THE GROTHENDIECK RING OF VARIETIES IS NOT A DOMAIN

BJORN POONEN

Abstract

If k is a field, the ring $K_{0}\left(\mathcal{V}_{k}\right)$ is defined as the free abelian group generated by the isomorphism classes of geometrically reduced k-varieties modulo the set of relations of the form $[X-Y]=[X]-[Y]$ whenever Y is a closed subvariety of X. The multiplication is defined using the product operation on varieties. We prove that if the characteristic of k is zero, then $K_{0}\left(\mathcal{V}_{k}\right)$ is not a domain.

1. The Grothendieck ring of varieties

Let k be a field. By a k-variety we mean a geometrically reduced, separated scheme of finite type over k. Let \mathcal{V}_{k} denote the category of k-varieties. Let $K_{0}\left(\mathcal{V}_{k}\right)$ denote the free abelian group generated by the isomorphism classes of k-varieties, modulo all relations of the form $[X-Y]=[X]-[Y]$ where Y is a closed k-subvariety of a k-variety X. Here, and from now on, $[X]$ denotes the class of X in $K_{0}\left(\mathcal{V}_{k}\right)$. The operation $[X] \cdot[Y]:=\left[X \times_{k} Y\right]$ is well-defined, and makes $K_{0}\left(\mathcal{V}_{k}\right)$ a commutative ring with 1 . It is known as the Grothendieck ring of k-varieties. A completed localization of $K_{0}\left(\mathcal{V}_{k}\right)$ is needed for the theory of motivic integration, which has many applications: see [Loo00] for a survey.

Our main result is the following.
Theorem 1. Suppose that k is a field of characteristic zero. Then $K_{0}\left(\mathcal{V}_{k}\right)$ is not a domain. Remark. We conjecture that the result holds also for fields k of characteristic p. But we use a result whose proof relies on resolution of singularities and weak factorization of birational maps, which are known only in characteristic zero.

2. Abelian varieties of GL_{2}-TyPe

If A is an abelian variety over a field k_{0}, and k is a field extension of k_{0}, then $\operatorname{End}_{k}(A)$ denotes the endomorphism ring of the base extension $A_{k}:=A \times_{k_{0}} k$, that is, the ring of endomorphisms defined over k.
Lemma 2. Let k be a field of characteristic zero, and let \bar{k} denote an algebraic closure. There exists an abelian variety A over k such that $\operatorname{End}_{k}(A)=\operatorname{End}_{\bar{k}}(A) \simeq \mathcal{O}$, where \mathcal{O} is the ring of integers of a number field of class number 2.

Let us precede the proof of Lemma 2 with a few paragraphs of motivation. Our strategy will be to find a single abelian variety A over \mathbb{Q} such that the base extension A_{k} works over k.

[^0]Let A be a simple abelian variety over \mathbb{Q}. Let $E=\operatorname{End}_{\mathbb{Q}}(A) \otimes \mathbb{Q}$. Since A is simple, E is a division algebra. The Lie algebra Lie A is a nonzero left E-vector space, so $[E: \mathbb{Q}] \leq$ $\operatorname{dim}_{\mathbb{Q}} \operatorname{Lie} A=\operatorname{dim} A$. If equality holds and E is commutative (hence a number field), then A is said to be of GL_{2}-type. (The terminology is due to the following: If A is of GL_{2}-type, then the action of the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on a Tate module $V_{\ell} A$ can be viewed as a representation $\rho_{\ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(E \otimes \mathbb{Q} \ell)$.)

Because \mathbb{Q} has class number 1 , we must take $[E: \mathbb{Q}] \geq 2$ to find an A over \mathbb{Q} as in Lemma 2. The inequality $\operatorname{dim} A \geq[E: \mathbb{Q}]$ then forces $\operatorname{dim} A \geq 2$. Moreover, if we want $\operatorname{dim} A=2$, then A must be of GL_{2}-type.

Abelian varieties of GL_{2}-type are closely connected to modular forms. For each $N \geq 1$, let $\Gamma_{1}(N)$ denote the classical modular group, let $X_{1}(N)$ denote the corresponding modular curve over \mathbb{Q}, and let $J_{1}(N)$ be the Jacobian of $X_{1}(N)$. G. Shimura, in Theorem 1 of [Shi73], attached to each weight-2 newform f on $\Gamma_{1}(N)$ an abelian variety quotient A_{f} of $J_{1}(N)$. (Previously, in Theorem 7.14 of [Shi71], he had attached to f an abelian subvariety of $J_{1}(N)$.) Let E_{f} be the number field generated over \mathbb{Q} by the Fourier coefficients of f. Theorem 1 of [Shi73] shows also that $\operatorname{dim} A_{f}=\left[E_{f}: \mathbb{Q}\right]$, and that there is an injective \mathbb{Q}-algebra homomorphism $\theta: E_{f} \hookrightarrow E:=\operatorname{End}_{\mathbb{Q}}\left(A_{f}\right) \otimes \mathbb{Q}$ mapping each Fourier coefficient to the endomorphism of A_{f} induced by the associated Hecke correspondence on $X_{1}(N)$. Corollary 4.2 of [Rib80] proves that θ is an isomorphism. It follows that A_{f} is of GL_{2}-type.

Conversely, it is conjectured that each simple abelian variety over \mathbb{Q} of GL_{2}-type is \mathbb{Q} isogenous to some A_{f}. See [Rib92] for more details. The $\operatorname{dim} A=1$ case of this conjecture is the statement that elliptic curves over \mathbb{Q} are modular, which is known [BCDT01].

Therefore we are led to consider A_{f} of dimension 2, where f is a newform as above.

Proof of Lemma 2. Tables [Ste] show that there exists a weight-2 newform $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ on $\Gamma_{0}(590)$ (hence also on $\Gamma_{1}(590)$) such that $E_{f}=\mathbb{Q}(\sqrt{10})$ and $a_{3}=\sqrt{10}$. Let $A=A_{f}$ be the corresponding abelian variety over \mathbb{Q}. Then $\operatorname{dim} A=\left[E_{f}: \mathbb{Q}\right]=2$. But End (A) is an order of $E=E_{f}$ containing $a_{3}=\sqrt{10}$, so $\operatorname{End}_{\mathbb{Q}}(A)$ is the maximal order $\mathbb{Z}[\sqrt{10}]$ of E. Since 590 is squarefree, A is semistable over \mathbb{Q} by Theorem 6.9 of [DR73], and then Corollary 1.4(a) of [Rib75] shows that all endomorphisms of A over any field extension k of \mathbb{Q} are defined over \mathbb{Q}. Finally, the class number of $\mathbb{Z}[\sqrt{10}]$ is 2 .

Remarks.

(1) After one knows that $\operatorname{End}_{\mathbb{Q}}(A)=\mathbb{Z}[\sqrt{10}]$, another way to prove $\operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}[\sqrt{10}]$ is to use the fact that $\operatorname{End}_{\overline{\mathbb{Q}}}(A)$ injects into the endomorphism ring of the reduction A_{p} over $\overline{\mathbb{F}}_{p}$ for any prime p not dividing 590 . The latter endomorphism rings can be computed using Eichler-Shimura theory and Honda-Tate theory. Combining the information from a few primes p yields the result.
(2) The smallest N for which there exists a newform f on $\Gamma_{0}(N)$ with E_{f} of class number 2 is 276 . The advantage of 590 is that it is squarefree. (In fact, our original proof applied the technique in the previous remark at level 276.)
(3) The case $k=\mathbb{C}$ of Lemma 2 has an easy proof: let A be an elliptic curve over \mathbb{C} with complex multiplication by $\mathbb{Z}[\sqrt{-5}]$.

3. Abelian varieties and projective modules

Let A be an abelian variety over a field k, and let $\mathcal{O}=\operatorname{End}_{k}(A)$. Given a finite-rank projective right \mathcal{O}-module M, we define an abelian variety $M \otimes_{\mathcal{O}} A$ as follows: choose a finite presentation $\mathcal{O}^{m} \rightarrow \mathcal{O}^{n} \rightarrow M \rightarrow 0$, and let $M \otimes_{\mathcal{O}} A$ be the cokernel of the homomorphism $A^{m} \rightarrow A^{n}$ defined by the matrix that gives $\mathcal{O}^{m} \rightarrow \mathcal{O}^{n}$. It is straightforward to check that this is independent of the presentation, and that $M \mapsto\left(M \otimes_{\mathcal{O}} A\right)$ defines a fully faithful functor T from the category of finite-rank projective right \mathcal{O}-modules to the category of abelian varieties over k. (Essentially the same construction is discussed in the appendix by J.-P. Serre in [Lau01].)

Lemma 3. Let k be a field of characteristic zero. There exist abelian varieties A and B over k such that $A \times A \simeq B \times B$ but $A_{\bar{k}} \not 千 B_{\bar{k}}$.
Proof. Let A and \mathcal{O} be as in Lemma 2. Let I be a nonprincipal ideal of \mathcal{O}. Since \mathcal{O} is a Dedekind domain, the isomorphism type of a direct sum of fractional ideals $I_{1} \oplus \ldots \oplus I_{n}$ is determined exactly by the nonnegative integer n and the product of the classes of the I_{i} in the class group $\operatorname{Pic}(\mathcal{O})$. Since $\operatorname{Pic}(\mathcal{O}) \simeq \mathbb{Z} / 2$, we have $\mathcal{O} \oplus \mathcal{O} \simeq I \oplus I$ as \mathcal{O}-modules. Applying the functor T yields $A \times A \simeq B \times B$, where $B:=I \otimes_{\mathcal{O}} A$. Since $\operatorname{End}_{\bar{k}}(A)$ also equals \mathcal{O}, we have $B_{\bar{k}}=I \otimes_{\mathcal{O}} A_{\bar{k}}$. Since T for \bar{k} is fully faithful, $A_{\bar{k}} \not 千 B_{\bar{k}}$.

4. Stable birational classes and Albanese varieties

For any extension of fields $k \subseteq k^{\prime}$, there is a ring homomorphism $K_{0}\left(\mathcal{V}_{k}\right) \rightarrow K_{0}\left(\mathcal{V}_{k^{\prime}}\right)$ mapping $[X]$ to $\left[X_{k^{\prime}}\right]$.

Let k be a field of characteristic zero. Smooth, projective, geometrically integral k-varieties X and Y are called stably birational if $X \times \mathbb{P}^{m}$ is birational to $Y \times \mathbb{P}^{n}$ for some integers $m, n \geq 0$. The set SB_{k} of equivalence classes of this relation is a monoid under product of varieties over k. Let $\mathbb{Z}\left[\mathrm{SB}_{k}\right]$ denote the corresponding monoid ring.

When $k=\mathbb{C}$, there is a unique ring homomorphism $K_{0}\left(\mathcal{V}_{k}\right) \rightarrow \mathbb{Z}\left[\mathrm{SB}_{k}\right]$ mapping the class of any smooth projective integral variety to its stable birational class [LL01]. (In fact, this homomorphism is surjective, and its kernel is the ideal generated by $\mathbb{L}:=\left[\mathbb{A}^{1}\right]$.) The proof in [LL01] requires resolution of singularities and weak factorization of birational maps [AKMW00, Theorem 0.1.1], [Wło01, Conjecture 0.0.1]. The same proof works over any algebraically closed field of characteristic zero.

The set AV_{k} of isomorphism classes of abelian varieties over k is a monoid. The Albanese functor mapping a smooth, projective, geometrically integral variety to its Albanese variety induces a homomorphism of monoids $\mathrm{SB}_{k} \rightarrow \mathrm{AV}_{k}$, since the Albanese variety is a birational invariant, since formation of the Albanese variety commutes with products, and since the Albanese variety of \mathbb{P}^{n} is trivial. Therefore we obtain a ring homomorphism $\mathbb{Z}\left[\mathrm{SB}_{k}\right] \rightarrow$ $\mathbb{Z}\left[\mathrm{AV}_{k}\right]$.

5. ZERODIVISORS

Proof of Theorem 1. Let A and B be as in Lemma 3. Then $([A]+[B])([A]-[B])=0$ in $K_{0}\left(\mathcal{V}_{k}\right)$. On the other hand, $[A]+[B]$ and $[A]-[B]$ are nonzero, because their images under the composition

$$
K_{0}\left(\mathcal{V}_{k}\right) \rightarrow K_{0}\left(\mathcal{V}_{\bar{k}}\right) \rightarrow \mathbb{Z}\left[\mathrm{SB}_{\bar{k}}\right] \rightarrow \mathbb{Z}\left[\mathrm{AV}_{\bar{k}}\right]
$$

are nonzero. (The Albanese variety of an abelian variety is itself.)

Acknowledgements

I thank Ken Ribet for several comments regarding Section 2, and in particular for suggesting a less computational proof of Lemma 2. I thank also Eduard Looijenga and Arthur Ogus for discussions. The tables [Ste] were developed using MAGMA, C++, LiDIA, and GP-PARI. The package GP-PARI was used also to search the data from [Ste] for a newform f suitable for the proof of Lemma 2.

References

[AKMW00] Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, Torification and factorization of birational maps, MPI 1999-59, 31 May 2000, arXiv:math.AG/9904135.
[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939 (electronic).
[DR73] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 143-316. Lecture Notes in Math., Vol. 349.
[Lau01] Kristin Lauter, The maximum or minimum number of rational points on curves of genus three over finite fields, with an appendix by Jean-Pierre Serre, arXiv:math.AG/0104086, 7 April 2001.
[LL01] Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry, arXiv:math.AG/0110255, 23 October 2001.
[Loo00] Eduard Looijenga, Motivic measures, arXiv:math.AG/0006220, 21 October 2000.
[Rib75] Kenneth A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. Math. (2) 101 (1975), 555-562.
[Rib80] Kenneth A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43-62.
[Rib92] Kenneth A. Ribet, Abelian varieties over Q and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53-79.
[Shi71] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial Lectures, No. 1.
[Shi73] Goro Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523-544.
[Ste] William Stein, The Modular Forms Database, http://modular.fas.harvard.edu/Tables.
[Wło01] Jarosław Włodarczyk, Toroidal varieties and the weak factorization theorem, 22 June 2001, arXiv:math.AG/9904076.

Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
E-mail address: poonen@math.berkeley.edu

[^0]: Date: May 27, 2002.
 1991 Mathematics Subject Classification. Primary 14A10; Secondary 14G35.
 Key words and phrases. Grothendieck ring of varieties, modular abelian variety, stable birational equivalence, Albanese variety.

 This research was supported by NSF grant DMS-9801104, and a Packard Fellowship. This paper has appeared in Math. Res. Letters 9 (2002), no. 4, 493-498.

