p ≤ ∞, up to isomorphism as principal homogeneous
spaces of E over Q. It is known that if X(E) is finite, then in principle,
there is an algorithm for determining whether X(Q) is nonempty: if X(Q)
is nonempty, a rational point can be found by search; if X(Qp) = ∅ for
some p ≤ ∞, then X(Q) = ∅; if neither holds, then X represents a nonzero
element of X(E), and this can proved by finding another element Y of
X(E) such that the Cassels-Tate pairing of X and Y is nonzero in Q/Z.
See [PS] for some definitions of the Cassels-Tate pairing.
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4.3. Genus at least two. Let X be a curve over Q of genus at least 2.
Mordell [Mo1] conjectured in 1922 that X(Q) is finite, and this was fi-
nally proved in 1983 by Faltings [Fa1]. A new proof based on diophantine
approximation was found by Vojta [Vo]. Simplifications of Vojta’s argu-
ment were found by Faltings and by Bombieri, who presented a relatively
elementary proof in [Bo].

These proofs let one calculate a bound on the number of rational points
on X given the equations defining X. But they are ineffective in that they
do not provide an upper bound on the numerators and denominators of
the coordinates of the rational points, so they cannot be used to determine
X(Q) rigorously. They are unable to decide even whether X(Q) is empty.

Ironically, certain other methods (mostly older), which so far have failed
to prove the Mordell conjecture in full generality, are the ones that have
succeeded in determining X(Q) in many examples. In the next section, we
discuss these methods, and the ways in which they have been developed
recently into practical algorithms.

5. Methods for curves of genus at least two

We use the following brief names to refer to the various methods that
are used to determine X(Q) for a curve X over Q of genus at least 2:

(1) Local points
(2) Dem’yanenko-Manin
(3) Chabauty
(4) Going-down
(5) Going-up (Chevalley-Weil)

The last two are transitional in the sense that they by themselves do not
determine X(Q) directly, but instead reduce the problem of determining
X(Q) to the problem of determining the rational points on certain auxil-
iary varieties. In addition to the methods listed, there is a method based
on the modularity of elliptic curves, and another method called “elliptic
Chabauty.” We will discuss these too, but in fact they can be interpreted
as combinations of the methods already listed.

5.1. Local points. This method attempts to prove that X(Q) is empty
without much work, by showing that X(Qp) is empty for some p ≤ ∞.

For a curve X over Q of any genus g, it is possible to compute a finite
set S of primes such that X(Qp) 6= ∅ for all p 6∈ S. (Because of Hensel’s
lemma, S can be taken as the set of primes of bad reduction, together with
∞ and the primes p for which the Weil lower bound p+1−2g

√
p for X(Fp)

is nonpositive.) Then for each p ∈ S, it is possible to check whether X(Qp)
is empty, since according to Section 2 this problem is decidable for fixed p.
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If we find p for which X(Qp) is empty, then we know that X(Q) is
empty, and we are done. Otherwise we have learned nothing: the Hasse
principle, the statement that X(Qp) 6= ∅ for all p implies X(Q) 6= ∅, often
fails for curves of positive genus.

5.2. Dem’yanenko-Manin. This method applies to certain special curves
X. If A is an abelian variety, the group structure on A induces a group
structure on the set of morphisms X → A over Q. Let Mor(X,A) denote
the quotient of this group by the subgroup of constant morphisms. If there
is an abelian variety A over Q such that we can prove rank Mor(X,A) >
rankA(Q), then the Dem’yanenko-Manin method [De],[Man1] provides an
explicit upper bound on the sizes of the numerators and denominators of
the coordinates of the rational points on X, so that X(Q) can be computed
by a finite search. Note that it is not necessary to know rankA(Q) exactly.
For Q-simple abelian varieties A, the needed inequality is equivalent to the
condition that Am appears in the decomposition of JacX into Q-simple
abelian varieties up to isogeny, with

m >
rankA(Q)

rank EndQA
,

where EndQA denotes the ring of endomorphisms of A that are defined
over Q. For a fuller exposition of this method, see [Ser2], and for some
explicit applications of it, see [Si2], [Ku], and [GR]. Its main disadvantage
is that the condition necessary for its application fails for most curves.

5.3. Chabauty. This is a method based on p-adic geometry. Suppose that
X embeds in an abelian variety A such that rankA(Q) < dimA. Suppose
also that X generates A in the sense that the differences of points P − Q
of X(Q) generate the group A(Q). For example, A might be JacX, in
which case the condition becomes rankA(Q) < g, where g is the genus of

X. Then the p-adic closure A(Q) of A(Q) in A(Qp) can be shown to be
an “analytic subvariety” of dimension at most rankA(Q); as a topological
group, it is an extension of a finite abelian group by a free Zp-module of

finite rank. The inequality hypothesis guarantees that A(Q) has positive
codimension in A(Qp). Hence by dimension counting, one expects that

X(Qp) ∩A(Q) is at most a zero-dimensional closed subset of the compact
group A(Qp), hence finite. Chabauty [Ch] proved this finiteness statement.

But X(Q) ⊆ X(Qp)∩A(Q), and by computing the intersection to a given
p-adic precision, one can bound the number of rational points on X(Q), and
obtain p-adic approximations to their possible locations. Coleman [Co] gave
an explicit upper bound on the size of this intersection. The intersection
can be computed to some p-adic precision either by working with the formal
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group of J , or by looking at the p-adic integrals of regular differentials on
X. The latter seems to be easier, especially for higher genus curves.

Unfortunately, X(Q) may be strictly smaller than X(Qp) ∩ A(Q), al-
though heuristically this may be rare when rankA(Q) ≤ dimA−2: in that
case the naive dimension count suggests that the intersection is empty so
perhaps, if there are points in the intersection, they are there for a rea-
son! Because of the possibility that X(Q) 6= X(Qp)∩A(Q), the condition
rankA(Q) < dimA alone is not sufficient for success. In practice, how-
ever, Chabauty’s method has proved successful, especially in conjunction
with the transitional methods to be discussed below. See for example, [Gr],
[McC], [Fl], [Bak], and [LT].

5.4. Going-down. If X admits a nonconstant morphism X → Y over Q
to another variety Y over Q, where Y (Q) is finite and computable, then
one can determine X(Q), since it suffices to examine the finitely many
points in X(Q) mapping to the points in Y (Q): every point in X(Q) must
map to some point in Y (Q). In practice, Y is usually an abelian variety
with Y (Q) finite, or Y is another curve.

5.5. Going-up. If f : Y → X is an unramified morphism of curves over
Q, Chevalley and Weil proved that there is a computable finite extension
k of Q such that f−1(X(Q)) ⊆ Y (k). If X has genus at least 2, then Y
does too, so Y (k) is known to be finite. Hence one can reduce the problem
of computing X(Q) to that of computing Y (k).

One difficulty with this method is that k may be much larger than Q.
Fortunately, Coombes and Grant [CG] and Wetherell [We] found variants
of the method that instead gave a finite set of unramified covering curves
Yi → X over Q, 1 ≤ i ≤ n, all isomorphic over Q, such that X(Q) ⊆⋃n
i=1 fi(Yi(Q)). Given such a covering collection, one can determine X(Q)

if one can determine Yi(Q) for all i. Specialized to the case where X is
an elliptic curve, this becomes the method of descent used to prove the
Mordell-Weil Theorem.

Let us give one example of this method, taken from [Brn2]. Suppose
that we want to find X(Q), where X is the curve of genus 2 that is the
smooth projective model of the affine hyperelliptic curve y2 = 6x(x4 + 12).
(This is one of the curves that comes up when one studies the integer
solutions to the equation x8 + y3 = z2.) Suppose we have an affine point
(x0, y0) ∈ X(Q) with x0, y0 6= 0. If we write x0 = X/Z in lowest terms
with X,Z ∈ Z, Z 6= 0, we obtain y20Z

6 = 6XZ(X4 + 12Z4). Setting
Y = y0Z

3, which must be an integer, since its square equals the right hand
side, we obtain Y 2 = 6XZ(X4 +12Z4). If a prime p ≥ 5 divides both 6XZ
and X4 + 12Z4, then it divides either X or Z, and then in order to divide
X4 +12Z4 it must divide both X and Z, contradicting the assumption that
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X/Z is in lowest terms. (More generally, one would argue using primes
not dividing the resultant of the two homogeneous polynomial factors.)
Thus each prime p ≥ 5 divides at most one of 6XZ and X4 + 12Z4. But
their product is a square, so if p divides one of 6XZ and X4 + 12Z4, the
exponent of p in that factor is even. Since this holds for all p ≥ 5, we have
X4 + 12Z4 = δW 2 for some δ ∈ {±1,±2,±3,±6} and W ∈ Z. Dividing by
Z4, we obtain a rational point (u, v) on the curve Eδ : δv2 = u4 + 12. We
may assume δ > 0 (since otherwise Eδ(R) = ∅) and 2|δ (since otherwise
Eδ(Q2) = ∅). Therefore we need only search for rational points on

E1 : v2 = u4 + 12, and E3 : 3v2 = u4 + 12.

These are curves of genus one, and with a little work, using descent, one
can show that E1(Q) and E3(Q) are finite, each of size 2, counting points
on the nonsingular projective models. Checking to see what points on X
these give rise to, we find that X(Q) consists of (0, 0) and a point at infinity
on the projective model.

Geometrically what has happened here is that for each δ ∈ Q∗, the
genus 3 curve Yδ defined by the system of equations

y2 = 6x(x4 + 12), δz2 = x4 + 12

in (x, y, z)-space maps to X via (x, y, z) 7→ (x, y), and Yδ is an unramified
cover of X. Moreover, the union of the images of Yδ(Q) in X equals
X(Q). Since the isomorphism class of Yδ depends only on the image of
δ in Q∗/Q∗2, we may assume that δ ∈ Z is nonzero and squarefree. If a
prime p ≥ 5 divides δ, then Yδ(Qp) = ∅, so we may discard Yδ. By also
demanding the existence of local points over R and Q2, we may discard all
but Y1 and Y3. (As it turns out, Q3 gives no further restriction.) Finally,
(x, y, z) 7→ (x, z) gives a nonconstant morphism Yδ → Eδ, so by “going
down” it suffices to find E1(Q) and E3(Q), if these are finite. We are
lucky: both E1 and E3 turn out to be elliptic curves of rank zero.

In general, covering collections by geometrically abelian covers are de-
scribed by geometric class field theory. They arise as follows. Suppose that
X is embedded in its Jacobian J using a basepoint P0 ∈ X(Q). Choose
an isogeny φ : A → J , i.e., a surjective homomorphism between abelian
varieties with finite kernel. Choose a representative R ∈ J(Q) of each ele-
ment of J(Q)/φ(A(Q)), let φR : A → J be the composition φ followed by
translation-by-R on J , and let YR denote the following fiber product:

YR −−−−→ Xy y
A

φR−−−−→ J.
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In other words, YR is the inverse image φ−1R (X) in A. Then the YR form a
finite set of unramified covers of X, and the union of the images of YR(Q)
in X equals X(Q), since

⋃
R φR(A(Q)) = J(Q).

Note that given X and hence J , there are many pairs (A, φ) where
φ : A→ J is an isogeny over Q: if nothing else is available, one can take φ
as the multiplication-by-m map [m] : J → J for some m ≥ 2. Hence going
up is always possible. On the other hand, for φ = [m], the genus of each
YR equals m2g(g − 1) + 1 by the Riemann-Hurwitz formula [Ha, IV.2.4] so
if m is too large, the YR may be difficult to work with. In fact, it might
be preferable to use an isogeny φ of degree lower than deg[2] = 22g if one
exists.

5.6. Modularity. Through the work of Wiles, Taylor, Breuil, Conrad,
and Diamond [Wi],[TW],[BCDT], it is now known that every elliptic curve
E over Q is modular, meaning that there exists a nonconstant morphism
from the modular curve X0(N) to E, for some integer N ≥ 1. See [La,
Chapter V] for an introduction to this concept, and see [Shi] and [KM] for
more details on modular functions and curves. On the other hand, work
of Frey, Serre, and Ribet [Ri1] showed that a nontrivial rational point on
xp + yp = 1 for prime p > 2 would give rise to an elliptic curve over Q
that could not be modular. Together, these results proved Fermat’s Last
Theorem. For an overview of the whole proof, see [DDT] or the book [CSS].
In the past few years, methods based on modularity have been adapted to
solve certain other Fermat-like diophantine equations. See [DM] and [Ri2],
for instance.

Darmon has pointed out that these proofs can be interpreted as instances
of the going-up method. Recall that the geometric class field theory con-
struction at the end of Section 5.5 produces only unramified covers Y that
when considered over Q are Galois and abelian over the base curve X.
These abelian covers are the easiest unramified covers to work with, but
they form only a small subset of all the unramified covers. Kummer’s par-
tial results on Fermat’s Last Theorem can be reinterpreted as a study of
the abelian covers of the Fermat curve X : xp + yp = 1 with Galois group
Z/p. The modularity proof of Fermat’s Last Theorem is equivalent to a
study of certain unramified covers with nonabelian Galois group. More
precisely, the map (x, y) 7→ xp from X → P1 exhibits X as a cover of P1

ramified above {0, 1,∞}, and the latter can be thought of as the modular
curve X(2) with its three cusps. The fiber product

Y −−−−→ Xy y
X(2p) −−−−→ X(2).
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is an unramified cover Y of X with Galois group equal to that of X(2p)
over X(2), namely the nonabelian group PSL2(Fp). One can then study
the rational points on Y and its relevant twists by going down to X(2p) and
its twists. Thus one reduces to questions about rational points on modular
curves, to which one can apply the work of Mazur.

5.7. Elliptic Chabauty. This is not so much a separate method as it is a
clever way to combine the going-up and Chabauty methods. It was discov-
ered independently by Bruin [Brn1] and by Flynn and Wetherell [FW1].

Suppose that X is a curve of genus 2 over Q embedded in its Jacobian
JX using a basepoint P0 ∈ X(Q). Consider the curves Y obtained as
in Section 5.5 by pulling back X under the multiplication-by-2 isogeny
JX → JX , or its translates. Then Y is an unramified cover of X, and when
considered over Q, it is an abelian cover with Galois group JX [2](Q) '
(Z/2)4. As mentioned in Section 5.5, the Riemann-Hurwitz formula shows
that the genus of Y is 17. By Galois theory, there are 15 intermediate
covers Zi of XQ of degree 2, and these have genus 3. Hence each Jacobian

JZi
is isogenous over Q to JX×Ei for some elliptic curve Ei, and it follows

that JY is isogenous to JX×A where A is a 15-dimensional abelian variety
isomorphic to

∏15
i=1Ei over Q. More precisely, one can show that one can

take A to the Weil restriction of scalars ResK/QE of an elliptic curve E
over the 15-dimensional Q-algebra K of global sections of the structure
sheaf on JX [2] − {0}. (See [BLR, Section 7.6] for the definition of the
Weil restriction of scalars.) More concretely, K is the product of the fields
of definition of representatives for the Galois orbits of nontrivial 2-torsion
points of J ; often there is just one orbit and K is a number field of degree
15 over Q. One then can attempt to apply Chabauty to Y → A for each
Y .

Whereas success of the direct Chabauty method required rank JX(Q) <
2, elliptic Chabauty requires the (independent?) condition rankA(Q) <
dimA for each A that arises. One of the properties of restriction of scalars
is that A(Q) ' E(K), and we also know dimA = 15, so the latter con-
dition is equivalent to rankE(K) < 15. Perhaps this is more likely than
rank JX(Q) < 2. In the worst case, when K is a number field and each
nonzero 2-torsion point of E is defined only over a cubic extension of K,
we apparently need to compute the 2-part of the class group of a degree 45
number field to complete the descent to compute rankE(K). But in favor-
able cases, the number fields are much smaller, and the method is practical.

Elliptic Chabauty has the advantage over the original Chabauty method
that one can do all the computations with the group law of E over K,
instead of a Jacobian over Q. The former is usually easier from the com-
putational point of view: as Bruin says, “simple geometry over a field with
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complicated arithmetic is to be preferred over complicated geometry over
a field with simple arithmetic.”

6. The Mordell-Weil race

If faced with the problem of determining X(Q) for a specific curve X
over Q of genus g ≥ 2, it is probably best first to try the method of local
points. If this fails, next one can try to see if X admits a nonconstant
morphism to a curve Y where Y has genus at least 2, or where Y is a curve
of genus 1 for which Y (Q) is finite and can be determined. If not, one can
attempt the Dem’yanenko-Manin method, and the method of Chabauty.

If all of these fail, one can go up to a set of unramified covering curves,
and then recursively apply the above methods to each of these.

It seems plausible that iteration of going-up and Chabauty alone are
sufficient to resolve X(Q) for every curve X of genus g ≥ 2 over Q! Starting
from X, one replaces the problem on X with the problem on a finite set of
covering curves YR. For each YR whose rational points are not resolved by
Chabauty, one must replace YR by a finite set of its covering curves, and
so on. We obtain a tree and hope that all the branches will eventually be
terminated by Chabauty. If one applies Chabauty to the Jacobians alone,
the issue is whether the genus eventually outpaces the rank of the Jacobian
as one goes up along any branch of the tree. If so, Chabauty is likely to
succeed in terminating all the branches.

In practice, one can apply Chabauty to morphisms from the curve into
quotients of its Jacobian at each node of the tree, as in the elliptic Chabauty
method of Section 5.7. This is preferable especially if the original X has
large rank: if Y covers X, the Jacobian JY is isogenous over Q to JX×A for
some abelian variety A over Q, so rank JY (Q) = rank JX(Q) + rankA(Q),
which will still be large, if rank JX(Q) was large to begin with. On the
other hand, there seems to be no direct correlation between rankA(Q) and
rank JX(Q).

Unfortunately, virtually nothing is known about the growth of Mordell-
Weil ranks as one ascends an unramified tower of curves, and hence it seems
impossible to prove anything about the success of this tree method. All
we have now are a few isolated examples in which the method has been
successful. For a genus g curve X, is rank JX(Q) typically of size around g?
Or is it typically O(1) as g →∞? It seems difficult even to find a heuristic
that predicts the answers. Perhaps analytic methods generalizing [Brum]
will provide hints.
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Even if the truth is that the going-up and Chabauty methods are not
always enough to determine X(Q), there are several other conjectural ap-
proaches towards an effective algorithm. See Section F.4.2 of [HS] for a
survey of some of these.

7. Some success stories

7.1. Diophantus. About 1700 years ago, Diophantus challenged his read-
ers to find a solution to

y2 = x8 + x4 + x2

in positive rational numbers. This is not hard, but these days one wants to
know all the solutions. Wetherell [We] combined going-up, going-down, and
Chabauty to prove that (1/2, 9/16) is the only positive rational solution.

7.2. Serre. Over 15 years ago, Serre challenged the mathematical commu-
nity to find the rational points on x4 + y4 = 17, a genus 3 curve whose
Jacobian is isogenous to E×E×E′ where E,E′ are elliptic curves over Q,
each of rank 2. This past year, Flynn and Wetherell [FW2] found suitable
unramified covers and applied a version of elliptic Chabauty to them to
prove that the only rational points are the obvious eight with

{|x|, |y|} = {1, 2}.

7.3. Generalized Fermat. Work of Beukers [Beu], and of Darmon and
Granville [DG] reduces solving xp + yq = zr in relatively prime integers
x, y, z for fixed p, q, r > 1 to computing X(Q) for a finite set of curves
X over Q. As has already been mentioned, methods based on modularity
of elliptic curves solve the equation for many (p, q, r). Some of the small
exponent cases, too small for modularity methods to work easily, are worked
out in [Brn1], [Brn2], [Brn3], and [Po]. For example, [Brn2] applies elliptic
Chabauty and other methods to prove that the only solutions to

x8 + y3 = z2

in nonzero relatively prime integers are

(±1, 2,±3) and (±43, 96222,±30042907).
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