JORDAN-HÖLDER THEOREM

BJORN POONEN

The following exposition is based on [Ser16, $\S1.3$] and a discussion with Christopher Xu. A finite filtration of a group G is a descending sequence of subgroups

$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = 1,$$

where $G_i \triangleright G_{i+1}$ denotes that G_{i+1} is a normal subgroup of G_i ; then define $\operatorname{gr}_i(G) := G_i/G_{i+1}$. The filtration is a Jordan-Hölder filtration of length n if each $\operatorname{gr}_i(G)$ is simple; then the multiset $\{\operatorname{gr}_i(G) : 0 \le i < n\}$ records the multiplicity of each isomorphism type among the $\operatorname{gr}_i(G)$.

Jordan–Hölder theorem. Let G be a group. Every Jordan–Hölder filtration of G has the same multiset $\{gr_i(G)\}$ of composition factors.

Proof. We may assume $G \neq 1$, and that G has a Jordan–Hölder filtration; let $\ell(G)$ denote the length of a shortest one. We use induction on $\ell(G)$.

Base case: $\ell(G) = 1$. Then the only Jordan-Hölder filtration is $1 \triangleleft G$.

Inductive step: Suppose that $\ell(G) \geq 2$. Let N be the group just below G in a shortest Jordan–Hölder filtration. Thus $N \triangleleft G$, and $\ell(N)$ and $\ell(G/N)$ are strictly less than $\ell(G)$.

Let (G_i) be any Jordan-Hölder filtration of G. It induces filtrations on N and G/N: namely, $N_i := G_i \cap N$ and $(G/N)_i := \operatorname{im}(G_i \to G/N)$. Applying the snake lemma to

yields an exact sequence

$$1 \longrightarrow \operatorname{gr}_i(N) \longrightarrow \operatorname{gr}_i(G) \longrightarrow \operatorname{gr}_i(G/N) \longrightarrow 1.$$

Since $\operatorname{gr}_i(G)$ is simple, one of $\operatorname{gr}_i(N)$ and $\operatorname{gr}_i(G/N)$ is 1 and the other is isomorphic to $\operatorname{gr}_i(G)$. In particular, (N_i) with duplicates removed is a Jordan–Hölder filtration of N, and likewise for $((G/N)_i)$ and G/N, and

$$\{\operatorname{gr}_i(G)\} = \{\operatorname{gr}_i(N)\} \amalg \{\operatorname{gr}_i(G/N)\}$$

as multisets, where it is understood that on the right we discard all quotients isomorphic to 1. By the inductive hypothesis, $\{\operatorname{gr}_i(N)\}$ and $\{\operatorname{gr}_i(G/N)\}$ are each independent of the choice of filtration (G_i) , so $\{\operatorname{gr}_i(G)\}$ is too.

Date: November 29, 2020.

The writing was supported in part by National Science Foundation grant DMS-1601946 and Simons Foundation grants #402472 (to Bjorn Poonen) and #550033.

References

[Ser16] Jean-Pierre Serre, Finite groups: an introduction, Surveys of Modern Mathematics, vol. 10, International Press, Somerville, MA; Higher Education Press, Beijing, 2016. With assistance in translation provided by Garving K. Luli and Pin Yu. MR3469786 ↑1

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Email address: poonen@math.mit.edu *URL*: http://math.mit.edu/~poonen/