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Abstract. If k is a field, the ring K0(Vk) is defined as the free abelian group generated by
the isomorphism classes of geometrically reduced k-varieties modulo the set of relations of
the form [X − Y ] = [X] − [Y ] whenever Y is a closed subvariety of X. The multiplication
is defined using the product operation on varieties. We prove that if the characteristic of k
is zero, then K0(Vk) is not a domain.

1. The Grothendieck ring of varieties

Let k be a field. By a k-variety we mean a geometrically reduced, separated scheme of
finite type over k. Let Vk denote the category of k-varieties. Let K0(Vk) denote the free
abelian group generated by the isomorphism classes of k-varieties, modulo all relations of
the form [X − Y ] = [X]− [Y ] where Y is a closed k-subvariety of a k-variety X. Here, and
from now on, [X] denotes the class of X in K0(Vk). The operation [X] · [Y ] := [X ×k Y ] is
well-defined, and makes K0(Vk) a commutative ring with 1. It is known as the Grothendieck
ring of k-varieties. A completed localization of K0(Vk) is needed for the theory of motivic
integration, which has many applications: see [Loo00] for a survey.

Our main result is the following.

Theorem 1. Suppose that k is a field of characteristic zero. Then K0(Vk) is not a domain.

Remark. We conjecture that the result holds also for fields k of characteristic p. But we use
a result whose proof relies on resolution of singularities and weak factorization of birational
maps, which are known only in characteristic zero.

2. Abelian varieties of GL2-type

If A is an abelian variety over a field k0, and k is a field extension of k0, then Endk(A)
denotes the endomorphism ring of the base extension Ak := A ×k0 k, that is, the ring of
endomorphisms defined over k.

Lemma 2. Let k be a field of characteristic zero, and let k denote an algebraic closure.
There exists an abelian variety A over k such that Endk(A) = Endk(A) ' O, where O is the
ring of integers of a number field of class number 2.

Let us precede the proof of Lemma 2 with a few paragraphs of motivation. Our strategy
will be to find a single abelian variety A over Q such that the base extension Ak works over
k.
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Let A be a simple abelian variety over Q. Let E = EndQ(A) ⊗ Q. Since A is simple, E
is a division algebra. The Lie algebra Lie A is a nonzero left E-vector space, so [E : Q] ≤
dimQ Lie A = dim A. If equality holds and E is commutative (hence a number field), then
A is said to be of GL2-type. (The terminology is due to the following: If A is of GL2-type,
then the action of the Galois group Gal(Q/Q) on a Tate module V`A can be viewed as a
representation ρ` : Gal(Q/Q) → GL2(E ⊗Q`).)

Because Q has class number 1, we must take [E : Q] ≥ 2 to find an A over Q as in
Lemma 2. The inequality dim A ≥ [E : Q] then forces dim A ≥ 2. Moreover, if we want
dim A = 2, then A must be of GL2-type.

Abelian varieties of GL2-type are closely connected to modular forms. For each N ≥ 1,
let Γ1(N) denote the classical modular group, let X1(N) denote the corresponding modular
curve over Q, and let J1(N) be the Jacobian of X1(N). G. Shimura, in Theorem 1 of [Shi73],
attached to each weight-2 newform f on Γ1(N) an abelian variety quotient Af of J1(N).
(Previously, in Theorem 7.14 of [Shi71], he had attached to f an abelian subvariety of
J1(N).) Let Ef be the number field generated over Q by the Fourier coefficients of f .
Theorem 1 of [Shi73] shows also that dim Af = [Ef : Q], and that there is an injective
Q-algebra homomorphism θ : Ef ↪→ E := EndQ(Af ) ⊗ Q mapping each Fourier coefficient
to the endomorphism of Af induced by the associated Hecke correspondence on X1(N).
Corollary 4.2 of [Rib80] proves that θ is an isomorphism. It follows that Af is of GL2-type.

Conversely, it is conjectured that each simple abelian variety over Q of GL2-type is Q-
isogenous to some Af . See [Rib92] for more details. The dim A = 1 case of this conjecture
is the statement that elliptic curves over Q are modular, which is known [BCDT01].

Therefore we are led to consider Af of dimension 2, where f is a newform as above.

Proof of Lemma 2. Tables [Ste] show that there exists a weight-2 newform f =
∑∞

n=1 anq
n

on Γ0(590) (hence also on Γ1(590)) such that Ef = Q(
√

10) and a3 =
√

10. Let A = Af

be the corresponding abelian variety over Q. Then dim A = [Ef : Q] = 2. But EndQ(A)

is an order of E = Ef containing a3 =
√

10, so EndQ(A) is the maximal order Z[
√

10] of
E. Since 590 is squarefree, A is semistable over Q by Theorem 6.9 of [DR73], and then
Corollary 1.4(a) of [Rib75] shows that all endomorphisms of A over any field extension k of
Q are defined over Q. Finally, the class number of Z[

√
10] is 2. �

Remarks.

(1) After one knows that EndQ(A) = Z[
√

10], another way to prove EndQ(A) = Z[
√

10]
is to use the fact that EndQ(A) injects into the endomorphism ring of the reduction

Ap over Fp for any prime p not dividing 590. The latter endomorphism rings can
be computed using Eichler-Shimura theory and Honda-Tate theory. Combining the
information from a few primes p yields the result.

(2) The smallest N for which there exists a newform f on Γ0(N) with Ef of class number 2
is 276. The advantage of 590 is that it is squarefree. (In fact, our original proof applied
the technique in the previous remark at level 276.)

(3) The case k = C of Lemma 2 has an easy proof: let A be an elliptic curve over C with
complex multiplication by Z[

√
−5].
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3. Abelian varieties and projective modules

Let A be an abelian variety over a field k, and let O = Endk(A). Given a finite-rank
projective right O-module M , we define an abelian variety M⊗OA as follows: choose a finite
presentation Om → On → M → 0, and let M ⊗O A be the cokernel of the homomorphism
Am → An defined by the matrix that gives Om → On. It is straightforward to check that
this is independent of the presentation, and that M 7→ (M ⊗O A) defines a fully faithful
functor T from the category of finite-rank projective right O-modules to the category of
abelian varieties over k. (Essentially the same construction is discussed in the appendix by
J.-P. Serre in [Lau01].)

Lemma 3. Let k be a field of characteristic zero. There exist abelian varieties A and B over
k such that A× A ' B ×B but Ak 6' Bk.

Proof. Let A and O be as in Lemma 2. Let I be a nonprincipal ideal of O. Since O is a
Dedekind domain, the isomorphism type of a direct sum of fractional ideals I1 ⊕ . . . ⊕ In

is determined exactly by the nonnegative integer n and the product of the classes of the Ii

in the class group Pic(O). Since Pic(O) ' Z/2, we have O ⊕ O ' I ⊕ I as O-modules.
Applying the functor T yields A × A ' B × B, where B := I ⊗O A. Since Endk(A) also
equals O, we have Bk = I ⊗O Ak. Since T for k is fully faithful, Ak 6' Bk. �

4. Stable birational classes and Albanese varieties

For any extension of fields k ⊆ k′, there is a ring homomorphism K0(Vk) → K0(Vk′)
mapping [X] to [Xk′ ].

Let k be a field of characteristic zero. Smooth, projective, geometrically integral k-varieties
X and Y are called stably birational if X × Pm is birational to Y × Pn for some integers
m, n ≥ 0. The set SBk of equivalence classes of this relation is a monoid under product of
varieties over k. Let Z[SBk] denote the corresponding monoid ring.

When k = C, there is a unique ring homomorphism K0(Vk) → Z[SBk] mapping the
class of any smooth projective integral variety to its stable birational class [LL01]. (In
fact, this homomorphism is surjective, and its kernel is the ideal generated by L := [A1].)
The proof in [LL01] requires resolution of singularities and weak factorization of birational
maps [AKMW00, Theorem 0.1.1], [W lo01, Conjecture 0.0.1]. The same proof works over
any algebraically closed field of characteristic zero.

The set AVk of isomorphism classes of abelian varieties over k is a monoid. The Albanese
functor mapping a smooth, projective, geometrically integral variety to its Albanese variety
induces a homomorphism of monoids SBk → AVk, since the Albanese variety is a birational
invariant, since formation of the Albanese variety commutes with products, and since the
Albanese variety of Pn is trivial. Therefore we obtain a ring homomorphism Z[SBk] →
Z[AVk].

5. Zerodivisors

Proof of Theorem 1. Let A and B be as in Lemma 3. Then ([A] + [B])([A] − [B]) = 0 in
K0(Vk). On the other hand, [A] + [B] and [A]− [B] are nonzero, because their images under
the composition

K0(Vk) → K0(Vk) → Z[SBk] → Z[AVk]

are nonzero. (The Albanese variety of an abelian variety is itself.) �
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