ALGEBRAIC DIFFERENTIAL EQUATIONS:
AN INTRODUCTION TO
LOCAL SYSTEMS, CONNECTIONS, AND p-CURVATURE

BJORN POONEN

1. INTRODUCTION

We aim to give a down-to-earth introduction to the theory of linear differential equations
on complex manifolds, and the algebraic analogue of this theory. Along the way, we introduce
complex manifolds, local systems, vector bundles, derivations, connections, the Riemann—
Hilbert correspondence, p-curvature, and the Grothendieck—Katz p-curvature conjecture.

There are excellent sources for this material, such as [Del70], [Kat70], and [Kat72], con-
taining much more than we cover here. The present article is intended to be a warm-up for
reading such accounts. To make the article accessible to a broad audience, we provide extra
background and discuss more examples to motivate definitions. The main prerequisites are

topology, single-variable complex analysis, sheaves, &'x-modules, and schemes.

2. COMPLEX MANIFOLDS

Equip C with the usual topology, defined by the absolute value. Let n € Zx,. Give C" the
product topology. Let U C C™ be an open subset. A function f: U — C is holomorphic if it
is locally given by a power series; more explicitly, f is holomorphic if U has an open cover
(U;)ier such that for each ¢, the restriction f|y, is given by a convergent power series in n
variables centered at some point. Let &'(U) be the ring of holomorphic functions U — C.

The rings &'(V') for open V' C C", with the restriction maps, form a sheaf & on C". Then
(C™, 0) is a locally ringed space. Restricting to any open subset U C C™ defines a locally
ringed space (U, Oy).

An n-dimensional complex manifold is a locally ringed space (X, @x ) that is locally isomorphic
to one of the form (U, Oy) as above; that is, X has an open cover (X;);c; such that for
each 7, there exists an open subset U; C C" and an isomorphism of locally ringed spaces
(Xi, Ox|x,) = (U;, Oy,). (By using a different sheaf of rings, one can similarly define C'* real
manifolds, topological manifolds, and so on.)
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For x € X, define the local ring &, as the stalk of Ox at x, let m, C 0/, be its maximal
ideal, and let k, = O(;)/m, ~ C. (The local ring is more commonly denoted by &, or Ox ,,
but we follow the notation of [Del70}, 1.2.1] in order to distinguish stalks from fibers for a
vector bundle in Section [5])

3. REVIEW OF LINEAR DIFFERENTIAL EQUATIONS

Let U C C be a simply connected open subset. Let a € &(U). Then the equation f' =af,
in which f € O(U) is the function to be solved for, is an ordinary differential equation (ODE)
as opposed to a partial differential equation (PDE), because f is a function of only one variable.
It is linear, meaning that every term is a function of the input variable(s) times f or (one of)
its derivative(s); this implies that the set of holomorphic solutions on U is a C-subspace of
O(U). Tt is first-order, since the highest derivative of f that appears is the first derivative.
Let u € U and b € C. The existence and uniqueness theorem says that there exists a unique
holomorphic function f: U — C satisfying the ODE f’ = af with initial condition f(u) = b.
(In fact, separation of variables leads to the explicit solution, f(z) = bexp( [, a(w) dw).)

The following theorem is a version involving a tuple of unknown functions, or equivalently a

function valued in C™ (but there might not be an explicit formula for the solution anymore):

Theorem 3.1 (Existence and uniqueness for a system of linear ODEs). Fiz n > 0. Let
U C C be a simply connected open subset. Let u € U. Let A € M, (O(U)). Let b € C". Then
there exists a unique f € O(U)" satisfying f' = Af and f(u) = 0.

Remark 3.2 (C*° version). Theorem remains true if one replaces “holomorphic” by
“Infinitely differentiable” (C*°) and C by R everywhere.

Remark 3.3 (Not algebraic). Existence can fail in the algebraic context. For example, the
solution of the algebraic differential equation f’ = z2f with f(0) = 1 on U = C is e**/3, which
is not algebraic.

Remark 3.4 (Nonlinear DEs). There is an existence and uniqueness theorem for nonlinear
differential equations, but the solutions need not exist on the whole domain. For example,
on C, the differential equation f’ = f? with initial condition f(0) = 1 has a holomorphic
solution in a neighborhood of 0, namely 1/(1 — z), but the solution does not extend to a
holomorphic function on all of C.

@ Warning 3.5 (Simply connected requirement). One cannot remove “simply connected” in
Theorem . For example, f' = - f (think d(log f) = 4d(log 2)) has a nonzero solution on
any simply connected subset of C* (for instance, a branch of 1/z), but no nonzero holomorphic

solution on C* itself.

Remark 3.6 (Higher-order DEs). Higher-order differential equations can be rewritten as first-

order systems by introducing new unknown function variables to represent the intermediate
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derivatives. For example, any branch of logz on an open subset of C* is a solution to
(zf") = 0, which is equivalent to the second-order equation

"+ 1/2)f =o.

Introduce g = f’ to obtain the equivalent first-order system f’ = g and ¢’ = (—1/z)g, which
in the format of Theorem [3.1] is

@ ) (8 —11/z> @ | (3.7

We lose nothing by focusing only on first-order systems from now on.

Remark 3.8 (PDEs). Theorem to be discussed later, is a version of Theorem [3.1] that
applies to functions of many variables, defined on a simply connected open subset of C™, say,
but for m > 2 an additional “integrability hypothesis” is needed to ensure that solutions exist.

e As a nonlinear example, no holomorphic function F'(z,y) on a nonempty open subset of
C? satisfies ‘3—1; =y and %—5 = —x, because for any holomorphic F(z,y), the y-derivative
of %—i must equal the z-derivative of %—‘;.

° ?fs a linear example, no nonzero holomorphic function f(z,y) satisfies g—i = yf and
8_y fd
solution F' to the previous system.

—x f, since on any open ball where f is nonvanishing, a branch of log f would be a

4. LOCAL SYSTEMS
In this section, X is a topological space.

4.1. Constant sheaves. Let n € Z>o. The constant presheaf C% is the presheaf such that

(i) for every open subset U C X, one has C% ,.(U) = C", and
(ii) the restriction maps are the identity maps.

The constant sheaf C is the sheafification of C% .. Thus, for every open subset U C X, the
space C%(U) is the C-vector space of locally constant functions U — C". An automorphism
of C% as sheaf of C-vector spaces is given by a locally constant function X — GL,(C); if X

is connected, this function is constant. If ¢: ¥ — X is a continuous map, then ¢~ 'C% = C%.

4.2. The definition of local system. A local system £ on X is a sheaf of C-vector spaces
that is locally isomorphic to a constant sheaf C’; this means that there exist an open covering
(U;) of X, nonnegative integers n;, and isomorphisms ¢;: C{} — L|y, of sheaves of C-vector
spaces. If all the n; = n for all 4, then L is called an n-dimensional local system.

Remark 4.1. If X is connected, then all the n; are necessarily equal.

Remark 4.2. A more general definition of local system allows constant sheaves other than

"%, but in this article we stick to local systems of C-vector spaces.
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Local systems form a full subcategory of the category of sheaves of C-vector spaces. In
fact, the category of local systems on X is a rigid tensor category, because it has operations
B, ®, Som and an identity object Cx, all behaving as expected.

4.3. Examples of local systems.
Example 4.3. A local system isomorphic to C% for some n is called constant.

Example 4.4 (Solutions to a differential equation). Let X = C*. Consider the differential
equation .
!/
=gt (45)
mentioned in Warning 3.5 For each open subset U C X, let £(U) be the C-vector space of
holomorphic solutions f: U — C to (4.5)). These form a sheaf of C-vector spaces £ on X.
We claim that £ is a 1-dimensional local system.

Suppose that U is simply connected. Analytic continuation constructs a branch of y/z on
U, and it is an everywhere nonvanishing solution to (4.5)); call it 1/z. Any other holomorphic
function on an open subset of U is g4/z for some g, and g+/Z is a solution to if and only
if ¢ =0. Thus L|y = Cy+/=.

Since X is covered by its simply connected subsets, £ is a local system. The only
holomorphic solution to (4.5) on X is 0, so the only global section of £ is 0, so £ % Cx.

Example 4.6. Likewise, for any system of linear ODEs f’ = Af as in Theorem [3.1] the

solutions form an n-dimensional local system.

Let £ be a local system on X. The fiber of £ at a point z € X is the stalk £,, which is
a finite-dimensional C-vector space. If £ is an n-dimensional local system, then £, is an

n-dimensional C-vector space.

Remark 4.7 (Visualizing a local system: the total space). Let us construct a topological
space L with a map p: L — X such that p~'z = £, for each z € X. If L ~ C%, give
L:=T1l,ex Ls ~ [[,ex C" = C" x X the product topology. In general, equip L =[],y £Ls
with the topology such that for each open subset U with trivialization C}; — L], the subset
[,cuv £z is open with the product topology as above. Call L the total space of the local
system L. If X is a complex manifold, then L has a natural structure of complex manifold
as well. A section of L — X above U is a continuous map s: U — p~'U such that ps = 1y;
call s locally constant if s is locally constant with respect to every trivialization of £ on every

open subset of U. Then L is the sheaf of locally constant sections of L — X.

Example 4.8 (Relative Betti cohomology). Let X be a compact C'* manifold. Fix ¢ € Zx.
The gth Betti cohomology group (or singular cohomology group) of X with complex coefficients

is a finite-dimensional vector space H?(X,C). The global sections functor I'(X, —) can be
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viewed as m, for the map X > {pt}; taking derived functors lets one view H%(X,C) as
R7,Cx. What happens in a family of such manifolds?

Let X = B be a proper submersion of C* manifolds (submersion in differential geometry
is the analogue of smooth morphism in algebraic geometry). For each b € B, the fiber
X, := 7 'b is a compact C* manifold; then X — B may be viewed as the family of these
manifolds X}, parametrized by B. The relative Betti cohomology is R/7,Cx, a sheaf of C-vector
spaces on B. Ehresmann’s fibration theorem states that every b € B has neighborhood U
such that 771U — U is isomorphic to a constant family Y x U — U, for some Y (isomorphic
to Xp); then (Rm,Cx)|y is a constant sheaf on U (with fibers isomorphic to HY(Y, C)). Thus
Ri7,.Cx is a local system on B. The fiber of R%r,Cx above any point b is H?(X;, C) by the

proper base change theorem.

@ Warning 4.9. Ehresmann’s fibration theorem is a C'*° phenomenon with no holomorphic
analogue. For example, let h be the upper half-plane {z € C : Rez > 0}. There is a proper
holomorphic submersion X = b whose fiber above 7 € b is the elliptic curve C/(Z + Zr).
But nearby fibers are usually not isomorphic as complex manifolds: the j-invariant is varying
in this family. What one can say is that as C'™° manifolds, the fibers are all isomorphic
to R?/Z2, so each space H'(X,, C) is 2-dimensional, and R'm,Cx is a 2-dimensional local

system.

If : X — Y is a continuous map and ) is a local system on Y, then ¢! is a local
system on X, and its fiber at any z € X is (¢71)), ~ Vi(z)-

4.4. Local systems on an interval.

Proposition 4.10. Let £ be a local system on the real interval [0,1]. Then

(a) L is constant.

(b) There is a canonical isomorphism of fibers Lo — L.

Proof of (al). Use the following two facts:

(i) Every open covering of [0, 1] can be refined to one consisting of a finite list of intervals,
each intersecting the next. (Proof: [0, 1] is compact.)

(ii) If X is a topological space covered by open sets U and V with U NV connected,
then any local system on X that is constant on U and constant on V' is constant.
(Proof: The trivializations on U and V' differ on U N'V by a locally constant function
a: UNV — GL,(C). Since U NV is connected, « is constant. Thus, by composing
the trivialization on V' with an element of GL,(C), it can be made to agree with the

trivialization on U. Gluing gives a trivialization on X.) 0

Proof of (b). A trivialization £ ~ (Cﬁm identifies both £y and £; with C", and hence with

each other. Changing the trivialization amounts to composing it with an automorphism of
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Cio,1)» which is given by an element of GL,(C) since [0, 1] is connected, so the identification
Lo = L, is unchanged. O

Remark 4.11. A similar proof shows that a local system on [0, 1]* is constant, and its fibers

are canonically isomorphic.

Remark 4.12. The same proof shows that a local system on an irreducible quasi-compact
topological space is constant. For this reason, local systems on an irreducible algebraic variety
with the Zariski topology are not interesting — one needs a finer topology like the analytic
topology on a complex manifold, or the étale topology.

4.5. The fundamental group. Let X be a topological space. Let z,y € X. A path from
x to y is a continuous function ~: [0,1] — X with v(0) = x and v(y); if x = y, then 7 is a
loop based at x. If « is a path from z to y, and S is a path from y to z, then traversing «
followed by  (and renormalizing the domain to make it [0, 1] again) gives a path Sa from x
to z. Paths 7y and 7, from « to y are homotopic if there is a family of paths (v¢)¢cjo,1) from =
to y, such that vy and 7, are the given ones, and such that (¢,u) — ~,(u) is a continuous
function [0,1]? — X. Let m1(X, z,y) be the set of homotopy classes of paths from z to y. For
x,y,z € X, concatenation induces 7 (X, y, z) x m (X, z,y) — m (X, z, 2). The fundamental
group m (X, z) is m (X, z, x), the group of homotopy classes of loops based at x; the group

operation is concatenation.

4.6. Local systems and representations of ;. Let £ be a local system on X. Let
x,y € X. Let v be a path from z to y. By Proposition 4.10, v~ 1£ is constant, and its
fibers above 0 and 1 are canonically isomorphic: £, ~ L£,; this isomorphism is called parallel
transport along . If two paths are homotopic via (7;):cp,1], then every 7, induces the same
isomorphism £, — £, because of Remark . Thus we obtain

m(X,x,y) X L, — L.

Taking « = y gives an action of the group m (X, z) on the C-vector space £,. In other words,
the fiber £, becomes a representation of 71(X, z); call it the monodromy representation. The
image of m (X, x) — GL(L,) is called the monodromy group.

Example 4.13. Let X = C* and = 1. Then m(C*,1) ~ Z, generated by the class [y] of
a loop 7 going once counterclockwise around 0. Let £ be the local system of Example [4.4]
Then £, ~ C. Analytically continuing a local solution y/z near 1 along 7 returns to the
solution —4/z, so the monodromy representation

m(C*,1) — GL(L,) ~ GL,(C) =C*
sends [y] to —1. The monodromy group is {£1}.
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Example 4.14. Let X = C*. In Remark [3.6| we encountered the system

, (0 1
= (0 _1/Z) [ (4.15)

Let U C C* be a disk centered at 1. By Theorem [3.1], there exist unique solutions to

1 1 L
(4.15) on U taking the values <0> and (?) at 1; these are f; := <O> and fo 1= ( 10/g Z),
z

where Log z is the principal branch of the complex logarithm. Analytically continuing f;

1
and f5 along the loop v defined in Example [4.13, we find that they return to 0 and

L 2mi 1 2m
( ©8 f /+ m). Thus the monodromy representation sends [v] to (O 71m> € GLy(C). The
z
1 2miZ
monodromy group is the group 7;2 ~7

Theorem 4.16. Let X be a connected and locally simply connected topological space. Fix
x € X. Then the functor

{local systems on X} <—  {finite-dimensional C-representations of m (X, x)}

L — (L, with the monodromy action)

1s an equivalence of tensor categories.

Sketch of proof. Let us describe the inverse functor. Let G = m(X, x), and let p: G — GL(V)
be a representation. Turn the left G-action on V' into a right action by letting g act as
v p(g)~v. Let X be the universal cover of X; a point of X is a pair (y,a) where y € X
and a € m(X,z,y). The covering map X % X defined by (y, ) — y is a Galois cover
with group G acting on X on the right by composing with «a. Let £(X) be the space of
G-equivariant locally constant functions X V. Likewise, for each open subset U C X,
let U=cUcCX , and let £(U) be the space of G-equivariant locally constant functions
U — V. Then £ is a local system on X with monodromy representation p. The associated
total space L — X (see Remarkis (Vx)w()/G—>)N(/G:X. O

For more details, see [Sza09, Chapter 2.

5. VECTOR BUNDLES

Let X be a complex manifold. Let m = dim X. Let & = Ox be the sheaf of holomorphic
functions on X.
A vector bundle on X is a locally free &-module V that is locally of finite rank; this means

that there exist an open covering (U;) of X, nonnegative integers n;, and isomorphisms
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¢i: OF' — V|y, of Oy,-modules. If all the n; equal one nonnegative integer n, then V is called
a rank n vector bundle. Vector bundles form a full subcategory of the category of &'x-modules.

Conventions:

e v € V means that v € V(U) for some open subset U C X.

e JZom or ® of vector bundles always denotes J#oms or ®4, respectively.

e The dual of V is VY := Jom(V, 0), a vector bundle of the same rank as V.
Here are some examples of vector bundles:

vector bundle notation rank

sheaf of holomorphic functions % 1
tangent bundle T m
sheaf of holomorphic 1-forms = cotangent bundle | Q! :=7V |m

sheaf of holomorphic p-forms | Q7 := AP Q! (’;)

sheaf of 1-jets Jt m+1

Let V be a vector bundle on X. For z € X, we have

e the stalk V(,), which is a finite free &,)-module, and
o the fiber V, :=V ® k, = V(;)/m; V), which is a finite-dimensional C-vector space.
Ox

Example 5.1. The fiber of J! at a point € X is the k,-vector space of possible first-order
Taylor expansions of holomorphic functions defined in a neighborhood of z. “Taking the
constant term” defines a k,-linear map (J'), — k,. These are the fiber maps of an O-linear
map J! — O fitting in an exact sequence

0— Q' — J' — 0 —0. (5.2)
Tensoring ([5.2)) with another vector bundle V yields the Atiyah exact sequence
0— eV -—J'eV—V-—0 (5.3)

As in Remark [4.7], we construct a total space V, a complex manifold with a holomorphic
map p: V — X such that p~tz =V, for each x € X.

Remark 5.4 (Transition functions). Let V be a rank n vector bundle, so there exist an open
covering (U;) of X and isomorphisms ¢;: 07, — V|y,. For any ¢ and j, on Uy = U; N Uj;,
the map gbj_lgbi is an Op,;-linear automorphism of &7, hence an element a; € GL,(0(U;)),
called a transition function. Moreover, on each triple intersection U,j, = U; N U; N Uy, one has
the cocycle condition a,a;; = i, Conversely, given X, an open covering (U;), a nonnegative
integer n, and elements «;; € GL,(0(U;;)) satisfying the cocycle condition, one can use the

a;; to glue the sheaves O to get a vector bundle on X.
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One can describe local systems on X in the same way, except that now the entries of
each «;; are required to be locally constant functions on U; instead of arbitrary holomorphic

functions.

Example 5.5. Suppose that £ is a local system on X. Then V := ' ® L is a vector bundle on
X. If £ is an n-dimensional local system, then V is a vector bundle O%C rank n. A trivialization
of £ on an open cover determines a trivialization of V, and the (locally constant) transition
functions for £ are also (holomorphic) transition functions for V.

View L as a subsheaf of V. For each x € X, we have £, = V,. Thus the total spaces L
and V' are the same manifold over X! But L is the sheaf of locally constant sections, while V
is the sheaf of all holomorphic sections.

6. DERIVATIONS

Let A be a C-algebra. A derivation of A is a C-linear map D: A — A satisfying the Leibniz
rule (product rule)

D(fg) = D(f)g+ fD(g) forall f,ge A

Example 6.1. The map 88—90: Clz,y] — Clz,y] is a derivation.

20f

Example 6.2. The map y28%: Clx,y] — Clx,y] defined by f + y*5; is another derivation.

Now let o7 be a sheaf of C-algebras on X. A derivation of &/ is a morphism D: o/ — o of
sheaves of C-vector spaces such that D(fg) = D(f) g+ f D(g) for all sections f,g € o7. Let
Der(.2/) be the C-vector space of all derivations of «7. Let Zer(<7) be the sheaf U — Der(47;).
In the special case that o is an O-algebra, Zer(</) is an 0-module. Let Yer = Yer(0).

Example 6.3. Let X be an open subset of C™ with coordinates z1, ..., 2,. Then

0 0
.@67’—@8—214‘4‘@%

Now fix any complex manifold X. For every vector field ¢t € T and function f € O, let
D, f € O be the function whose value at z is the directional derivative of f in the direction
given by the tangent vector ¢(z). Then D; € Zer. One can show that t — D, defines an
isomorphism 7 ~ Zer. We identify vector fields with derivations from now on.

7. CONNECTIONS

7.1. Motivation: derivatives of functions. Let X be a complex manifold. The pairing

TxO — O

taf — th
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is O-linear in t, but only C-linear in f (for example, (ezd%) f=¢€ (dilz f) by definition, but

d%(ez f) #¢€* (d% f ) in general). The pairing induces a C-linear map
0 —s Hom(T,0) =0,
which equals the map
d: 0 — Q
fr—df.

It satisfies d(fg) = df g + f dg (we view df g as synonymous with g df).

7.2. Derivatives of sections: the definition of connection. Now let V be a vector
bundle on X. We would like to take derivatives of sections of V, but the following example
shows that there is no canonical way to do so.

Example 7.1. Let X = C. Let V be a free rank 1 vector bundle on X. If we choose an
identification V ~ &, then we can use the derivation diz
sections of V. For example, if v € V(X)) corresponds to 1 € &(X), then %v = 0. But if we

change the identification by composing V =+ ¢ with the isomorphism & — ¢ defined by

on O to obtain a rule for differentiating

f — e*f, then the same v now corresponds to e*, whose derivative is e*, so we would instead

define d%“ = v # 0. Thus there is no canonical way to differentiate sections of V.

Given any vector bundle V on a complex manifold X, to equip V with a rule for taking
directional derivatives of sections of V, we should specify a pairing

TxV—YV
t,v — Vv
that is O-linear in ¢t and C-linear in v, or equivalently a C-linear map
V:V — Hom(T,V)=Q' @ V.
This motivates the following definition: A connection on V is a C-linear map
ViV —Q'eV
satisfying the Leibniz rule
V(fv)=df @ v+ f Vv

for all functions f € & and sections v € V.
Given (V,V), each D € Zer(X) = T(X) = Hom(Q', &) induces a C-linear map

v D®1

Aoy
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satisfying a Leibniz rule, and likewise each D € Zer(U) for U C X gives Vp: V|y — V|p.
Giving such a collection of maps Vp indexed by D satisfying suitable conditions is the same
as giving V.

7.3. Examples of connections.
Example 7.2. The map d is a connection on 0.

Example 7.3. Let w € Q(X). Interpret w as the “multiplication-by-w” map ¢ — Q!
defined by f + fw. Then

d+w: 0 — Q
fr—df + fw
is a connection on O.
Proposition 7.4. Every connection on O is d + w for some w € Q'(X).
Proof. Let V be a connection on &'. Then
V(fg)=dfg+fVy
d(fg) =df g+ [ dg
(V—=d)(fg) = F(V=dyg.
Thus V — d is an O-linear map € — Q' so it is f — fw for some w € Q'(X). O
In general, if V is one connection on V), all the others are V + h for a global section h of
Hom(V, Q' @V) ~ Q'@ (&hdV).

Corollary 7.5. Every connection on 0" is d + w, where d acts coordinate-wise, and w s

some n X n matriz of global 1-forms.

Remark 7.6. One can also define C*° connections in the context of C°° vector bundles on
C® real manifolds. The definitions are essentially the same.

7.4. Operations on vector bundles with connections. One has the same constructions
for vector bundles with connections as one has for representations of a fixed group. Suppose
that (V1, V1) and (Vs, Vy) are vector bundles with connections on X. Then one has the
following.

Direct sum: V; &V, with V defined by

V(Ul + ’Ug) = Vlvl + VQUQ.
Tensor product: V; ® V, with V defined by the Leibniz rule

V(’Ul X Ug) = Vlvl (%9 Vg + V1 X VQUQ.
11



Identity for tensor product: & with d.
Internal hom: Zom(V;,Vs) with V defined implicitly by the Leibniz rule

Va(¢v1) = (Vo) (v1) + ¢(Vivr), (7.7)

for all ¢ € Hom(Vy,Vs) and vy € V,
(the right side of is an abbreviation for (V¢)(1 ® v1) + (1 ® ¢)(Viv1)).

We also have

Pullback: Let ¢: Y — X be a holomorphic map of complex manifolds. Let (V,V) be a
vector bundle with connection on X. Then ¢*V with the composition

(dp)¥®1

¢V — ¢*(Q ® V) —= ¢"Qk @ ¢*V Oy ® ¢V
Ox oy oy
is a vector bundle with connection on Y, denoted ¢*(V, V).

7.5. Horizontal sections and solutions to differential equations. Let (V, V) be a vector
bundle with connection. A section v of V is called horizontal if Vv = 0. Let VY =kerV C V
be the subsheaf of horizontal sections.

Example 7.8. Let U C C be an open subset. Let V = Op. Let A € M, (0(U)). Let
V =d — Adz. Then the horizontal sections of V are the solutions to the system f’' = Af of
Theorem [B.1]

Given any (V, V), suppose that we choose a trivialization V| ~ &7} on some open subset
U; then the equation Vv = 0 restricted to U amounts to a system of linear differential
equations (ODEs if dim X = 1, PDEs if dim X > 2). The horizontal sections on U are the
solutions to the system. In general, Vv = 0 can be viewed as a coordinate-free version of a
system of linear differential equations.

Example 7.9. Let X = C. Let V = ¢ and V = d — 2?dz. Then Vf = df — fz?dz, so
Vf =0 if and only if f is a solution to f’ = z2f. Thus VV is Cy - e*/3, the sheaf of locally

constant multiples of the function e**/3.

0 1
Example 7.10. Let X = C*. Let V = 0? and V = d — 0 —1/ dz. Then VV is the
—1/z
sheaf of solutions to (4.15). The linearly independent solutions f; and f; on the disk U
in Example must have linearly independent values in C? at every point u € U, since
otherwise uniqueness in Theorem with initial condition at v would be violated. Thus
VWV u = Cyfi ® Cy fo. Likewise, there exists a basis of 2 solutions on any disk in X, so VV is

a 2-dimensional local system on X.

Proposition 7.11. Suppose that dim X = 1. Let (V,V) be a rank n vector bundle with

connection on X. Then VY is an n-dimensional local system on X.
12



Proof. Apply the existence and uniqueness theorem (Theorem locally, as in Example|7.10
O

Remark 7.12 (Parallel transport). Proposition holds also for C'*° connections on a
1-dimensional real manifold. Now suppose that X is a C'* manifold of arbitrary dimension,
V is a C* vector bundle, and V is a C*° connection. Given a C*° path v: [0,1] — X from z
to y, the pullback of (V, V) to [0, 1] corresponds to a trivial local system, so we get a parallel
transport isomorphism V, — V), of vector spaces. To find the image of v € V,, “follow the
horizontal section along 7”. In this way, V “connects” the fiber V, to the fiber V, (via 7);
that is why it is called a connection.

7.6. Curvature and integrable connections. We return to the setting of holomorphic
vector bundles on a complex manifold X. If dim X > 2, the conclusion of Proposition [7.11
does not hold for every connection V, because of the issue mentioned in Remark 3.8 But it
will hold if V satisfies an integrability condition, expressed by the vanishing of its curvature;
we next explain what this means.

A connection V on V induces an infinite sequence of C-linear maps

VY e lgV— e RV e Py (7.13)

in which V; is defined by combining d: Q' — Q! and V: V — Q! ® V using a Leibniz-like
rule:

Vilw®v) ==dw®@v+ (=1)'wA Vv
for all sections w € Q¢ and v € V.

The curvature of V is
K:=V,0V: V—Q*xV.

A priori, K is only C-linear, but a calculation shows that K is O-linear, so K is a global
section of

Hom(V, V) ~ Q*® (énd V).

One calls V an integrable connection (or flat connection) if K" = 0.

Example 7.14. If dim X = 1, then Q? = 0, so K = 0 automatically! (Note: We have been
discussing a holomorphic connection. If instead we consider a C'*° connection on a C* vector
bundle on a 1-dimensional complex manifold X, then X functions as a 2-dimensional real
manifold, so K could be nonzero.)

Example 7.15. If (V,V) = (0, d), then (7.13) is the usual holomorphic de Rham complex

d d d d

o ot 0? O3

denoted Q°. We have d o d = 0 starting at any term (that is what it means to be a complex).

In particular, K = 0.
13



Example 7.16. If (V,V) = (0, d 4+ w) for some w € Q'(X), then
K(].) = Vl(V1) == Vlw == dw,

so K = dw as a global section of Q0? @ (&hd V) ~ Q2. Thus
V is integrable <= w is a closed 1-form.

Example 7.17. Let X be C? with coordinates z,y. Let V = &. Let
w = —ydrv+axdy € QY(X).
Let V = d + w. By Example the curvature of V is
K =dw = —dyNdx+deNdy = 2dx Ndy # 0.

Thus V is not integrable.

The sections of VV are the solutions to df + wf = 0, which is equivalent to the system
of linear PDEs 0f/0z = yf and 0f /0y = —xf. As explained in Remark [3.8] there are no
nonzero solutions. Conclusion: VV = 0.

Remark 7.18. All the operations in Section respect integrability [Kat70, p. 180].

7.7. The Riemann—Hilbert correspondence for holomorphic connections. Let (V;, V)
and (Vs, V3) be vector bundles with connection on X. Let Then ¢: V; — V, be an O-linear

map. Call ¢ horizontal if it is horizontal as a section of JZom(Vy,V,) with respect to the

connection defined in Section [7.4} explicitly, ¢ is horizontal if and only if ¢ is compatible with

the connections:

d(Vyvy) = Va(ovy) for all v; € V.
For fixed X, we get a category with
e objects: (V,V), where V is a vector bundle on X,

and V is an integrable connection on V,
e morphisms: horizontal &-linear maps.

Example 7.19. Given w,w’ € QY(X), when is (€,d + w) ~ (€,d + w')? An isomorphism of
vector bundles ¢: & — ¢ is multiplication by some g € &(X)*. The following are equivalent:
e ¢ is an isomorphism (0,d +w) ~ (O, d + '),
e ¢ is compatible with the connections;
o g(d+w)f =(d+w)(gf) for all f e 0,
o gdf + gwf =gdf +dg f+J'gf forall f € 0,
o w=uw+ %.

Thus (0,d +w) ~ (0,d + ') if and only if w = w' + %" for some g € O(X)*.

Theorem 7.20 (Riemann—Hilbert correspondence for holomorphic connections [Del70,

1.2.17)).
14



Fiz a complex manifold X. Then the functors

{local systems on X} <«—  {vector bundles with integrable connection}
L — (0 %) L,d®1)
VWooe— (WV,V)
define an equivalence of tensor categories.

Sketch of proof. In checking that the functors are defined and that their composition in either
order is isomorphic to the identity, we may work locally on X. Thus, starting from L, we
may assume that £ = C%; then (€ %) L,d® 1) ~ (0" d), which is a vector bundle with
integrable connection since d o d = 0, and taking the sheaf of horizontal sections recovers C'.

On the other hand, starting from (V, V), we may assume that X is a simply connected
open subset of C™ and V ~ &™; then the main point is the following

Claim: For every x € X, the evaluate-at-z map VV(X) — V,
is an isomorphism of C-vector spaces.

Given this, a C-basis of V, gives a basis of V2(X), and those basis solutions have C-
independent values at each y € X (by the claim at y), so they form both an &-basis of V
and a Cx-basis of V'V, so we have an isomorphism (V, V) ~ (0™, d) restricting to V¥V ~ C%,
and everything follows.

The claim is an existence and uniqueness theorem for solutions of a system of linear PDEs
with an initial condition (existence is surjectivity of the evaluation map, and uniqueness
is injectivity). When dim X = 1, it is a restatement of Theorem . When dim X >
2, one still has uniqueness, since Theorem provides a unique solution along each 1-
dimensional submanifold, and every point of X can be reached along a chain of such
submanifolds. Existence is what requires that V be integrable; to construct solutions, one
uses a theorem from differential topology, the Frobenius theorem on involutive distributions
[Leeld, Chapter 19]. O

Remark 7.21. For a local system L, the connection d ® 1 is called the canonical connection on
O ® L since it is the only one whose sheaf of horizontal sections is L.
C

Corollary 7.22. For a rank n vector bundle V with connection V, the following are equivalent:

e VV is an n-dimensional local system (VY is locally isomorphic to C%).
e (VV)~ (0 % L,d® 1) for some local system L.

o (V,V) is locally isomorphic to (0", d).

o VY spans V as an O-module.

e OQVY —V is an isomorphism.
C

o V is integrable (its curvature is 0).
15



If these hold, one says that the system of differential equations Vv = 0 has a full set of
solutions.

7.8. The Riemann—Hilbert correspondence for algebraic connections. There are
algebraic analogues of vector bundles, connections, curvature, and integrable connections.
The definitions are the same, except starting with a smooth variety X over a field k, and its
structure sheaf ¢. One can also define the notion of connection on a quasi-coherent sheaf.

In the case where k = C, there are analytification functors taking the algebraic objects to
their analytic counterparts:

e a smooth variety X gives rise to a complex manifold X",
e a vector bundle V on X gives rise to a vector bundle V*" on X*" and

e a connection V on V gives rise to a connection V*" on V*".

Serre’s GAGA paper [Serb6| proves that if X is proper, then the analytification functor
{vector bundles on X} — {vector bundles on X*"}

is an equivalence of categories. For a vector bundle V on a smooth proper C-variety X, it is
also true that the analytification functor

{vector bundles with integrable connection on X}

7.23
— {vector bundles with integrable connection on X*"} (7.23)

is an equivalence of categories, though GAGA cannot be applied directly, since connections
are not O-linear; instead, one way to prove is to relate connections to @-linear splittings
of the Atiyah exact sequence before applying GAGA [Del70, 1.2.3].

In the rest of Section [7.8, we assume that X is a smooth C-variety, but not necessarily
proper.

@ Warning 7.24. If X is non-proper, one cannot expect to be an equivalence. For example,
suppose that X = Al. Let w € Q'(X) = Cl[z] dz; suppose that w # 0. Then (&, d + w) and
(O, d) are not isomorphic algebraically, as can be checked by using Example : there is no
g € 0(X)* = Clz]* satisfying d;g = w. But their analytifications are isomorphic, since we
can choose F' € 0(X) = C[z] with dF' = w and use the nonvanishing holomorphic function
g = ef’. Thus the functor is not full, hence not an equivalence of categories.

The problem is that there are too many algebraically-non-isomorphic objects on the left side
of . To obtain an equivalence, we replace the category on the left by a full subcategory
consisting of (V, V) with at worst regular singularities, in a sense to be defined. To motivate
the definition, consider the following example.

Example 7.25. Let X = A' — {0}. We claim that any (£,d + w) on X" is isomorphic to

(0,d + c%) for some ¢ € C. Write w =", a,2"dz for some a, € C. Let ¢ = a_;. Then
16



the residue of w — c% at 0 vanishes, so there exists a single-valued holomorphic F' € (X?")
with dF = w — c%. By Example[7.19, ¢ := e’ defines an isomorphism.

Remark 7.26. In Example , if ¢ # 0, then c% does not extend to a holomorphic 1-form
on the compactification P!, but it is meromorphic, with simple poles at the boundary points
0 and oco. One says that c% has logarithmic poles along the boundary, since % = d(log z).

Remark 7.27 (Moderate growth). Every solution to (d + ¢£)f = 0 is, up to a constant,

a branch of z7¢.

If ¢ ¢ Z, these solutions are not meromorphic, since they are not even
single-valued on C*. But each branch shares a property with meromorphic functions, having
moderate growth: each branch is O(z7") for some N € Zs( as z — 0 inside the domain
of the branch. In contrast, if w = 272dz (worse than a simple pole), then the solutions
to (d +w)f = 0 are multiples of e~'/#, which has an essential singularity, not of moderate

growth.

Remark 7.28 (Compactification). A smooth curve X has a canonical compactification X.
For smooth C-varieties X of arbitrary dimension, Nagata’s compactification theorem |[Nag62,
Nagb63| (see [Con07| for a modern treatment) identifies X with an open subscheme of a
proper C-scheme X (not unique), and Hironaka’s work on resolution of singularities [Hir64]
shows that one can blow up X to assume that X is smooth and that X = X — D for a
normal crossings divisor D C X; here, normal crossings divisor means that at each point of X,
there are local analytic coordinates z1, ..., 2z, such that D is given by 27 --- 2, = 0 for some
r < m (that is, analytically locally, D looks like a union of 7 smooth hyperplanes intersecting
transversely).

Definition 7.29. Consider (V,V) on X. Call V regular if we can write X = X — D as
above such that each point of X has an analytic open neighborhood U with local analytic
coordinates 21, ..., 2z, such that

e D is given by 2125 --- 2. = 0 for some r < m, and

e we have a trivialization V|y_p ~ 0" |y_p with respect to which
dz;
VvV =d Ai— A;dz; 7.30
At S 0
for some matrices of holomorphic functions Ay, ..., A, € M, (€(U)) (thus the 1-forms
in (7.30) have logarithmic poles along D).

Remark 7.31. Regular is equivalent to the horizontal sections being of moderate growth along

D, in a sense defined in [Del70, I1.2]; see [Del70}, 11.4.1].

Remark 7.32. Deligne in |[Del70), 11.4.2] defines regular in the more general context of a

holomorphic vector bundle V instead of an algebraic one; this requires V to be equipped
17



with a fixed meromorphic structure in the sense of [Del70, I1.1.14], since otherwise one could
change basis of V using functions with essential singularities along D, and this would destroy
regularity.

Now, if one restricts the left side of (7.23) to vector bundles with regular integrable
connection, then ([7.23)) is an equivalence of categories, even when X is non-proper [Del70),
I1.5.9]. Combining this deep result with Theorems and gives the following:

Theorem 7.33 (Riemann-Hilbert correspondence). Let X be a connected smooth variety
over C. Let x € X(C). Then the following tensor categories are equivalent:

e {finite-dimensional C-representations of m (X**, )}

e {local systems on X"}

e {vector bundles on X*" with integrable connection}

e {vector bundles on X with regular integrable connection}.

(Note: An object of the last category is just a (V, V) satisfying the regularity condition: X,
D, and so on must exist, but are not part of the data of the object.)

Example 7.34. In Theorem [7.33] the trivial 1-dimensional representation of i (X?", x)
corresponds to the constant local system Cy, which corresponds to (&, d) on X*" or X.

Corollary 7.35. Suppose that (V,V) has regular singularities. Let L := (V*)V be the
associated local system. Let p: m(X*,x) — GL,(L,) be the representation associated to L.
Then the following are equivalent:

(i) The representation p has finite image.
(ii) The monodromy group of L is finite.
(iii) There exists a finite unramified cover w: Y — X such that the pullback 7 (V*,V) has
a basis of (holomorphic) horizontal sections in O()).
(iv) There exists a finite étale cover m:Y — X such that 7*(V, V) has a basis of horizontal
sections in O(Y).

Proof. Finite-index subgroups of 71 (X?®", x) correspond to finite unramified covers of X?",
which are analytifications of finite étale covers of X by the Riemann existence theorem. The
four conditions are equivalent ways of saying that (V, V), after pullback to a finite cover, is a
direct sum of copies of the trivial object of Example [7.34] 0

Theorem [7.33] gives a way to access the topological fundamental group of X", or at least
its representations, in purely algebraic terms! Likewise, even though applying the definition of
local system directly to X with its Zariski topology yields only constant sheaves, Theorem [7.33]
says that we can secretly talk about the richer category of

(topological) local systems on X"
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in algebraic terms by using
(algebraic) vector bundles on X with regular integrable connection

as a proxy.

7.9. The Gauss—Manin connection. Let X be a (' manifold. Fix ¢ € Z>o. Then we

have a comparison isomorphism between

e the Betti cohomology group HY(X, C), and

e the de Rham cohomology group Hi; (X, C), defined as the cohomology of the C* de
Rham complex of global forms with complex coefficients. If X is a complex manifold,
one can alternatively define Hi; (X, C) as the hypercohomology of the holomorphic
de Rham complex HY(X, Q*). (The sheaves Q” in the holomorphic de Rham complex
are not acyclic, so one needs to use hypercohomology instead of cohomology.)

Now let m: X — B be a proper submersion of complex manifolds. Then we have

e the relative Betti cohomology R/m,Cx, a local system on B (see Example , and
e the relative de Rham cohomology J#; (X/B) := RIm.Q% . a vector bundle on B (here
RY7, is the gth hyperderived functor of 7).

The local system R%r,Cx and vector bundle J#% (X/B) are related as in Example [5.5] via
the relative Betti-de Rham comparison isomorphism

ﬁB %) Rq’/T*(CX ;> %%(X/B)

of vector bundles on B. Under this isomorphism, the canonical connection d ® 1 on O ®
C

R7,Cx corresponds to an integrable connection Vg on S (X/B), called the Gauss—-Manin
connection. By Corollary [7.22] V is an integrable connection.

Now let m: X — B be a smooth proper morphism of smooth C-varieties. Let QB(/B be
the algebraic de Rham complex. Define S (X/B) := Rim.Q% 5, a vector bundle on B.
Differentiation of differential forms with respect to parameters induces a rule for differentiating
de Rham classes with respect to parameters, which yields an (algebraic) connection Vgy on

’% (X/B) whose analytification is the Gauss-Manin connection of the previous paragraph
[IKOG8|. It too is called the Gauss—Manin connection. It is a regular integrable connection,
by work of Griffiths, Katz [Kat70, Theorem 14.1], and Deligne [Del70, I11.7.9]. Especially
when B C Al, the differential equation corresponding to Vg is classically known as the
Picard—Fuchs equation. For the example of s} (X/B) for the Legendre family of elliptic
curves X — B, see [Cle03] §2.10].

7.10. Other kinds of connections. This section mentions generalizations of the notion
of connection to other settings. These will not be needed in the rest of this article, so this

section may be skipped.
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Remark 7.36 (Generalized connections). Let E % M be a fibered manifold, that is, a
submersion of C'* manifolds (some authors require p to be surjective). Let T and Ty be the
tangent bundles. The vertical tangent space at each e € E is the kernel of Tp . & Thrpeey- To
give a connection is to specify a complementary horizontal tangent space at each e € E. More
precisely, a (generalized) connection on E — M is a splitting of the surjection Ty — p*T)ys of
vector bundles on F. Such a connection gives rise to notions of curvature, horizontal sections,
and parallel transport along a C* path in M, but parallel transport might be defined only
in a small neighborhood of the starting point, as in Remark

Remark 7.37 (Linear connections). When discussing generalized connections, the generalized
connection arising from a connection V on a C'* vector bundle £ — M in the sense of (the
C* analogue of) Section would be called a linear connection.

Remark 7.38 (Principal G-connections). Here we mention an important special case of
Remark Let G be a C*™ Lie group. Consider a fibered manifold P % M equipped with
a right G-action on P respecting p, so G acts on the fibers of p. Call P % M with G-action
a trivial G-bundle if it is isomorphic as fibered manifold with G-action to the projection
M x G — M with right G-action on the second factor. Call P % M with G-action a principal
G-bundle if there is an open cover (M;) of M such that p~'M; -2+ M is a trivial G-bundle.
A principal G-connection on a principal G-bundle P % M is a connection in the sense of
Remark [7.36] that is G-invariant.

Remark 7.39 (Linear connections versus principal GL,,(R)-connections). To any rank n vector
bundle ¥V on M, one can associate a GL,(R)-torsor P := Isom(&™,V) whose fiber above
m € M consists of all the vector space isomorphisms R” — V,,,; another way to understand
this is to observe that the transition function data needed to specify V and P are the same.
To give a linear connection on V is equivalent to giving a principal GL,, (R)-connection on P.

8. CHARACTERISTIC p

8.1. Solutions to differential equations. Let k be a field of characteristic p > 0. Let X
be a smooth variety over k. Let (V, V) be a vector bundle with connection on X. Define
VYV = ker V as before.

In the complex manifold setting, VV was a sheaf of finite-dimensional C-vector spaces. But

the direct analogue in characteristic p fails even for the simplest differential equation:

Example 8.1. Let X = A' = Speck[z]. The set of solutions f € k[z] to £ f = 0 is k[7],
which is not a finite-dimensional k-vector space.

What structure does VV have in general? Let X — Speck be the base change of
X — Speck by the morphism Speck — Speck induced by the pth power map k& — k.

Thus X® is the k-variety defined by polynomials whose coefficients are the pth powers of
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the corresponding coefficients for X. Let F' = Fy;,: X — X®) be the relative Frobenius
morphism, the k-morphism that raises coordinates to the pth power. Then VV is a sheaf of
F~10y»-modules.

The sheaf F~'0 ) plays the role of Cx because it is the kernel of d: Ox — Q4. From now
on, we identify F~10y)-modules on X with Oy )-modules on X (). The characteristic D

analogues of local systems are vector bundles on X ®).

8.2. p-curvature. Let D € Yer. Iterating D gives the higher Leibniz rule

n

D"(fg)=> (?) (D" F)(D'g),

=0

for any f, g € €. Taking n = p gives

DP(fg) = (D?f)g+ f(DPg).

since (f) =0in kfori=1,2,...,p—1, so DP is another derivation!
Now let (V, V) be a vector bundle with integrable connection. For each D € Zer, we can
iterate Vp, but it is not always true that (Vp)? = Vps. The failure is measured by the map

(D) = (Vp)’ = Vps.

A priori, ¥(D): V — V is only k-linear, but a calculation shows that (D) is actually &-linear
[Kat70, 5.0.5-5.0.9]. Varying D, we get a map

Vv Yer — EndV
D +—— (D)

called the p-curvature of V.

@ Warning 8.2. Even though ¥(D): V — V is O-linear for each D, the map ¢: Zer — &ndV is
only p-linear in D, meaning that ¢)(uD) = u? ¢)(D) for each u € & and D € Zer. Any p-linear
map can, however, be reinterpreted as an €-linear map, by using the absolute Frobenius
morphism Fy: X — X (identity on X, pulls back functions to their pth powers): specifically,
¥ induces an O-linear map Fy Zer — énd V), which also may be called the p-curvature.

Example 8.3. Let k be a field of characteristic 2. Let X = A' — {0} = Speckl[z, 27 1].
Consider ¢ with connection V := d + wdz for some w = Y, ,w,2" € k[z,z7!]. Since

dim X = 1, V is integrable. Let D = d/dz. The operator D? = DP kills z and is in Zer = 0D,
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so D? = 0. For f € O,
Vf—df +wfd:

Vpf=[f+uwf
(Vo) f = (f' +wf) +w(f +wf) = (W +w?)f  (since f = 0), and
VDQ = VO — 0

W(D) f=((Vp)? = Vp)f = (' +w?)f
Y(D) =w' +w* as a global section of & = &nd 0.
The following are equivalent: ¢ = 0; (D) = 0 (since Zer = OD); w' + w? = 0;
S nw, 2" =T wkz? in kfz, 27, wony = w? for all n € Z (and w,, = 0 for all but finitely
many n); w_; = w?, and w, = 0 for all n # —1; w =0 or w = 2~'. Also, the following
are equivalent: ¢ has a basis of horizontal sections; &V # 0; Vf = 0 for some nonzero
f €klz,2z7Y; f'+ fw =0 for some nonzero f; w has the form f'/f; w =0 or 27! (since
0 and 27'dz are the only elements of k[z, 27!] dz with simple poles and integer residues,

including at co). Conclusion:

O has basis of horizontal sections <= the p-curvature of V is zero. (8.4)

In fact, (8.4) holds for any vector bundle with integrable connection in characteristic p; see
Corollary 8.6 First, here is the characteristic p analogue of Theorem [7.20}

Theorem 8.5 (Cartier [Kat70, Theorem 5.1]). Fiz a smooth variety X over a field of
characteristic p. Then the following are equivalent:

e the category of quasi-coherent Oy -modules, and
e the category of (V, V), where V is a quasi-coherent Ox-module and V is an integrable

connection on YV whose p-curvature is 0.

The functors in each direction are
L+— (F*L,Van)
VY i (V,V)

(for a suitable canonical connection Ve, on F*L).

Corollary stated that for (V, V) on a complex manifold,
VV spans V as an 0-module <= the curvature of V is 0.

In characteristic p, however, one also needs the p-curvature to be 0:

Corollary 8.6. Let (V,V) be a vector bundle with connection on X. Then

VV spans V as an O-module <= the curvature and p-curvature of V are 0.
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8.3. The p-curvature conjecture. Let K be a number field. Let O be its ring of integers.
For each prime p C Ok, let F, = Ok /p. Let K(z) be the rational function field. Its algebraic
closure K(z) is the field of algebraic functions. The derivation d% extends uniquely to K (z)
(in general, a derivation of a field extends uniquely to any separable algebraic extension, via
implicit differentiation of the minimal equation satisfied by any element of the extension). Let
A € M, (K(z)) for some n > 0. Consider the system of ODEs f' = Af involving an unknown
n-tuple f of functions of z. For all but finitely many primes p C Ok, we may reduce modulo

p to obtain a differential equation involving functions with coefficients in F,.

Conjecture 8.7. Let K and A be as above. Suppose that for all but finitely many primes
p, the reduced equation has a full set of solutions, meaning that there are n solutions in
[F, ()" that are linearly independent over Fy(z). Then f' = Af admits a full set of solutions
in mn (that is, n solutions that are linearly independent over K(z)).

Example 8.8. Let K = Q. Let n = 1. Consider the differential equation f’ = é f. For
any p # 3, there exists a € Z with 3a =1 (mod p), and then 2* € F,(2) is a solution to the
differential equation reduced modulo p. And although there is no nonzero solution in Q(z),

there is an algebraic solution z'/? € (z), as the conjecture predicts.

Example 8.9. Let K = Q(+/2). Consider f' = \/75]” If p is a degree 1 prime of Ok, then
there exists a € Z with the same image as v/2 in F,, and then 2% € F,(z) is a solution. But if
p is a degree 2 prime, then there are no nonzero solutions in F,(z). So it is not true that
the differential equation modulo p has a nonzero solution for all but finitely many p. On the
other hand, there is also no solution in K(z): there are holomorphic solutions like 2V2 that
make sense on a disk around 1 in C*, but they are not algebraic functions.

Conjecture 8.7 can be generalized, and we can replace the condition on existence of solutions
modulo p with the condition that the p-curvature vanishes, because of Theorem [8.5

Conjecture 8.10. Let R be a finitely generated subring of C. Let X — Spec R be a smooth
R-scheme with geometrically connected fibers. Let (V, V) be a vector bundle with integrable
connection. Suppose that for every maximal ideal p C R, the p-curvature of (V/pV, V) is 0.
Then the base change (V, V)¢ on X¢ := X x g C has a full set of algebraic solutions (that is,
a basis of solutions after pulling back (V, V)¢ to a finite étale cover Y — X¢).

Remark 8.11 (Reformulation in terms of monodromy). Under the assumption that the p-

curvature vanishes for all p, [Kat70, Theorem 13.0] shows that (V, V)¢ has regular singularities;
then Corollary shows that

(V, V)¢ has a full set of algebraic solutions

<= the monodromy group of the corresponding local system is finite.
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Conjectures [8.7 and [8.10] originally appeared as questions attributed to Grothendieck in a
paper of Katz [Kat72, (I) and (I bis)]. By a specialization argument, Conjecture can
be reduced to Conjecture [Kat72 p. 2]. Either may be called the Grothendieck—Katz
p-curvature conjecture. The conjectures are still open, but there have been partial results
[Kat72], [CC85|, [Bos01], [And04], [FK09], [Shal8|, [PSW2I]. For a non-abelian variant of
the conjecture, see |[LL25].
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