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Abstract. The recent negative answer to Hilbert’s tenth problem over rings of integers
relies on a theorem that for every extension of number fields L/K, if there is an abelian
variety A over K such that 0 < rankA(K) = rankA(L), then OK is OL-diophantine. We
present an alternative proof of this theorem and review how it is used.

1. Introduction

1.1. History. Hilbert’s tenth problem asked for an algorithm to decide, given a multivariable
polynomial equation with integer coefficients, whether it has a solution in integers. By
[DPR61, Mat70], there is no such algorithm.

For each number field K, replacing Z with the ring of integers OK yields a new question.
The negative answer for Z implies a negative answer for OK if Z is OK-diophantine; see
Section 2 for the definition. This led Denef and Lipshitz [DL78] to conjecture that Z is
OK-diophantine for every number field K. Their conjecture was proved for many classes
of number fields by using the structure of integer points on algebraic tori, specifically, Pell
equations [Den75, DL78, Den80, Phe88, Shl89].

Starting with Denef, various authors [Den80, Poo02, CPZ05, Shl08, MRS24] showed that
one could use elliptic curves or abelian varieties in place of algebraic tori, if certain rank
conditions could be proven. The strongest of these results states, for an extension L/K of
number fields, that if the condition

AK,L : There exists an abelian variety A over K such that 0 < rankA(K) = rankA(L).

holds, then OK is OL-diophantine [MRS24, Theorem 1.1] (in fact, this result applies to some
infinite algebraic extensions as well). Via such results, [MR10, MR18, MP18, GFP20, Pas23,
SW23, KLS24, RW24] proved that Z is OF -diophantine for many new number fields F .

Recently, [KP25], using an input from additive combinatorics, constructed elliptic curves
proving AK,L for enough degree 2 extensions L/K to prove the full Denef–Lipshitz conjecture.
Soon thereafter, [ABHS25, Theorem 1.1] proved AK,L for all degree 2 extensions L/K,
constructing abelian varieties that were not necessarily elliptic curves. In contrast with
[KP25], [ABHS25] requires no additive combinatorics beyond a number field analogue of
Vinogradov’s method from the 1930s. Later, [Zyw25, Theorem 1.2] proved the stronger
theorem that for every degree 2 extension L/K, there exist infinitely many elliptic curves E
over K with rankE(K) = rankE(L) = 1.
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1.2. Outline. The proof that Z is OF -diophantine for all number fields F can be broken
into four independent steps:

(i) If E is a totally real number field, then Z is OE-diophantine [Den80].
(ii) AK,L holds for all degree 2 extensions L/K [KP25, ABHS25, Zyw25].
(iii) AK,L implies that OK is OL-diophantine [MRS24, Theorem 1.1].
(iv) If Z is OE-diophantine for all totally real E, and OK is OL-diophantine for all degree 2

extensions L/K, then Z is OF -diophantine for all number fields F . This reduction is
due to Shlapentokh [MRS24, Theorem 4.8].

Remark 1.1. What is proved towards (ii) determines how strong a version of (iii) is needed.
Specifically, [KP25] constructs elliptic curves and hence needs only [Shl08], whereas [ABHS25]
needs the full abelian variety statement of [MRS24], and [Zyw25] needs only [Poo02].

We have nothing new to say about (i) and (ii). The main purpose of this note is to give an
alternative proof of (iii); see Theorem 4.2(d). The key ideas are present in the earlier works,
but we introduce several simplifications. In Section 5, we reproduce Shlapentokh’s reduction
argument (iv) since it is short.

1.3. Notation. Let K be a number field. Let OK be its ring of integers. Given a ∈ K×,
there exist unique coprime ideals I, J ⊂ OK such that (a) = I/J ; define num(a) := I and
den(a) := J . If L is a finite extension of K, and α, β ∈ OL and I is a nonzero ideal of OK ,
the notation α ≡ β (mod I) means IOL| num(α− β).

2. Diophantine sets

Let R = OK for some K. For a finite-type R-scheme X, a subset S ⊂ X(R) is R-diophantine
if it is f(Y (R)) for some finite-type morphism Y → X. It is not hard to show that a subset
S ⊂ R = A1(R) is R-diophantine if and only if S = {a ∈ R : (∃x ∈ Rn) g(a, x) = 0} for some
g ∈ R[t, x1, . . . , xn]. Finite unions of R-diophantine subsets are R-diophantine. Any morphism
of finite-type R-schemes X → X ′ maps R-diophantine subsets of X(R) to R-diophantine
subsets of X ′(R). Applying this to A1 × A1 sum−→ A1 shows that if S, T ⊂ R = A1(R) are
R-diophantine, then so is S + T := {s+ t : s ∈ S, t ∈ T}.

Lemma 2.1 ([DL78, Proposition 1(b)]). The set OK − {0} is OK-diophantine.

Proof. For any nonzero ideal I ⊂ OK , there exists x ∈ OK with (2x−1)(3x−1) ≡ 0 (mod I)
(use the Chinese remainder theorem to reduce to the case where I is a power of a prime ideal).
For a ∈ OK , taking I = (a) shows that

a ̸= 0 ⇐⇒ (∃x, y ∈ OK) (2x− 1)(3x− 1) = ya. □

Elements of K can be represented in the usual way as equivalence classes a/b of pairs (a, b)
with a, b ∈ OK and b ≠ 0. Subsets of K can then be identified with certain subsets of O2

K .
Lemma 2.1 lets us

• use polynomial equations involving K-valued variables in diophantine definitions and
• extend the OK-diophantine notion to subsets of X(K) for finite-type K-schemes X.

For a finite extension L/K,
• choosing a finite presentation of OL as an OK-module lets us use polynomial equations

involving OL-valued variables in constructing OK-diophantine sets, and
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• if OK is OL-diophantine, then any OK-diophantine set is OL-diophantine.
Each ideal I ⊂ OK can be represented as (i1, i2) for some i1, i2 ∈ OK . Conditions involving

ideals can be expressed in diophantine terms in terms of the generators. For example:
• a ∈ I ⇐⇒ (∃x, y ∈ OK) a = xi1 + yi2;
• J |I ⇐⇒ i1, i2 ∈ J ;
• I = J ⇐⇒ I|J and J |I;
• I, J are coprime ⇐⇒ (∃i ∈ I)(∃j ∈ J) i+ j = 1;
• for s = a/b ∈ K, we have (s) = I/J ⇐⇒ aJ = bI;
• I = num(s) ⇐⇒ (∃J) (s) = I/J and I, J are coprime; and
• a ≡ b (mod I) ⇐⇒ a− b ∈ I.

3. Using congruences

Here is an example of how to use a congruence to force an algebraic integer to belong to a
smaller ring of integers:

Example 3.1. If α ∈ Z[i] is such that |α| < 5 and α ≡ k (mod 10Z[i]) for some k ∈ Z, then
α ∈ Z. One proof: ᾱ− α ∈ 10Z[i], but |ᾱ− α| < 5 + 5, so ᾱ = α; that is, α ∈ Z. (The dots
below are the α ∈ Z[i] congruent to an integer modulo 10Z[i].)

0 10

10i

To generalize to OL ⊃ OK in place of Z[i] ⊃ Z, and an OK-ideal I in place of 10Z[i], we
use a condition (α− 1) · · · (α− n) | I to express that “I is much bigger than α”:

Lemma 3.2. Fix number fields L ⊃ K. There exists n ≥ 1 such that for all α ∈ OL, all
nonzero ideals I ⊂ OK, and all k ∈ K,

(α− 1) · · · (α− n) | I and α ≡ k (mod I) =⇒ α ∈ OK .

Proof. Enlarge L to assume that L/Q is Galois. Let ℓ = [L : Q]. Choose n such that n > 23ℓ
and 10n−2ℓ > (4n)ℓ. Below, j ranges over integers in [1, n], and τ ranges over elements of
Gal(L/Q). Given α ∈ OL, embed L in C so that |α| ≥ |τα| for all τ . Let M = |α|.

Suppose that (α−1) · · · (α−n) | I and α ≡ k (mod I), but α /∈ OK . Choose σ ∈ Gal(L/K)
with σα ≠ α. Applying σ to α ≡ k (mod I) and subtracting gives I | (σα − α), so
(α− 1) · · · (α− n) | (σα− α). Apply the norm N: L → Q and then | |:∏

j,τ

|τα− j| ≤
∏
τ

|τσα− τα| ≤ (2M)ℓ (since |τα| ≤ |α| = M for all τ).
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We will contradict the last line by proving that many terms on the left are large. For
each τ , let Jτ = {j : |τα − j| < 10}, so #Jτ ≤ 20. Let J0 :=

⋃
τ Jτ , so #J0 ≤ 20ℓ. Let

J1 := {1, . . . , n} − J0, so #J1 ≥ n− 20ℓ.
• If M ≥ 2n (so in particular M ≥ 4, so (M/2)3 ≥ 2M), then

∏
j∈J1|α − j| ≥

(M/2)#J1 ≥ (M/2)n−20ℓ > (M/2)3ℓ ≥ (2M)ℓ. If M < 2n, then
∏

j∈J1|α − j| ≥
10#J1 ≥ 10n−20ℓ > (4n)ℓ > (2M)ℓ.

• For τ ̸= 1, we have
∏

j∈J1 |
τα− j| ≥

∏
j∈J1 10 ≥ 1.

• For j ∈ J0, we use
∏

τ |τα− j| = |N(α− j)| ≥ 1.
Multiplying these inequalities gives

∏
j,τ |τα− j| > (2M)ℓ, a contradiction. □

4. Weakly approximating Z

Let K be a number field. For each prime ideal p ⊂ OK , let Kp be the completion. Let
S ⊂ K. Say that S weakly approximates Z if any of the following equivalent conditions holds:

(i) Z is contained in the closure of S in
∏

p Kp.
(ii) for every k ∈ Z and primes p1, . . . , pm of OK , there is a sequence in S converging to k

in Kpi simultaneously for every i;
(iii) for every k ∈ Z and nonzero ideal I ⊂ OK , the congruence x ≡ k (mod I) has a solution

in S.

Lemma 4.1. If S ⊂ K weakly approximates Z and 0 ̸= β ∈ OK , then there exists s ∈ S with
β | num(s).

Proof. The congruence x ≡ 0 (mod (β)) has a solution in S. □

Theorem 4.2. For an extension of number fields L/K, if AK,L holds, then
(a) there exists an infinite OL-diophantine subset T ⊂ K; and
(b) there exists an OL-diophantine subset S ⊂ K that weakly approximates Z;
(c) there exists an OL-diophantine subset U with Z ⊂ U ⊂ OK;
(d) the subset OK is OL-diophantine.

Proof. Fix A as in AK,L. Let r = (A(L) : A(K)). Then A(K) is a finite union of cosets of
rA(L), so A(K) is OL-diophantine.
(a) Choose a closed immersion A ↪→ PN

K for some N , and let T be the set of ratios of
projective coordinates of the points in A(K) ⊂ PN (K), excluding ratios with denominator
0. Since A(K) is infinite, T is infinite. By definition, T is OL-diophantine.

(b) Let y1, . . . , yg ∈ K(A) be local parameters for A at 0. Define

S =

{
y(Q)

y(P )
: P,Q ∈ A(K), y ∈

g∑
i=1

Tyi

}
⊂ K;

we exclude ratios y(Q)/y(P ) in which y(P ) or y(Q) is undefined or in which y(P ) = 0.
By definition, S is OL-diophantine.

Let k ∈ Z. Let p be a prime number. Let p be a prime of OK above p. If R → 0 along
a smooth analytic arc in the p-adic manifold A(Kp) and y ∈ K(A) is a uniformizer at 0
along this arc, then y(kR)/y(R) → k in Kp (l’Hôpital’s rule). Let a ∈ A(K) be a point
of infinite order. Using formal group coordinates shows that N !a ∈ A(Kp) tends to 0
along such an arc as N → ∞, and the function y :=

∑
tiyi is a uniformizer at 0 along the
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arc for any (t1, . . . , tg) ∈ Kg outside a hyperplane Hp ⊂ Ag
Kp

. Now, given finitely many
primes p1, . . . , pm of OK , we can choose (t1, . . . , tg) ∈ T g outside all of Hp1 , . . . , Hpm , since
T is infinite; then y(k(N !a))/y(N !a) → k in Kpi for each i ∈ {1, . . . ,m}. Thus S weakly
approximates Z.

(c) Let n be as in Lemma 3.2. Let U ′ be the set of α ∈ OL such that there exist k ∈ S and
I = num(s) for some s ∈ S such that (α− 1) · · · (α−n) | I and α ≡ k (mod I). The end
of Section 2 implies that U ′ is OL-diophantine. By Lemma 3.2, U ′ ⊂ OK .

If α ∈ Z− {1, . . . , n}, Lemma 4.1 provides s ∈ S such that (α − 1) · · · (α − n) | I :=
num(s). Since S weakly approximates Z, there exists k ∈ S such that k ≡ α (mod I).
Thus α ∈ U ′.

Take U := U ′ ∪ {1, . . . , n}, which is OL-diophantine.
(d) Let b1, . . . , bκ be a Z-basis of OK . Then OK =

∑κ
i=1 Ubi, which is OL-diophantine. □

Remark 4.3. In order to guarantee that some y was a uniformizer along the arc for each of
p1, . . . , pm, we let y range over all linear combinations of y1, . . . , yg with coefficients in an
infinite set T . But in fact, if we assume (as we may) that A is simple, then already y1 suffices,
because the p-adic analogue of Wüstholz’s analytic subspace theorem implies that for every
p, the p-adic logarithm logp a ∈ LieAKp does not lie in any hyperplane defined over K; see
[Mat10, Theorem 1] or [FP15, Proposition 2.5].

5. Shlapentokh’s reduction

Theorem 5.1 (Shlapentokh). Assume that
• Z is OE-diophantine for every totally real number field E, and
• OK is OL-diophantine for every degree 2 extension of number fields L/K.

Then Z is OF -diophantine for every number field F .

Proof. If F ′/F is a finite extension and Z is OF ′-diophantine, then Z is also OF -diophantine.
Thus we may enlarge F to assume that F is Galois over Q.

For each complex conjugation σ ∈ AutF arising from a nonreal emebedding F ↪→ C,
we have [F : F σ] = 2, so OFσ is OF -diophantine. Let E =

⋂
σ F

σ. Then the intersection
OE =

⋂
σ OFσ is OF -diophantine. On the other hand, E is totally real, so Z is OE-diophantine

by assumption. By transitivity, Z is OF -diophantine. □

Remark 5.2. [KP25, Corollary 2.5] proved AK,L (and hence that OK is OL-diophantine) not
for all degree 2 extensions L/K, but only those satisfying all of the following additional as-
sumptions: K ⊂ R, L is Galois over Q, and L ⊃ L0 := Q(

√
−1,

√
5,
√
7,
√
11,

√
13,

√
17,

√
19).

But it is easy to adapt the proof of Theorem 5.1 to use its second hypothesis only for these
extensions, by enlarging F to contain L0.
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