
UNITS IN HAHN–MAL’CEV–NEUMANN RINGS

BJORN POONEN

Abstract. We give a simpler proof that the units in a Hahn–Mal’cev–Neumann ring
A = R((G,ω)) (consisting of power series in which the exponents form a well-ordered subset
of an ordered group) include all elements of the form 1− α such that all the exponents in α
are positive. This is the most difficult step of the construction of Hahn–Mal’cev–Neumann
division rings, which have applications to valuation theory and number theory. We also turn
the standard proof on its head by showing that the invertibility result, applied to an auxiliary
ring, implies the two lemmas about well-ordered subsets of groups required for that proof.

1. Introduction

There are two easy ways to prove that for any ring R, the units of the Laurent series ring
R((x)) include all elements of the form 1− α with α ∈ xR[[x]]:

Method 1. Show that 1 + α + α2 + α3 + · · · is a well-defined element of R((x)) and that it is
an inverse of 1− α.

Method 2. Write α = α1x+ α2x
2 + α3x

3 + · · · , set up an equation
(1− α1x− α2x

2 − α3x
3 − · · · )(β0 + β1x+ β2x

2 + β3x
3 + · · · ) = 1,

equate the coefficients of xn on both sides, and solve for β0, β1, β2, . . . in turn, to obtain
“successive approximations” to the inverse of 1− α.

The invertibility result holds more generally for Hahn–Mal’cev–Neumann rings R((G;ω)),
which consist of series α in which the exponent set supp(α) is a well-ordered subset of an
ordered group G (the optional ω twists the multiplication; see Section 2 for definitions):

Theorem 1.1 ([Mal48, Neu49]). In a Hahn–Mal’cev–Neumann ring R((G;ω)), if α is an
element with strictly positive support, then 1− α is a unit.

Remarks 1.2.
(i) Hahn in 1907 [Hah07] constructed these rings in the commutative case over a field R,

and Mal’cev and Neumann generalized the construction to the noncommutative case.
(ii) Hahn–Mal’cev–Neumann rings arise in valuation theory: when R is a division ring,

R((G;ω)) is a spherically complete (also called maximally complete or maximal) division
ring; cf. [Kru32, p. 193].
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(iii) The Hahn–Mal’cev–Neumann ring k((xQ)) is an explicit algebraically closed field exten-
sion of k((x)) for any algebraically closed field k.

(iv) In number theory, a variant gives an explicit algebraically closed field extension of Qp

for any prime p [Lam86, Poo93].

The original proofs of Theorem 1.1 follow Method 1 (see [Mal48, Neu49]), but they involve
checking that 1 + α+ α2 + · · · is well-defined, which requires two technical results that for
general G are not immediate to verify directly:

• that
⋃

n≥0 supp(α
n) is again well-ordered, and

• that each g ∈ G belongs to supp(αn) for at most finitely many n ≥ 0.
We give a simpler proof of Theorem 1.1 via a transfinite generalization of Method 2,

which is closer to Hahn’s original proof for the commutative case. (Neumann, in a note
added in proof [Neu49, p. 203], writes that Daniel Zelinsky also found such a proof for the
noncommutative case, but it seems that it was never published. Moreover, this seems to have
been forgotten, since subsequent books by noncommutative ring experts have presented only
the more complicated Method 1 proof; see [Pas77, Chapter 13, §2] and [Lam01, pp. 229–234].)
Also, in Section 4 we turn Method 1 on its head, to show that Theorem 1.1 implies that
1 + α + α2 + · · · is well-defined.

2. Hahn–Mal’cev–Neumann rings

We follow the notation of [Lam01, pp. 229–234]. Let R be a (possibly noncommutative) ring.
Let G be a (possibly nonabelian) ordered group. Let ω : G → AutR be a homomorphism;
this is the twist. The Hahn–Mal’cev–Neumann ring A = R((G;ω)) is the set of formal sums
α =

∑
g∈G αgg with αg ∈ R such that the support supp(α) := {g ∈ G : αg ̸= 0} is well-ordered,

equipped with the operations∑
g∈G

αgg +
∑
g∈G

βgg :=
∑
g∈G

(αg + βg)g∑
g∈G

αgg ·
∑
h∈G

βhh :=
∑
u∈G

( ∑
g,h∈G: gh=u

αg ωg(βh)
)
u;

these operations are well-defined and make A a ring.
For nonzero β ∈ A, define v(β) := min supp(β). Also, let ∞ be an element outside G that

is greater than all elements of G and set v(0) := ∞. For β ∈ A and h ∈ G ∪ {∞}, define
β<h :=

∑
g<h βgg ∈ A.

3. Existence of inverses

In this section, we give our new proof of Theorem 1.1.
Call a series β ∈ A an approximate inverse of 1−α if (1−α)β = 1+ ϵ, where v(ϵ) is greater

than all elements of supp(β). Let F be the set of approximate inverses of 1− α. Define a
partial order on F as follows: β′ ⪯ β if β′ is an initial segment of β, that is, β<h for some
h ∈ G ∪ {∞}.

Lemma 3.1. Any chain C in F has an upper bound.

Proof. For g ∈ G, define γg := βg if there is a β ∈ C with βg ̸= 0, and γg := 0 otherwise.
The series γ :=

∑
g∈G γgg has well-ordered support, since any descending sequence in supp(γ)
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is contained in supp(β) for some β ∈ C. Also, β ⪯ γ for every β ∈ C. Finally, γ ∈ F : If
h ∈ supp(γ), then h ∈ supp(β) for some β ∈ C, and if we ignore terms with exponent > h,
then γ agrees with β, so (1− α)γ agrees with (1− α)β, which agrees with 1. □

Lemma 3.2. If β ∈ F and (1− α)β ̸= 1, then β is not a maximal element of F .

Proof. We have (1− α)β = 1 + ϵ for some nonzero ϵ. Let ϵgg be the initial term of ϵ. Since
β ∈ F , all elements of supp(β) are less than g. Let β′ = β − ϵgg, so elements of supp(β′) are
less than or equal to g. Then (1− α)β′ = 1 + ϵ′, where ϵ′ := (ϵ− ϵgg) + α · ϵgg has v(ϵ′) > g,
so β′ ∈ F . By construction, β ≺ β′. □

By Lemma 3.1 and Zorn’s lemma, F has a maximal element β. By Lemma 3.2, (1−α)β = 1.
Similarly, 1− α has a left inverse. This completes the proof of Theorem 1.1.

4. Explicit inverses

The main disadvantage of the proof in Section 3 is that it does not show that the inverse is
1 + α+ α2 + · · · . But once the existence of an inverse has been established, a short argument
shows what it must be:

Theorem 4.1. If the support of α ∈ A consists of strictly positive elements of G, then
1 + α + α2 + · · · is a well-defined element of A (when summed coefficientwise), and is the
inverse of 1− α.

Proof. Each automorphism σ of R extends to an automorphism of the polynomial ring R[x]
by letting σ fix x. So there is a natural embedding Aut(R) ⊆ Aut(R[x]), and we may consider
ω as a homomorphism from G to Aut(R[x]). Let A′ = R[x]((G;ω)) be the corresponding
Hahn–Mal’cev–Neumann ring. Given an element of A′, the degrees of the polynomials which
are its coefficients may be unbounded, so A′ does not naturally embed in A[x], but we do
have A′ ⊆ A[[x]]. In A[[x]], (1 − αx)−1 = 1 + αx + α2x2 + · · · . But 1 − αx is invertible
in A′ by Theorem 1.1, so 1 + αx + α2x2 + · · · represents the inverse of 1 − αx in A′. The
ring homomorphism R[x] → R fixing elements of R and mapping x to 1 induces a ring
homomorphism A′ → A, under which 1− αx maps to 1− α and 1 + αx+ α2x2 + · · · maps
to 1 + α+ α2 + · · · . Hence 1 + α+ α2 + · · · is a well-defined element of A, and is the inverse
of 1− α. □
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