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1. Introduction

We aim to give a down-to-earth introduction to the theory of linear differential equations
on complex manifolds, and the algebraic analogue of this theory. Along the way, we introduce
complex manifolds, local systems, vector bundles, derivations, connections, the Riemann–
Hilbert correspondence, p-curvature, and the Grothendieck–Katz p-curvature conjecture.

There are excellent sources for this material, such as [Del70], [Kat70], and [Kat72], con-
taining much more than we cover here. The present article is intended to be a warm-up for
reading such accounts. To make the article accessible to a broad audience, we provide extra
background and discuss more examples to motivate definitions. The main prerequisites are
topology, single-variable complex analysis, sheaves, OX-modules, and schemes.

2. Complex manifolds

Equip C with the usual topology, defined by the absolute value. Let n ∈ Z≥0. Give Cn the
product topology. Let U ⊂ Cn be an open subset. A function f : U → C is holomorphic if it
is locally given by a power series; more explicitly, f is holomorphic if U has an open cover
(Ui)i∈I such that for each i, the restriction f |Ui

is given by a convergent power series in n

variables centered at some point. Let O(U) be the ring of holomorphic functions U → C.
The rings O(V ) for open V ⊂ Cn, with the restriction maps, form a sheaf O on Cn. Then

(Cn,O) is a locally ringed space. Restricting to any open subset U ⊂ Cn defines a locally
ringed space (U,OU).

An n-dimensional complex manifold is a locally ringed space (X,OX) that is locally isomorphic
to one of the form (U,OU) as above; that is, X has an open cover (Xi)i∈I such that for
each i, there exists an open subset Ui ⊂ Cn and an isomorphism of locally ringed spaces
(Xi,OX |Xi

)→ (Ui,OUi
). (By using a different sheaf of rings, one can similarly define C∞ real

manifolds, topological manifolds, and so on.)
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For x ∈ X, define the local ring O(x) as the stalk of OX at x, let mx ⊂ O(x) be its maximal
ideal, and let kx = O(x)/mx ≃ C. (The local ring is more commonly denoted by Ox or OX,x,
but we follow the notation of [Del70, I.2.1] in order to distinguish stalks from fibers for a
vector bundle in Section 5.)

3. Review of linear differential equations

Let U ⊂ C be a simply connected open subset. Let a ∈ O(U). Then the equation f ′ = af ,
in which f ∈ O(U) is the function to be solved for, is an ordinary differential equation (ODE)
as opposed to a partial differential equation (PDE), because f is a function of only one variable.
It is linear, meaning that every term is a function of the input variable(s) times f or (one of)
its derivative(s); this implies that the set of holomorphic solutions on U is a C-subspace of
O(U). It is first-order, since the highest derivative of f that appears is the first derivative.
Let u ∈ U and b ∈ C. The existence and uniqueness theorem says that there exists a unique
holomorphic function f : U → C satisfying the ODE f ′ = af with initial condition f(u) = b.
(In fact, separation of variables leads to the explicit solution, f(z) = b exp(

∫ z

u
a(w) dw).)

The following theorem is a version involving a tuple of unknown functions, or equivalently a
function valued in Cn (but there might not be an explicit formula for the solution anymore):

Theorem 3.1 (Existence and uniqueness for a system of linear ODEs). Fix n ≥ 0. Let
U ⊂ C be a simply connected open subset. Let u ∈ U . Let A ∈ Mn(O(U)). Let b ∈ Cn. Then
there exists a unique f ∈ O(U)n satisfying f ′ = Af and f(u) = b.

Remark 3.2 (C∞ version). Theorem 3.1 remains true if one replaces “holomorphic” by
“infinitely differentiable” (C∞) and C by R everywhere.

Remark 3.3 (Not algebraic). Existence can fail in the algebraic context. For example, the
solution of the algebraic differential equation f ′ = z2f with f(0) = 1 on U = C is ez3/3, which
is not algebraic.

Remark 3.4 (Nonlinear DEs). There is an existence and uniqueness theorem for nonlinear
differential equations, but the solutions need not exist on the whole domain. For example,
on C, the differential equation f ′ = f 2 with initial condition f(0) = 1 has a holomorphic
solution in a neighborhood of 0, namely 1/(1 − z), but the solution does not extend to a
holomorphic function on all of C.

�

Warning 3.5 (Simply connected requirement). One cannot remove “simply connected” in
Theorem 3.1. For example, f ′ = 1

2z
f (think d(log f) = 1

2
d(log z)) has a nonzero solution on

any simply connected subset of C× (for instance, a branch of
√
z), but no nonzero holomorphic

solution on C× itself.

Remark 3.6 (Higher-order DEs). Higher-order differential equations can be rewritten as first-
order systems by introducing new unknown function variables to represent the intermediate
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derivatives. For example, any branch of log z on an open subset of C× is a solution to
(zf ′)′ = 0, which is equivalent to the second-order equation

f ′′ + (1/z)f ′ = 0.

Introduce g = f ′ to obtain the equivalent first-order system f ′ = g and g′ = (−1/z)g, which
in the format of Theorem 3.1 is (

f ′

g′

)
=

(
0 1

0 −1/z

)(
f

g

)
. (3.7)

We lose nothing by focusing only on first-order systems from now on.

Remark 3.8 (PDEs). Theorem 7.20, to be discussed later, is a version of Theorem 3.1 that
applies to functions of many variables, defined on a simply connected open subset of Cm, say,
but for m ≥ 2 an additional “integrability hypothesis” is needed to ensure that solutions exist.

• As a nonlinear example, no holomorphic function F (x, y) on a nonempty open subset of
C2 satisfies ∂F

∂x
= y and ∂F

∂y
= −x, because for any holomorphic F (x, y), the y-derivative

of ∂F
∂x

must equal the x-derivative of ∂F
∂y

.
• As a linear example, no nonzero holomorphic function f(x, y) satisfies ∂f

∂x
= yf and

∂f
∂y

= −xf , since on any open ball where f is nonvanishing, a branch of log f would be a
solution F to the previous system.

4. Local systems

In this section, X is a topological space.

4.1. Constant sheaves. Let n ∈ Z≥0. The constant presheaf Cn
X,pre is the presheaf such that

(i) for every open subset U ⊂ X, one has Cn
X,pre(U) = Cn, and

(ii) the restriction maps are the identity maps.

The constant sheaf Cn
X is the sheafification of Cn

X,pre. Thus, for every open subset U ⊂ X, the
space Cn

X(U) is the C-vector space of locally constant functions U → Cn. An automorphism
of Cn

X as sheaf of C-vector spaces is given by a locally constant function X → GLn(C); if X
is connected, this function is constant. If ϕ : Y → X is a continuous map, then ϕ−1Cn

X = Cn
Y .

4.2. The definition of local system. A local system L on X is a sheaf of C-vector spaces
that is locally isomorphic to a constant sheaf Cn

X ; this means that there exist an open covering
(Ui) of X, nonnegative integers ni, and isomorphisms ϕi : Cni

Ui
→ L|Ui

of sheaves of C-vector
spaces. If all the ni = n for all i, then L is called an n-dimensional local system.

Remark 4.1. If X is connected, then all the ni are necessarily equal.

Remark 4.2. A more general definition of local system allows constant sheaves other than
Cn

X , but in this article we stick to local systems of C-vector spaces.
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Local systems form a full subcategory of the category of sheaves of C-vector spaces. In
fact, the category of local systems on X is a rigid tensor category, because it has operations
⊕, ⊗, Hom and an identity object CX , all behaving as expected.

4.3. Examples of local systems.

Example 4.3. A local system isomorphic to Cn
X for some n is called constant.

Example 4.4 (Solutions to a differential equation). Let X = C×. Consider the differential
equation

f ′ =
1

2z
f (4.5)

mentioned in Warning 3.5. For each open subset U ⊂ X, let L(U) be the C-vector space of
holomorphic solutions f : U → C to (4.5). These form a sheaf of C-vector spaces L on X.
We claim that L is a 1-dimensional local system.

Suppose that U is simply connected. Analytic continuation constructs a branch of
√
z on

U , and it is an everywhere nonvanishing solution to (4.5); call it
√
z. Any other holomorphic

function on an open subset of U is g
√
z for some g, and g

√
z is a solution to (4.5) if and only

if g′ = 0. Thus L|U = CU

√
z.

Since X is covered by its simply connected subsets, L is a local system. The only
holomorphic solution to (4.5) on X is 0, so the only global section of L is 0, so L ̸≃ CX .

Example 4.6. Likewise, for any system of linear ODEs f ′ = Af as in Theorem 3.1, the
solutions form an n-dimensional local system.

Let L be a local system on X. The fiber of L at a point x ∈ X is the stalk Lx, which is
a finite-dimensional C-vector space. If L is an n-dimensional local system, then Lx is an
n-dimensional C-vector space.

Remark 4.7 (Visualizing a local system: the total space). Let us construct a topological
space L with a map p : L → X such that p−1x = Lx for each x ∈ X. If L ≃ Cn

X , give
L :=

∐
x∈X Lx ≃

∐
x∈X Cn = Cn ×X the product topology. In general, equip L :=

∐
x∈X Lx

with the topology such that for each open subset U with trivialization Cn
U → L|U , the subset∐

x∈U Lx is open with the product topology as above. Call L the total space of the local
system L. If X is a complex manifold, then L has a natural structure of complex manifold
as well. A section of L→ X above U is a continuous map s : U → p−1U such that ps = 1U ;
call s locally constant if s is locally constant with respect to every trivialization of L on every
open subset of U . Then L is the sheaf of locally constant sections of L→ X.

Example 4.8 (Relative Betti cohomology). Let X be a compact C∞ manifold. Fix q ∈ Z≥0.
The qth Betti cohomology group (or singular cohomology group) of X with complex coefficients
is a finite-dimensional vector space Hq(X,C). The global sections functor Γ(X,−) can be
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viewed as π∗ for the map X
π→ {pt}; taking derived functors lets one view Hq(X,C) as

Rqπ∗CX . What happens in a family of such manifolds?
Let X π→ B be a proper submersion of C∞ manifolds (submersion in differential geometry

is the analogue of smooth morphism in algebraic geometry). For each b ∈ B, the fiber
Xb := π−1b is a compact C∞ manifold; then X → B may be viewed as the family of these
manifolds Xb, parametrized by B. The relative Betti cohomology is Rqπ∗CX , a sheaf of C-vector
spaces on B. Ehresmann’s fibration theorem states that every b ∈ B has neighborhood U

such that π−1U → U is isomorphic to a constant family Y ×U → U , for some Y (isomorphic
to Xb); then (Rqπ∗CX)|U is a constant sheaf on U (with fibers isomorphic to Hq(Y,C)). Thus
Rqπ∗CX is a local system on B. The fiber of Rqπ∗CX above any point b is Hq(Xb,C) by the
proper base change theorem.

�

Warning 4.9. Ehresmann’s fibration theorem is a C∞ phenomenon with no holomorphic
analogue. For example, let h be the upper half-plane {z ∈ C : Re z > 0}. There is a proper
holomorphic submersion X

π→ h whose fiber above τ ∈ h is the elliptic curve C/(Z + Zτ).
But nearby fibers are usually not isomorphic as complex manifolds: the j-invariant is varying
in this family. What one can say is that as C∞ manifolds, the fibers are all isomorphic
to R2/Z2, so each space H1(Xτ ,C) is 2-dimensional, and R1π∗CX is a 2-dimensional local
system.

If ϕ : X → Y is a continuous map and Y is a local system on Y , then ϕ−1Y is a local
system on X, and its fiber at any x ∈ X is (ϕ−1Y)x ≃ Yϕ(x).

4.4. Local systems on an interval.

Proposition 4.10. Let L be a local system on the real interval [0, 1]. Then

(a) L is constant.
(b) There is a canonical isomorphism of fibers L0

∼→ L1.

Proof of (a). Use the following two facts:

(i) Every open covering of [0, 1] can be refined to one consisting of a finite list of intervals,
each intersecting the next. (Proof: [0, 1] is compact.)

(ii) If X is a topological space covered by open sets U and V with U ∩ V connected,
then any local system on X that is constant on U and constant on V is constant.
(Proof: The trivializations on U and V differ on U ∩ V by a locally constant function
α : U ∩ V → GLn(C). Since U ∩ V is connected, α is constant. Thus, by composing
the trivialization on V with an element of GLn(C), it can be made to agree with the
trivialization on U . Gluing gives a trivialization on X.) □

Proof of (b). A trivialization L ≃ Cn
[0,1] identifies both L0 and L1 with Cn, and hence with

each other. Changing the trivialization amounts to composing it with an automorphism of
5



Cn
[0,1], which is given by an element of GLn(C) since [0, 1] is connected, so the identification
L0

∼→ L1 is unchanged. □

Remark 4.11. A similar proof shows that a local system on [0, 1]2 is constant, and its fibers
are canonically isomorphic.

Remark 4.12. The same proof shows that a local system on an irreducible quasi-compact
topological space is constant. For this reason, local systems on an irreducible algebraic variety
with the Zariski topology are not interesting — one needs a finer topology like the analytic
topology on a complex manifold, or the étale topology.

4.5. The fundamental group. Let X be a topological space. Let x, y ∈ X. A path from
x to y is a continuous function γ : [0, 1]→ X with γ(0) = x and γ(y); if x = y, then γ is a
loop based at x. If α is a path from x to y, and β is a path from y to z, then traversing α
followed by β (and renormalizing the domain to make it [0, 1] again) gives a path βα from x

to z. Paths γ0 and γ1 from x to y are homotopic if there is a family of paths (γt)t∈[0,1] from x

to y, such that γ0 and γ1 are the given ones, and such that (t, u) 7→ γt(u) is a continuous
function [0, 1]2 → X. Let π1(X, x, y) be the set of homotopy classes of paths from x to y. For
x, y, z ∈ X, concatenation induces π1(X, y, z)× π1(X, x, y)→ π1(X, x, z). The fundamental
group π1(X, x) is π1(X, x, x), the group of homotopy classes of loops based at x; the group
operation is concatenation.

4.6. Local systems and representations of π1. Let L be a local system on X. Let
x, y ∈ X. Let γ be a path from x to y. By Proposition 4.10, γ−1L is constant, and its
fibers above 0 and 1 are canonically isomorphic: Lx ≃ Ly; this isomorphism is called parallel
transport along γ. If two paths are homotopic via (γt)t∈[0,1], then every γt induces the same
isomorphism Lx → Ly, because of Remark 4.11. Thus we obtain

π1(X, x, y)× Lx −→ Ly.

Taking x = y gives an action of the group π1(X, x) on the C-vector space Lx. In other words,
the fiber Lx becomes a representation of π1(X, x); call it the monodromy representation. The
image of π1(X, x)→ GL(Lx) is called the monodromy group.

Example 4.13. Let X = C× and x = 1. Then π1(C×, 1) ≃ Z, generated by the class [γ] of
a loop γ going once counterclockwise around 0. Let L be the local system of Example 4.4.
Then Lx ≃ C. Analytically continuing a local solution

√
z near 1 along γ returns to the

solution −
√
z, so the monodromy representation

π1(C×, 1) −→ GL(Lx) ≃ GL1(C) = C×

sends [γ] to −1. The monodromy group is {±1}.
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Example 4.14. Let X = C×. In Remark 3.6 we encountered the system

f ′ =

(
0 1

0 −1/z

)
f. (4.15)

Let U ⊂ C× be a disk centered at 1. By Theorem 3.1, there exist unique solutions to

(4.15) on U taking the values

(
1

0

)
and

(
0

1

)
at 1; these are f1 :=

(
1

0

)
and f2 :=

(
Log z

1/z

)
,

where Log z is the principal branch of the complex logarithm. Analytically continuing f1

and f2 along the loop γ defined in Example 4.13, we find that they return to

(
1

0

)
and(

Log z + 2πi

1/z

)
. Thus the monodromy representation sends [γ] to

(
1 2πi

0 1

)
∈ GL2(C). The

monodromy group is the group

(
1 2πiZ
0 1

)
≃ Z.

Theorem 4.16. Let X be a connected and locally simply connected topological space. Fix
x ∈ X. Then the functor

{local systems on X} ←→ {finite-dimensional C-representations of π1(X, x)}

L 7−→ (Lx with the monodromy action)

is an equivalence of tensor categories.

Sketch of proof. Let us describe the inverse functor. Let G = π1(X, x), and let ρ : G→ GL(V )

be a representation. Turn the left G-action on V into a right action by letting g act as
v 7→ ρ(g)−1v. Let

∼
X be the universal cover of X; a point of

∼
X is a pair (y, α) where y ∈ X

and α ∈ π1(X, x, y). The covering map
∼
X

c→ X defined by (y, α) 7→ y is a Galois cover
with group G acting on

∼
X on the right by composing with α. Let L(X) be the space of

G-equivariant locally constant functions
∼
X → V . Likewise, for each open subset U ⊂ X,

let
∼
U = c−1U ⊂

∼
X, and let L(U) be the space of G-equivariant locally constant functions

∼
U → V . Then L is a local system on X with monodromy representation ρ. The associated
total space L→ X (see Remark 4.7) is (V ×

∼
X)/G −→

∼
X/G = X. □

For more details, see [Sza09, Chapter 2].

5. Vector bundles

Let X be a complex manifold. Let m = dimX. Let O = OX be the sheaf of holomorphic
functions on X.

A vector bundle on X is a locally free O-module V that is locally of finite rank; this means
that there exist an open covering (Ui) of X, nonnegative integers ni, and isomorphisms
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ϕi : Oni
Ui
→ V|Ui

of OUi
-modules. If all the ni equal one nonnegative integer n, then V is called

a rank n vector bundle. Vector bundles form a full subcategory of the category of OX-modules.
Conventions:

• v ∈ V means that v ∈ V(U) for some open subset U ⊂ X.
• Hom or ⊗ of vector bundles always denotes HomO or ⊗O , respectively.
• The dual of V is V∨ := Hom(V ,O), a vector bundle of the same rank as V .

Here are some examples of vector bundles:
vector bundle notation rank

sheaf of holomorphic functions O 1

tangent bundle T m

sheaf of holomorphic 1-forms = cotangent bundle Ω1 := T ∨ m

sheaf of holomorphic p-forms Ωp :=
∧pΩ1

(
m
p

)
sheaf of 1-jets J1 m+ 1

Let V be a vector bundle on X. For x ∈ X, we have

• the stalk V(x), which is a finite free O(x)-module, and
• the fiber Vx := V ⊗

OX

kx = V(x)/mxV(x), which is a finite-dimensional C-vector space.

Example 5.1. The fiber of J1 at a point x ∈ X is the kx-vector space of possible first-order
Taylor expansions of holomorphic functions defined in a neighborhood of x. “Taking the
constant term” defines a kx-linear map (J1)x → kx. These are the fiber maps of an O-linear
map J1 → O fitting in an exact sequence

0 −→ Ω1 −→ J1 −→ O −→ 0. (5.2)

Tensoring (5.2) with another vector bundle V yields the Atiyah exact sequence

0 −→ Ω1 ⊗ V −→ J1 ⊗ V −→ V −→ 0. (5.3)

As in Remark 4.7, we construct a total space V , a complex manifold with a holomorphic
map p : V → X such that p−1x = Vx for each x ∈ X.

Remark 5.4 (Transition functions). Let V be a rank n vector bundle, so there exist an open
covering (Ui) of X and isomorphisms ϕi : On

Ui
→ V|Ui

. For any i and j, on Uij = Ui ∩ Uj,
the map ϕ−1

j ϕi is an OUij
-linear automorphism of On

Uij
, hence an element αij ∈ GLn(O(Uij)),

called a transition function. Moreover, on each triple intersection Uijk = Ui ∩ Uj ∩ Uk, one has
the cocycle condition αjkαij = αik. Conversely, given X, an open covering (Ui), a nonnegative
integer n, and elements αij ∈ GLn(O(Uij)) satisfying the cocycle condition, one can use the
αij to glue the sheaves On

Ui
to get a vector bundle on X.
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One can describe local systems on X in the same way, except that now the entries of
each αij are required to be locally constant functions on Ui instead of arbitrary holomorphic
functions.

Example 5.5. Suppose that L is a local system on X. Then V := O⊗
C
L is a vector bundle on

X. If L is an n-dimensional local system, then V is a vector bundle of rank n. A trivialization
of L on an open cover determines a trivialization of V , and the (locally constant) transition
functions for L are also (holomorphic) transition functions for V .

View L as a subsheaf of V. For each x ∈ X, we have Lx = Vx. Thus the total spaces L
and V are the same manifold over X! But L is the sheaf of locally constant sections, while V
is the sheaf of all holomorphic sections.

6. Derivations

Let A be a C-algebra. A derivation of A is a C-linear map D : A→ A satisfying the Leibniz
rule (product rule)

D(fg) = D(f) g + f D(g) for all f, g ∈ A.

Example 6.1. The map ∂
∂x

: C[x, y]→ C[x, y] is a derivation.

Example 6.2. The map y2 ∂
∂x

: C[x, y]→ C[x, y] defined by f 7→ y2 ∂f
∂x

is another derivation.

Now let A be a sheaf of C-algebras on X. A derivation of A is a morphism D : A → A of
sheaves of C-vector spaces such that D(fg) = D(f) g + f D(g) for all sections f, g ∈ A . Let
Der(A ) be the C-vector space of all derivations of A . Let Der(A ) be the sheaf U 7→ Der(AU ).
In the special case that A is an O-algebra, Der(A ) is an O-module. Let Der = Der(O).

Example 6.3. Let X be an open subset of Cm with coordinates z1, . . . , zm. Then

Der = O
∂

∂z1
+ · · ·+ O

∂

∂zm
.

Now fix any complex manifold X. For every vector field t ∈ T and function f ∈ O, let
Dtf ∈ O be the function whose value at x is the directional derivative of f in the direction
given by the tangent vector t(x). Then Dt ∈ Der . One can show that t 7→ Dt defines an
isomorphism T ≃ Der . We identify vector fields with derivations from now on.

7. Connections

7.1. Motivation: derivatives of functions. Let X be a complex manifold. The pairing

T × O −→ O

t, f 7−→ Dtf

9



is O-linear in t, but only C-linear in f (for example,
(
ez d

dz

)
f = ez

(
d
dz
f
)

by definition, but
d
dz
(ezf) ̸= ez

(
d
dz
f
)

in general). The pairing induces a C-linear map

O −→Hom(T ,O) = Ω1,

which equals the map

d : O −→ Ω1

f 7−→ df.

It satisfies d(fg) = df g + f dg (we view df g as synonymous with g df).

7.2. Derivatives of sections: the definition of connection. Now let V be a vector
bundle on X. We would like to take derivatives of sections of V , but the following example
shows that there is no canonical way to do so.

Example 7.1. Let X = C. Let V be a free rank 1 vector bundle on X. If we choose an
identification V ≃ O , then we can use the derivation d

dz
on O to obtain a rule for differentiating

sections of V. For example, if v ∈ V(X) corresponds to 1 ∈ O(X), then d
dz
v = 0. But if we

change the identification by composing V ∼→ O with the isomorphism O → O defined by
f 7→ ezf , then the same v now corresponds to ez, whose derivative is ez, so we would instead
define d

dz
v = v ̸= 0. Thus there is no canonical way to differentiate sections of V .

Given any vector bundle V on a complex manifold X, to equip V with a rule for taking
directional derivatives of sections of V , we should specify a pairing

T × V −→ V

t, v 7−→ ∇t v

that is O-linear in t and C-linear in v, or equivalently a C-linear map

∇ : V −→Hom(T ,V) ≃ Ω1 ⊗ V .

This motivates the following definition: A connection on V is a C-linear map

∇ : V −→ Ω1 ⊗ V

satisfying the Leibniz rule
∇(fv) = df ⊗ v + f ∇v

for all functions f ∈ O and sections v ∈ V .
Given (V ,∇), each D ∈ Der(X) = T (X) = Hom(Ω1,O) induces a C-linear map

∇D : V ∇ // Ω1 ⊗ V D⊗1 // O ⊗ V = V
10



satisfying a Leibniz rule, and likewise each D ∈ Der(U) for U ⊂ X gives ∇D : V|U → V|U .
Giving such a collection of maps ∇D indexed by D satisfying suitable conditions is the same
as giving ∇.

7.3. Examples of connections.

Example 7.2. The map d is a connection on O.

Example 7.3. Let ω ∈ Ω1(X). Interpret ω as the “multiplication-by-ω” map O −→ Ω1

defined by f 7→ fω. Then

d+ ω : O −→ Ω1

f 7−→ df + fω

is a connection on O.

Proposition 7.4. Every connection on O is d+ ω for some ω ∈ Ω1(X).

Proof. Let ∇ be a connection on O. Then

∇(fg) = df g + f ∇g

d(fg) = df g + f dg

(∇− d)(fg) = f (∇− d)g.

Thus ∇− d is an O-linear map O → Ω1, so it is f 7→ fω for some ω ∈ Ω1(X). □

In general, if ∇ is one connection on V , all the others are ∇+ h for a global section h of

Hom(V ,Ω1 ⊗ V) ≃ Ω1 ⊗ (End V).

Corollary 7.5. Every connection on On is d+ ω, where d acts coordinate-wise, and ω is
some n× n matrix of global 1-forms.

Remark 7.6. One can also define C∞ connections in the context of C∞ vector bundles on
C∞ real manifolds. The definitions are essentially the same.

7.4. Operations on vector bundles with connections. One has the same constructions
for vector bundles with connections as one has for representations of a fixed group. Suppose
that (V1,∇1) and (V2,∇2) are vector bundles with connections on X. Then one has the
following.

Direct sum: V1 ⊕ V2 with ∇ defined by

∇(v1 + v2) = ∇1v1 +∇2v2.

Tensor product: V1 ⊗ V2 with ∇ defined by the Leibniz rule

∇(v1 ⊗ v2) = ∇1v1 ⊗ v2 + v1 ⊗∇2v2.
11



Identity for tensor product: O with d.

Internal hom: Hom(V1,V2) with ∇ defined implicitly by the Leibniz rule

∇2(ϕv1) = (∇ϕ)(v1) + ϕ(∇1v1), (7.7)

for all ϕ ∈Hom(V1,V2) and v1 ∈ V1
(the right side of (7.7) is an abbreviation for (∇ϕ)(1⊗ v1) + (1⊗ ϕ)(∇1v1)).

We also have
Pullback: Let ϕ : Y → X be a holomorphic map of complex manifolds. Let (V ,∇) be a

vector bundle with connection on X. Then ϕ∗V with the composition

ϕ∗V // ϕ∗(Ω1
X ⊗

OX

V) ∼ // ϕ∗Ω1
X ⊗

OY

ϕ∗V
(dϕ)∨⊗1

// Ω1
Y ⊗

OY

ϕ∗V

is a vector bundle with connection on Y , denoted ϕ∗(V ,∇).

7.5. Horizontal sections and solutions to differential equations. Let (V ,∇) be a vector
bundle with connection. A section v of V is called horizontal if ∇v = 0. Let V∇ = ker∇ ⊂ V
be the subsheaf of horizontal sections.

Example 7.8. Let U ⊂ C be an open subset. Let V = On
U . Let A ∈ Mn(O(U)). Let

∇ = d− Adz. Then the horizontal sections of V are the solutions to the system f ′ = Af of
Theorem 3.1.

Given any (V ,∇), suppose that we choose a trivialization V|U ≃ On
U on some open subset

U ; then the equation ∇v = 0 restricted to U amounts to a system of linear differential
equations (ODEs if dimX = 1, PDEs if dimX ≥ 2). The horizontal sections on U are the
solutions to the system. In general, ∇v = 0 can be viewed as a coordinate-free version of a
system of linear differential equations.

Example 7.9. Let X = C. Let V = O and ∇ = d − z2 dz. Then ∇f = df − fz2 dz, so
∇f = 0 if and only if f is a solution to f ′ = z2f . Thus V∇ is CX · ez

3/3, the sheaf of locally
constant multiples of the function ez3/3.

Example 7.10. Let X = C×. Let V = O2 and ∇ = d −

(
0 1

0 −1/z

)
dz. Then V∇ is the

sheaf of solutions to (4.15). The linearly independent solutions f1 and f2 on the disk U

in Example 4.14 must have linearly independent values in C2 at every point u ∈ U , since
otherwise uniqueness in Theorem 3.1 with initial condition at u would be violated. Thus
V∇|U = CUf1⊕CUf2. Likewise, there exists a basis of 2 solutions on any disk in X, so V∇ is
a 2-dimensional local system on X.

Proposition 7.11. Suppose that dimX = 1. Let (V ,∇) be a rank n vector bundle with
connection on X. Then V∇ is an n-dimensional local system on X.

12



Proof. Apply the existence and uniqueness theorem (Theorem 3.1) locally, as in Example 7.10.
□

Remark 7.12 (Parallel transport). Proposition 7.11 holds also for C∞ connections on a
1-dimensional real manifold. Now suppose that X is a C∞ manifold of arbitrary dimension,
V is a C∞ vector bundle, and ∇ is a C∞ connection. Given a C∞ path γ : [0, 1]→ X from x

to y, the pullback of (V ,∇) to [0, 1] corresponds to a trivial local system, so we get a parallel
transport isomorphism Vx → Vy of vector spaces. To find the image of v ∈ Vx, “follow the
horizontal section along γ”. In this way, ∇ “connects” the fiber Vx to the fiber Vy (via γ);
that is why it is called a connection.

7.6. Curvature and integrable connections. We return to the setting of holomorphic
vector bundles on a complex manifold X. If dimX ≥ 2, the conclusion of Proposition 7.11
does not hold for every connection ∇, because of the issue mentioned in Remark 3.8. But it
will hold if ∇ satisfies an integrability condition, expressed by the vanishing of its curvature;
we next explain what this means.

A connection ∇ on V induces an infinite sequence of C-linear maps

V ∇ // Ω1 ⊗ V
∇1 // Ω2 ⊗ V

∇2 // Ω3 ⊗ V
∇3 // · · · , (7.13)

in which ∇i is defined by combining d : Ωi → Ωi+1 and ∇ : V → Ω1 ⊗ V using a Leibniz-like
rule:

∇i(ω ⊗ v) := dω ⊗ v + (−1)iω ∧∇v
for all sections ω ∈ Ωi and v ∈ V .

The curvature of ∇ is
K := ∇1 ◦ ∇ : V −→ Ω2 ⊗ V .

A priori, K is only C-linear, but a calculation shows that K is O-linear, so K is a global
section of

Hom(V ,Ω2 ⊗ V) ≃ Ω2 ⊗ (End V).
One calls ∇ an integrable connection (or flat connection) if K = 0.

Example 7.14. If dimX = 1, then Ω2 = 0, so K = 0 automatically! (Note: We have been
discussing a holomorphic connection. If instead we consider a C∞ connection on a C∞ vector
bundle on a 1-dimensional complex manifold X, then X functions as a 2-dimensional real
manifold, so K could be nonzero.)

Example 7.15. If (V,∇) = (O, d), then (7.13) is the usual holomorphic de Rham complex

O
d // Ω1 d // Ω2 d // Ω3 d // · · · ,

denoted Ω•. We have d ◦ d = 0 starting at any term (that is what it means to be a complex).
In particular, K = 0.
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Example 7.16. If (V,∇) = (O, d+ ω) for some ω ∈ Ω1(X), then

K(1) = ∇1(∇1) = ∇1ω = dω,

so K = dω as a global section of Ω2 ⊗ (End V) ≃ Ω2. Thus

∇ is integrable ⇐⇒ ω is a closed 1-form.

Example 7.17. Let X be C2 with coordinates x, y. Let V = O. Let

ω = −y dx+ x dy ∈ Ω1(X).

Let ∇ = d+ ω. By Example 7.16, the curvature of ∇ is

K = dω = −dy ∧ dx+ dx ∧ dy = 2dx ∧ dy ̸= 0.

Thus ∇ is not integrable.
The sections of V∇ are the solutions to df + ωf = 0, which is equivalent to the system

of linear PDEs ∂f/∂x = yf and ∂f/∂y = −xf . As explained in Remark 3.8, there are no
nonzero solutions. Conclusion: V∇ = 0.

Remark 7.18. All the operations in Section 7.4 respect integrability [Kat70, p. 180].

7.7. The Riemann–Hilbert correspondence for holomorphic connections. Let (V1,∇1)

and (V2,∇2) be vector bundles with connection on X. Let Then ϕ : V1 → V2 be an O-linear
map. Call ϕ horizontal if it is horizontal as a section of Hom(V1,V2) with respect to the
connection defined in Section 7.4; explicitly, ϕ is horizontal if and only if ϕ is compatible with
the connections:

ϕ(∇1v1) = ∇2(ϕv1) for all v1 ∈ V1.
For fixed X, we get a category with

• objects : (V ,∇), where V is a vector bundle on X,
and ∇ is an integrable connection on V ,

• morphisms : horizontal O-linear maps.

Example 7.19. Given ω, ω′ ∈ Ω1(X), when is (O, d+ ω) ≃ (O, d+ ω′)? An isomorphism of
vector bundles ϕ : O → O is multiplication by some g ∈ O(X)×. The following are equivalent:

• ϕ is an isomorphism (O, d+ ω) ≃ (O, d+ ω′);
• ϕ is compatible with the connections;
• g(d+ ω)f = (d+ ω′)(gf) for all f ∈ O;
• g df + gωf = g df + dg f + ω′gf for all f ∈ O;
• ω = ω′ + dg

g
.

Thus (O, d+ ω) ≃ (O, d+ ω′) if and only if ω = ω′ + dg
g

for some g ∈ O(X)×.

Theorem 7.20 (Riemann–Hilbert correspondence for holomorphic connections [Del70,
I.2.17]).
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Fix a complex manifold X. Then the functors

{local systems on X} ←→ {vector bundles with integrable connection}

L 7−→ (O ⊗
C
L, d⊗ 1)

V∇ ←−[ (V ,∇)

define an equivalence of tensor categories.

Sketch of proof. In checking that the functors are defined and that their composition in either
order is isomorphic to the identity, we may work locally on X. Thus, starting from L, we
may assume that L = Cn

X ; then (O ⊗
C
L, d ⊗ 1) ≃ (On, d), which is a vector bundle with

integrable connection since d ◦ d = 0, and taking the sheaf of horizontal sections recovers Cn
X .

On the other hand, starting from (V ,∇), we may assume that X is a simply connected
open subset of Cm and V ≃ On; then the main point is the following

Claim: For every x ∈ X, the evaluate-at-x map V∇(X)→ Vx
is an isomorphism of C-vector spaces.

Given this, a C-basis of Vx gives a basis of V∆(X), and those basis solutions have C-
independent values at each y ∈ X (by the claim at y), so they form both an O-basis of V
and a CX-basis of V∇, so we have an isomorphism (V ,∇) ≃ (On, d) restricting to V∇ ≃ Cn

X ,
and everything follows.

The claim is an existence and uniqueness theorem for solutions of a system of linear PDEs
with an initial condition (existence is surjectivity of the evaluation map, and uniqueness
is injectivity). When dimX = 1, it is a restatement of Theorem 3.1. When dimX ≥
2, one still has uniqueness, since Theorem 3.1 provides a unique solution along each 1-
dimensional submanifold, and every point of X can be reached along a chain of such
submanifolds. Existence is what requires that ∇ be integrable; to construct solutions, one
uses a theorem from differential topology, the Frobenius theorem on involutive distributions
[Lee13, Chapter 19]. □

Remark 7.21. For a local system L, the connection d⊗ 1 is called the canonical connection on
O ⊗

C
L since it is the only one whose sheaf of horizontal sections is L.

Corollary 7.22. For a rank n vector bundle V with connection ∇, the following are equivalent:

• V∇ is an n-dimensional local system (V∇ is locally isomorphic to Cn
X).

• (V ,∇) ≃ (O ⊗
C
L, d⊗ 1) for some local system L.

• (V ,∇) is locally isomorphic to (On, d).
• V∇ spans V as an O-module.
• O ⊗

C
V∇ −→ V is an isomorphism.

• ∇ is integrable (its curvature is 0).
15



If these hold, one says that the system of differential equations ∇v = 0 has a full set of
solutions.

7.8. The Riemann–Hilbert correspondence for algebraic connections. There are
algebraic analogues of vector bundles, connections, curvature, and integrable connections.
The definitions are the same, except starting with a smooth variety X over a field k, and its
structure sheaf O. One can also define the notion of connection on a quasi-coherent sheaf.

In the case where k = C, there are analytification functors taking the algebraic objects to
their analytic counterparts:

• a smooth variety X gives rise to a complex manifold Xan,
• a vector bundle V on X gives rise to a vector bundle Van on Xan, and
• a connection ∇ on V gives rise to a connection ∇an on Van.

Serre’s GAGA paper [Ser56] proves that if X is proper, then the analytification functor

{vector bundles on X} −→ {vector bundles on Xan}

is an equivalence of categories. For a vector bundle V on a smooth proper C-variety X, it is
also true that the analytification functor

{vector bundles with integrable connection on X}

−→ {vector bundles with integrable connection on Xan}
(7.23)

is an equivalence of categories, though GAGA cannot be applied directly, since connections
are not O-linear; instead, one way to prove (7.23) is to relate connections to O-linear splittings
of the Atiyah exact sequence (5.3) before applying GAGA [Del70, I.2.3].

In the rest of Section 7.8, we assume that X is a smooth C-variety, but not necessarily
proper.

�

Warning 7.24. If X is non-proper, one cannot expect (7.23) to be an equivalence. For example,
suppose that X = A1. Let ω ∈ Ω1(X) = C[z] dz; suppose that ω ≠ 0. Then (O, d+ ω) and
(O, d) are not isomorphic algebraically, as can be checked by using Example 7.19: there is no
g ∈ O(X)× = C[z]× satisfying dg

g
= ω. But their analytifications are isomorphic, since we

can choose F ∈ O(X) = C[z] with dF = ω and use the nonvanishing holomorphic function
g = eF . Thus the functor (7.23) is not full, hence not an equivalence of categories.

The problem is that there are too many algebraically-non-isomorphic objects on the left side
of (7.23). To obtain an equivalence, we replace the category on the left by a full subcategory
consisting of (V ,∇) with at worst regular singularities, in a sense to be defined. To motivate
the definition, consider the following example.

Example 7.25. Let X = A1 − {0}. We claim that any (O, d+ ω) on Xan is isomorphic to
(O, d+ cdz

z
) for some c ∈ C. Write ω =

∑
n∈Z anz

n dz for some an ∈ C. Let c = a−1. Then
16



the residue of ω − cdz
z

at 0 vanishes, so there exists a single-valued holomorphic F ∈ O(Xan)

with dF = ω − cdz
z
. By Example 7.19, g := eF defines an isomorphism.

Remark 7.26. In Example 7.25, if c ≠ 0, then cdz
z

does not extend to a holomorphic 1-form
on the compactification P1, but it is meromorphic, with simple poles at the boundary points
0 and ∞. One says that cdz

z
has logarithmic poles along the boundary, since dz

z
= d(log z).

Remark 7.27 (Moderate growth). Every solution to (d + cdz
z
)f = 0 is, up to a constant,

a branch of z−c. If c /∈ Z, these solutions are not meromorphic, since they are not even
single-valued on C×. But each branch shares a property with meromorphic functions, having
moderate growth: each branch is O(z−N) for some N ∈ Z≥0 as z → 0 inside the domain
of the branch. In contrast, if ω = z−2 dz (worse than a simple pole), then the solutions
to (d+ ω)f = 0 are multiples of e−1/z, which has an essential singularity, not of moderate
growth.

Remark 7.28 (Compactification). A smooth curve X has a canonical compactification X.
For smooth C-varieties X of arbitrary dimension, Nagata’s compactification theorem [Nag62,
Nag63] (see [Con07] for a modern treatment) identifies X with an open subscheme of a
proper C-scheme X (not unique), and Hironaka’s work on resolution of singularities [Hir64]
shows that one can blow up X to assume that X is smooth and that X = X − D for a
normal crossings divisor D ⊂ X; here, normal crossings divisor means that at each point of X,
there are local analytic coordinates z1, . . . , zm such that D is given by z1 · · · zr = 0 for some
r ≤ m (that is, analytically locally, D looks like a union of r smooth hyperplanes intersecting
transversely).

Definition 7.29. Consider (V ,∇) on X. Call ∇ regular if we can write X = X − D as
above such that each point of X has an analytic open neighborhood U with local analytic
coordinates z1, . . . , zm such that

• D is given by z1z2 · · · zr = 0 for some r ≤ m, and
• we have a trivialization V|U−D ≃ On|U−D with respect to which

∇an = d+
r∑

i=1

Ai
dzi
zi

+
m∑

j=r+1

Aj dzj (7.30)

for some matrices of holomorphic functions A1, . . . , Am ∈ Mn(O(U)) (thus the 1-forms
in (7.30) have logarithmic poles along D).

Remark 7.31. Regular is equivalent to the horizontal sections being of moderate growth along
D, in a sense defined in [Del70, II.2]; see [Del70, II.4.1].

Remark 7.32. Deligne in [Del70, II.4.2] defines regular in the more general context of a
holomorphic vector bundle V instead of an algebraic one; this requires V to be equipped
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with a fixed meromorphic structure in the sense of [Del70, II.1.14], since otherwise one could
change basis of V using functions with essential singularities along D, and this would destroy
regularity.

Now, if one restricts the left side of (7.23) to vector bundles with regular integrable
connection, then (7.23) is an equivalence of categories, even when X is non-proper [Del70,
II.5.9]. Combining this deep result with Theorems 4.16 and 7.20 gives the following:

Theorem 7.33 (Riemann–Hilbert correspondence). Let X be a connected smooth variety
over C. Let x ∈ X(C). Then the following tensor categories are equivalent:

• {finite-dimensional C-representations of π1(Xan, x)}
• {local systems on Xan}
• {vector bundles on Xan with integrable connection}
• {vector bundles on X with regular integrable connection}.

(Note: An object of the last category is just a (V ,∇) satisfying the regularity condition: X,
D, and so on must exist, but are not part of the data of the object.)

Example 7.34. In Theorem 7.33, the trivial 1-dimensional representation of π1(Xan, x)

corresponds to the constant local system CX , which corresponds to (O, d) on Xan or X.

Corollary 7.35. Suppose that (V ,∇) has regular singularities. Let L := (Van)∇ be the
associated local system. Let ρ : π1(Xan, x)→ GLn(Lx) be the representation associated to L.
Then the following are equivalent:

(i) The representation ρ has finite image.
(ii) The monodromy group of L is finite.
(iii) There exists a finite unramified cover π : Y → Xan such that the pullback π∗(Van,∇) has

a basis of (holomorphic) horizontal sections in O(Y).
(iv) There exists a finite étale cover π : Y → X such that π∗(V ,∇) has a basis of horizontal

sections in O(Y ).

Proof. Finite-index subgroups of π1(Xan, x) correspond to finite unramified covers of Xan,
which are analytifications of finite étale covers of X by the Riemann existence theorem. The
four conditions are equivalent ways of saying that (V ,∇), after pullback to a finite cover, is a
direct sum of copies of the trivial object of Example 7.34. □

Theorem 7.33 gives a way to access the topological fundamental group of Xan, or at least
its representations, in purely algebraic terms! Likewise, even though applying the definition of
local system directly to X with its Zariski topology yields only constant sheaves, Theorem 7.33
says that we can secretly talk about the richer category of

(topological) local systems on Xan
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in algebraic terms by using

(algebraic) vector bundles on X with regular integrable connection

as a proxy.

7.9. The Gauss–Manin connection. Let X be a C∞ manifold. Fix q ∈ Z≥0. Then we
have a comparison isomorphism between

• the Betti cohomology group Hq(X,C), and
• the de Rham cohomology group Hq

dR(X,C), defined as the cohomology of the C∞ de
Rham complex of global forms with complex coefficients. If X is a complex manifold,
one can alternatively define Hq

dR(X,C) as the hypercohomology of the holomorphic
de Rham complex Hq(X,Ω•). (The sheaves Ωp in the holomorphic de Rham complex
are not acyclic, so one needs to use hypercohomology instead of cohomology.)

Now let π : X → B be a proper submersion of complex manifolds. Then we have

• the relative Betti cohomology Rqπ∗CX , a local system on B (see Example 4.8), and
• the relative de Rham cohomology H q

dR(X/B) := Rqπ∗Ω
•
X/B, a vector bundle on B (here

Rqπ∗ is the qth hyperderived functor of π∗).

The local system Rqπ∗CX and vector bundle H q
dR(X/B) are related as in Example 5.5, via

the relative Betti–de Rham comparison isomorphism

OB ⊗
C
Rqπ∗CX

∼−→H q
dR(X/B)

of vector bundles on B. Under this isomorphism, the canonical connection d⊗ 1 on OB ⊗
C

Rqπ∗CX corresponds to an integrable connection ∇GM on H q
dR(X/B), called the Gauss–Manin

connection. By Corollary 7.22, ∇ is an integrable connection.
Now let π : X → B be a smooth proper morphism of smooth C-varieties. Let Ω•

X/B be
the algebraic de Rham complex. Define H q

dR(X/B) := Rqπ∗Ω
•
X/B, a vector bundle on B.

Differentiation of differential forms with respect to parameters induces a rule for differentiating
de Rham classes with respect to parameters, which yields an (algebraic) connection ∇GM on
H q

dR(X/B) whose analytification is the Gauss–Manin connection of the previous paragraph
[KO68]. It too is called the Gauss–Manin connection. It is a regular integrable connection,
by work of Griffiths, Katz [Kat70, Theorem 14.1], and Deligne [Del70, II.7.9]. Especially
when B ⊂ A1

C, the differential equation corresponding to ∇GM is classically known as the
Picard–Fuchs equation. For the example of H 1

dR(X/B) for the Legendre family of elliptic
curves X → B, see [Cle03, §2.10].

7.10. Other kinds of connections. This section mentions generalizations of the notion
of connection to other settings. These will not be needed in the rest of this article, so this
section may be skipped.
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Remark 7.36 (Generalized connections). Let E p→ M be a fibered manifold, that is, a
submersion of C∞ manifolds (some authors require p to be surjective). Let TE and TM be the
tangent bundles. The vertical tangent space at each e ∈ E is the kernel of TE,e

dp−→ TM,p(e). To
give a connection is to specify a complementary horizontal tangent space at each e ∈ E. More
precisely, a (generalized) connection on E →M is a splitting of the surjection TE ↠ p∗TM of
vector bundles on E. Such a connection gives rise to notions of curvature, horizontal sections,
and parallel transport along a C∞ path in M , but parallel transport might be defined only
in a small neighborhood of the starting point, as in Remark 3.4.

Remark 7.37 (Linear connections). When discussing generalized connections, the generalized
connection arising from a connection ∇ on a C∞ vector bundle E →M in the sense of (the
C∞ analogue of) Section 7.2 would be called a linear connection.

Remark 7.38 (Principal G-connections). Here we mention an important special case of
Remark 7.36. Let G be a C∞ Lie group. Consider a fibered manifold P p→M equipped with
a right G-action on P respecting p, so G acts on the fibers of p. Call P p→M with G-action
a trivial G-bundle if it is isomorphic as fibered manifold with G-action to the projection
M ×G→M with right G-action on the second factor. Call P p→M with G-action a principal
G-bundle if there is an open cover (Mi) of M such that p−1Mi

p−→Mi is a trivial G-bundle.
A principal G-connection on a principal G-bundle P p→ M is a connection in the sense of
Remark 7.36 that is G-invariant.

Remark 7.39 (Linear connections versus principal GLn(R)-connections). To any rank n vector
bundle V on M , one can associate a GLn(R)-torsor P := Isom(On,V) whose fiber above
m ∈M consists of all the vector space isomorphisms Rn → Vm; another way to understand
this is to observe that the transition function data needed to specify V and P are the same.
To give a linear connection on V is equivalent to giving a principal GLn(R)-connection on P .

8. Characteristic p

8.1. Solutions to differential equations. Let k be a field of characteristic p > 0. Let X
be a smooth variety over k. Let (V ,∇) be a vector bundle with connection on X. Define
V∇ = ker∇ as before.

In the complex manifold setting, V∇ was a sheaf of finite-dimensional C-vector spaces. But
the direct analogue in characteristic p fails even for the simplest differential equation:

Example 8.1. Let X = A1 = Spec k[z]. The set of solutions f ∈ k[z] to d
dz
f = 0 is k[zp],

which is not a finite-dimensional k-vector space.

What structure does V∇ have in general? Let X(p) → Spec k be the base change of
X → Spec k by the morphism Spec k → Spec k induced by the pth power map k → k.
Thus X(p) is the k-variety defined by polynomials whose coefficients are the pth powers of
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the corresponding coefficients for X. Let F = FX/k : X → X(p) be the relative Frobenius
morphism, the k-morphism that raises coordinates to the pth power. Then V∇ is a sheaf of
F−1OX(p)-modules.

The sheaf F−1OX(p) plays the role of CX because it is the kernel of d : OX → Ω1
X . From now

on, we identify F−1OX(p)-modules on X with OX(p)-modules on X(p). The characteristic p
analogues of local systems are vector bundles on X(p).

8.2. p-curvature. Let D ∈ Der . Iterating D gives the higher Leibniz rule

Dn(fg) =
n∑

i=0

(
n

i

)
(Dn−if)(Dig),

for any f, g ∈ O. Taking n = p gives

Dp(fg) = (Dpf) g + f (Dpg).

since
(
p
i

)
= 0 in k for i = 1, 2, . . . , p− 1, so Dp is another derivation!

Now let (V ,∇) be a vector bundle with integrable connection. For each D ∈ Der , we can
iterate ∇D, but it is not always true that (∇D)

p = ∇Dp . The failure is measured by the map

ψ(D) := (∇D)
p −∇Dp .

A priori, ψ(D) : V → V is only k-linear, but a calculation shows that ψ(D) is actually O-linear
[Kat70, 5.0.5–5.0.9]. Varying D, we get a map

ψ : Der −→ End V

D 7−→ ψ(D)

called the p-curvature of ∇.

�

Warning 8.2. Even though ψ(D) : V → V is O-linear for each D, the map ψ : Der → EndV is
only p-linear in D, meaning that ψ(uD) = up ψ(D) for each u ∈ O and D ∈ Der . Any p-linear
map can, however, be reinterpreted as an O-linear map, by using the absolute Frobenius
morphism FX : X → X (identity on X, pulls back functions to their pth powers): specifically,
ψ induces an O-linear map F ∗

X Der → End V , which also may be called the p-curvature.

Example 8.3. Let k be a field of characteristic 2. Let X = A1 − {0} = Spec k[z, z−1].
Consider O with connection ∇ := d + w dz for some w =

∑
n∈Zwnz

n ∈ k[z, z−1]. Since
dimX = 1, ∇ is integrable. Let D = d/dz. The operator D2 = Dp kills z and is in Der = OD,
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so D2 = 0. For f ∈ O,

∇f = df + wf dz

∇Df = f ′ + wf

(∇D)
2f = (f ′ + wf)′ + w(f ′ + wf) = (w′ + w2)f (since f ′′ = 0), and

∇D2 = ∇0 = 0

ψ(D) f = ((∇D)
2 −∇D2)f = (w′ + w2)f

ψ(D) = w′ + w2, as a global section of O = End O.

The following are equivalent: ψ = 0; ψ(D) = 0 (since Der = OD); w′ + w2 = 0;∑
nwnz

n−1 =
∑
w2

nz
2n in k[z, z−1]; w2n+1 = w2

n for all n ∈ Z (and wn = 0 for all but finitely
many n); w−1 = w2

−1 and wn = 0 for all n ≠ −1; w = 0 or w = z−1. Also, the following
are equivalent: O has a basis of horizontal sections; O∇ ̸= 0; ∇f = 0 for some nonzero
f ∈ k[z, z−1]; f ′ + fw = 0 for some nonzero f ; w has the form f ′/f ; w = 0 or z−1 (since
0 and z−1 dz are the only elements of k[z, z−1] dz with simple poles and integer residues,
including at ∞). Conclusion:

O has basis of horizontal sections ⇐⇒ the p-curvature of ∇ is zero. (8.4)

In fact, (8.4) holds for any vector bundle with integrable connection in characteristic p; see
Corollary 8.6. First, here is the characteristic p analogue of Theorem 7.20:

Theorem 8.5 (Cartier [Kat70, Theorem 5.1]). Fix a smooth variety X over a field of
characteristic p. Then the following are equivalent:

• the category of quasi-coherent OX(p)-modules, and
• the category of (V ,∇), where V is a quasi-coherent OX-module and ∇ is an integrable

connection on V whose p-curvature is 0.

The functors in each direction are

L 7−→ (F ∗L,∇can)

V∇ ←−[ (V ,∇)

(for a suitable canonical connection ∇can on F ∗L).

Corollary 7.22 stated that for (V ,∇) on a complex manifold,

V∇ spans V as an O-module ⇐⇒ the curvature of ∇ is 0.

In characteristic p, however, one also needs the p-curvature to be 0:

Corollary 8.6. Let (V ,∇) be a vector bundle with connection on X. Then

V∇ spans V as an O-module ⇐⇒ the curvature and p-curvature of ∇ are 0.
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8.3. The p-curvature conjecture. Let K be a number field. Let OK be its ring of integers.
For each prime p ⊂ OK , let Fp = OK/p. Let K(z) be the rational function field. Its algebraic
closure K(z) is the field of algebraic functions. The derivation d

dz
extends uniquely to K(z)

(in general, a derivation of a field extends uniquely to any separable algebraic extension, via
implicit differentiation of the minimal equation satisfied by any element of the extension). Let
A ∈ Mn(K(z)) for some n ≥ 0. Consider the system of ODEs f ′ = Af involving an unknown
n-tuple f of functions of z. For all but finitely many primes p ⊂ OK , we may reduce modulo
p to obtain a differential equation involving functions with coefficients in Fp.

Conjecture 8.7. Let K and A be as above. Suppose that for all but finitely many primes
p, the reduced equation has a full set of solutions, meaning that there are n solutions in
Fp(z)

n that are linearly independent over Fp(z). Then f ′ = Af admits a full set of solutions
in K(z)

n
(that is, n solutions that are linearly independent over K(z)).

Example 8.8. Let K = Q. Let n = 1. Consider the differential equation f ′ = 1
3z
f . For

any p ≠ 3, there exists a ∈ Z with 3a ≡ 1 (mod p), and then za ∈ Fp(z) is a solution to the
differential equation reduced modulo p. And although there is no nonzero solution in Q(z),
there is an algebraic solution z1/3 ∈ Q(z), as the conjecture predicts.

Example 8.9. Let K = Q(
√
2). Consider f ′ =

√
2
z
f . If p is a degree 1 prime of OK , then

there exists a ∈ Z with the same image as
√
2 in Fp, and then za ∈ Fp(z) is a solution. But if

p is a degree 2 prime, then there are no nonzero solutions in Fp(z). So it is not true that
the differential equation modulo p has a nonzero solution for all but finitely many p. On the
other hand, there is also no solution in K(z): there are holomorphic solutions like z

√
2 that

make sense on a disk around 1 in C×, but they are not algebraic functions.

Conjecture 8.7 can be generalized, and we can replace the condition on existence of solutions
modulo p with the condition that the p-curvature vanishes, because of Theorem 8.5:

Conjecture 8.10. Let R be a finitely generated subring of C. Let X → SpecR be a smooth
R-scheme with geometrically connected fibers. Let (V ,∇) be a vector bundle with integrable
connection. Suppose that for every maximal ideal p ⊂ R, the p-curvature of (V/pV ,∇) is 0.
Then the base change (V ,∇)C on XC := X ×R C has a full set of algebraic solutions (that is,
a basis of solutions after pulling back (V ,∇)C to a finite étale cover Y → XC).

Remark 8.11 (Reformulation in terms of monodromy). Under the assumption that the p-
curvature vanishes for all p, [Kat70, Theorem 13.0] shows that (V ,∇)C has regular singularities;
then Corollary 7.35 shows that

(V ,∇)C has a full set of algebraic solutions

⇐⇒ the monodromy group of the corresponding local system is finite.
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Conjectures 8.7 and 8.10 originally appeared as questions attributed to Grothendieck in a
paper of Katz [Kat72, (I) and (I bis)]. By a specialization argument, Conjecture 8.10 can
be reduced to Conjecture 8.7 [Kat72, p. 2]. Either may be called the Grothendieck–Katz
p-curvature conjecture. The conjectures are still open, but there have been partial results
[Kat72], [CC85], [Bos01], [And04], [FK09], [Sha18], [PSW21]. For a non-abelian variant of
the conjecture, see [LL25].
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