
THE METHOD OF CHABAUTY AND COLEMAN

WILLIAM MCCALLUM AND BJORN POONEN

Abstract. This is an introduction to the method of Chabauty and Coleman, a p-adic
method that attempts to determine the set of rational points on a given curve of genus
g ≥ 2. We present the method, give a few examples of its implementation in practice, and
discuss its effectiveness. An appendix treats the case in which the curve has bad reduction.

1. Rational points on curves of genus ≥ 2

We will work over the field Q of rational numbers, although everything we say admits an
appropriate generalization to a number field. Let Q be an algebraic closure of Q. For each
finite prime p, let Qp be the field of p-adic numbers (see [Kob84] for the definition). Curves
will be assumed to be smooth, projective, and geometrically integral.

Let X be a curve over Q of genus g ≥ 2. We suppose that X is presented as the zero
set in some Pn of an explicit finite set of homogeneous polynomials. We may give instead
an equation for a singular (but still geometrically integral) curve in A2; in this case, it is
understood that X is the smooth projective curve birational to this singular curve. Rational
points on X can be specified by giving their coordinates. (A little more data may be required
if a singular model for X is used.) Let X(Q) be the set of rational points on X.

In 1922 L. Mordell [Mor22] conjectured that X(Q) is finite, and in 1983 this was proved
by G. Faltings [Fal83]. Thus we have the following well-defined problem:

Given X of genus ≥ 2 presented as above, compute X(Q).

An argument of A. N. Parshin (see [Szp85]) shows that Faltings’ proof can be adapted to
give an upper bound on the cardinality of X(Q). But Faltings’ proof is still ineffective in the
sense that it does not provide an algorithm for finding the points in X(Q), even in principle.
In fact, it is not known whether any algorithm is guaranteed to solve this problem. Even
the case g = 2 seems hard.

Nevertheless there are a few techniques that can be applied: see [Poo02] for a survey. On
individual curves these seem to solve the problem often, perhaps even always when used

Date: June 14, 2010.
2000 Mathematics Subject Classification. Primary 11G30; Secondary 14G05, 14K20.
Key words and phrases. Chabauty, p-adic integration, Jacobian.
This article is based partially on lectures given by W. M. at the Arizona Winter School in 1999, and

partially on notes from a course given by B. P. as part of the “Explicit methods in number theory” trimester
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together, though it seems very difficult to prove that they always work. One of the methods
used is the method of Chabauty and Coleman.

Remark 1.1. By [Ih02, Theorem 1.0.1], Vojta’s conjecture implies that given a family of
curves of genus ≥ 2 depending algebraically on parameters t1, . . . , tn, the numerators and
denominators of the coordinates of all the rational points on a curve in the family are
bounded by a polynomial function of the numerators and denominators of the parameter
values specifying that curve, where the polynomial depends only on the family. Experimental
evidence seems to agree with this prediction [Sto09]. In fact, experience suggests a näıve
search will quickly yield a list of rational points that is almost certainly complete, at least
in the case of curves of low genus ≥ 2 with small integer coefficients (and slightly less näıve
algorithms should do the same when the coefficients are a little larger). The difficulty is in
proving that the list is complete.

Remark 1.2. In contrast, one expects that for some genus-1 curves, even the simplest ra-
tional points can have exponentially large numerators and denominators: see [Elk94] for an
example of an elliptic curve whose “smallest” non-torsion point has a huge numerator and
denominator.

2. The Jacobian

Let J be the Jacobian of X. Thus J is an abelian variety of dimension g over Q. Although
J could in principle be presented as a projective variety, for many purposes it seems easier
not to work with explicit defining equations for J . Instead one can use that there is an
Gal(Q/Q)-equivariant isomorphism between the abelian group J(Q) and the group of linear
equivalence classes of degree-0 divisors on XQ (the curve defined by the same equation as

X, but considered over Q). Elements of J(Q) or J(Q) can be represented by explicit formal
integer combinations of points in X(Q).

From now on, we suppose that we know a point O ∈ X(Q). Then we have an embedding

ι : X ↪→ J(1)

P 7→ [P −O],

where [D] denotes the class of a divisor D. Hence we identify X with a subvariety of J .

Remark 2.1. As in Remark 1.1, it is usually easy to find a rational point O if it exists. If a
rational point cannot be found, we can at least find a divisor D of some degree d > 0. Then
the morphism

X → J

P 7→ [dP −D],

is a good substitute for (1), though if d > 1 it need not be an embedding.

Now one possible strategy for determining X(Q) is:

1. First compute J(Q).
2. Then determine which points in J(Q) lie on X.

Although J(Q) is not necessarily finite, the Mordell-Weil theorem states that J(Q) is a
finitely generated abelian group, so in principle it can be described by giving explicit gen-
erators (represented by divisors) and relations. “Computing J(Q)” means computing these
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generators and relations. There exists an algorithm that attempts to compute J(Q), based
on descent (a vast generalization of Fermat’s method of infinite descent), though it is not
known whether it always succeeds. This is not the concern of this article, however: from
now on, we assume that J(Q) has been computed.

Remark 2.2. The method of Chabauty and Coleman can often succeed with less than full
knowledge of J(Q). See Remark 6.1, and Examples 1 and 2 in Section 8.

If J(Q) is finite, then in principle it is not hard to determine X(Q): namely, for each
element of J(Q), choose a degree-0 divisor D representing it; then the points P with ι(P ) =
[D] (actually there will be at most one such P ), when viewed as effective degree-1 divisors,
are exactly the divisors of the form D + O + (f) for some nonzero rational function f in
the space L(D +O) defined as in the statement of the Riemann-Roch theorem. There exist
efficient methods for computing the basis of L(E) for any divisor E [Hes02].

More generally, if J has a nonzero abelian variety quotient A such that A(Q) is finite, then
the composition π : X ↪→ J � A maps X(Q) to A(Q), so in principle one can determine
X(Q) by checking which of the finitely many points in π−1(A(Q)) are rational.

But if no such A exists, or equivalently J(Q) is Zariski dense in J , then it is more difficult
to determine which of its points lie on X.

3. A real-analytic method that does not work

We can embed J(Q) in the Lie group J(R), which as a compact commutative Lie group

is analytically isomorphic to (Rg/Zg)× F for some finite abelian group F . Let J(Q) be the

closure of J(Q) in J(R) with its real topology, so J(Q) is a Lie subgroup of J(R). We want
to find the points in J(Q) that lie on the submanifold X(R) of J(R). In particular, it would

be nice if the intersection X(R) ∩ J(Q) in J(R) were finite, because then its subset X(Q)
would be finite.

But when J(Q) is Zariski dense in J , one conjectures that J(Q) is open in J(R), just as the
integer multiples of a point (a1, . . . , ag) ∈ Rg/Zg are dense in Rg/Zg whenever 1, a1, . . . , ag
are Q-linearly independent. In this case, X(R) ∩ J(Q) will contain a neighborhood of O in
X(R), so it will be infinite.

Remark 3.1. The conjecture just mentioned was made by Mazur (under the additional hy-
pothesis that J is simple) [Maz92, Conjecture 5]. It is known to be true when J is simple
and rank J(Q) ≥ g2 − g + 1 [Wal93, Theorem 2].

4. Chabauty’s idea

C. Chabauty [Cha41], inspired by an analogous idea of T. Skolem [Sko34] in the context
of integer points on subvarieties of tori, had the idea of using Qp for a fixed finite prime p
instead of R in the previous section.

4.1. The structure of J(Qp). Before giving Chabauty’s theorem, we need some prelimi-
naries on the structure of the p-adic Lie group J(Qp). The facts in this section are discussed
(in greater generality) in [Bou98, III.§7.6].

Let JQp be the variety defined by the same equations as J , but considered over Qp instead
of Q. Let H0(JQp ,Ω

1) be the (g-dimensional) Qp-vector space of regular 1-forms on JQp .
3



Suppose ωJ ∈ H0(JQp ,Ω
1). Using the translation-invariance of ωJ , one can show that it has

an “antiderivative”

ηJ : J(Qp)→ Qp

Q 7→
∫ Q

0

ωJ

characterized uniquely by the following two properties:

• It is a homomorphism.

• There is an open subgroup U of J(Qp) such that if Q ∈ U , then
∫ Q
0
ωJ can be

computed by expanding ωJ in power series in local coordinates, finding a formal
antiderivative, and evaluating the power series at the local coordinates of Q. Since
the coefficients in the power series expansion of ωJ grow at most geometrically, the
formal antiderivative converges on a sufficiently small U .

Remark 4.1. One can take U to be the kernel J1(Qp) of the reduction map J(Qp) � J(Fp).
(In the case of good reduction, we may interpret J(Fp) as the group of Fp-points on the
good reduction. In general, J(Fp) should be interpreted as the group of Fp-points on the
special fiber of the Néron model of J . The Néron model is a smooth group scheme over
Zp [BLR90], and completing it along the zero section yields a smooth formal group over
Zp, whose associated group of points is J1(Qp); then Proposition 14(ii) of [Bou98, III.§7.6]
implies that the antiderivative above converges as claimed.)

We get a bilinear pairing

J(Qp)×H0(JQp ,Ω
1)→ Qp(2)

Q , ωJ 7→
∫ Q

0

ωJ .

Let T be the vector space dual of H0(JQp ,Ω
1). Then we may rewrite (2) as a homomorphism

log : J(Qp)→ T.

The tangent spaces at 0 of the p-adic Lie groups J(Qp) and T may both be identified with T ;
then the derivative of log at 0 is the identity T → T . Thus log is also a local diffeomorphism.

4.2. The p-adic closure of J(Q). The closure J(Q) of J(Q) in J(Qp) with its p-adic
topology is an analytic subgroup of J(Qp). So it has a dimension as a p-adic manifold.
Whereas the real closure of J(Q) in J(R) is typically g-dimensional (see Section 3), the
p-adic closure of J(Q) is often smaller (and it is this that makes Chabauty’s method work
over Qp):

Lemma 4.2. Define r′ := dim J(Q) and r := rank J(Q). Then r′ ≤ r.

Proof. We have

r′ = dim J(Q) = dim log
(
J(Q)

)
,

since log is a local diffeomorphism. Since log is continuous and J(Q) is compact,

log
(
J(Q)

)
= log J(Q).
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But the closure of any subgroup in Q⊕gp is simply its Zp-span. Thus

(3) r′ = rankZp (Zp log J(Q)) ≤ rankZ log J(Q) ≤ rankZ J(Q) = r.

�

Remark 4.3. The second ≤ in (3) is an equality since log has finite kernel. But the first
≤ need not be, since Z-independent points in log J(Q) need not be Zp-independent. For
instance, r′ ≤ dim J = g always, but it can happen that r > g. Thus r′ < r is possible.

4.3. Chabauty’s theorem. Now X(Qp) is a 1-dimensional submanifold of J(Qp). Suppose
r′ < g. The dimensions suggest (but do not immediately prove) that the intersection X(Qp)∩
J(Q) should be (at most) 0-dimensional, and then it will be a discrete subset of a compact
space J(Qp), so the intersection will be finite, and its subset X(Q) also will be finite. It is
this that Chabauty proved.

Theorem 4.4 ([Cha41]). Let X be a curve of genus g ≥ 2 over Q. Let J be the Jacobian of
X. Let p be a prime, and let r and r′ be as in Lemma 4.2. Suppose r′ < g (by Lemma 4.2

this is automatic if r < g). Then X(Qp) ∩ J(Q) is finite (and hence so is X(Q)).

Remark 4.5. Theorem 4.4 was the only significant result towards the Mordell conjecture in
its original context (over Q) in the decades before Faltings proved the conjecture in full.

Remark 4.6. Theorem 4.4 is weaker than Faltings’ theorem in that the finiteness of X(Q)
is proved only in the case r′ < g. But Theorem 4.4 has the advantage that it leads to an
explicit upper bound on #X(Q) that is frequently sharp.

Remark 4.7.

We omit the proof of Theorem 4.4, but we will soon prove a refined version, Theorem 5.3.
That theorem has additional hypotheses, used to get a particular bound on #X(Q), but
without them one can still prove the finiteness of X(Q).

In order to turn Theorem 4.4 into a practical method for bounding the number of rational
points, one needs a way of bounding X(Qp)∩J(Q). Roughly speaking, R. Coleman’s method

[Col85b] is to find functions (p-adic integrals of 1-forms) on J(Qp) that vanish on J(Q) and
restrict them to a parameterization of X(Qp); E. V. Flynn’s [Fly97] is to find algebraic

functions on J(Qp) that vanish on X(Qp) and restrict them to a parameterization of J(Q).

5. Coleman’s method

We will assume that X has good reduction, i.e., that X is the generic fiber of a smooth
proper curve over Zp. In this case, J has good reduction too, and our embedding X ↪→ J
mapping O to 0 induces an embedding of the reduction (i.e., special fiber) of X into the
reduction of J . The set X(Fp) is to be interpreted as the set of Fp-points of the reduction
of X.

For the general case, in which X does not necessarily have good reduction, see Appendix A.

5.1. p-adic integrals on the curve X. One can show that the restriction mapH0(JQp ,Ω
1)→

H0(XQp ,Ω
1) induced by X ↪→ J is an isomorphism of Qp-vector spaces [Mil86, Proposi-

tion 2.2]. Suppose that ωJ restricts to ω. For Q,Q′ ∈ X(Qp), define∫ Q′

Q

ω :=

∫ [Q′−Q]

0

ωJ .
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The properties below follow from the corresponding properties of integration on J :

(i) If Qi, Q
′
i ∈ X(Qp) are such that

∑
(Q′i − Qi) is the divisor of a rational function, or

more generally [
∑

(Q′i −Qi)] is a torsion element of J(Qp), then
∑∫ Q′

i

Qi
ω = 0.

(ii) If Q,Q′ ∈ X(Qp) have the same reduction in X(Fp), then
∫ Q′

Q
ω can be calculated by

expanding in power series in a local parameter t on the curve X.

By the definition of ηJ in Section 4.1, the restriction η := ηJ |X(Qp) is the function

η : X(Qp)→ Qp

Q 7→
∫ Q

O

ω.

5.2. Residue classes on X. Recall that X has good reduction at p. We have a surjective
reduction map X(Qp) � X(Fp), and the preimage of a point of X(Fp) will be called a

residue class. Fix a residue class, say above Q̃ ∈ X(Fp). Let t be a rational function on X

that reduces to a uniformizer on XFp at Q̃ (more precisely, t is a regular function on an open

neighborhood of Q̃ in the smooth Zp-model of X, such that the restriction of t to the special

fiber is a uniformizer at Q̃). Then one can show that

(1) The function t maps the residue class bijectively to pZp. (This is related to Hensel’s
lemma.)

(2) If we assume ω is normalized by an element of Q×p so that it reduces to a nonzero

ω̃ ∈ H0(XFp ,Ω
1), then ω on the residue class can be expressed as w(t) dt for some

power series w(t) ∈ Zp[[t]] such that w(t) mod p is nonzero.
(3) The function η on the residue class is represented by a series I(t) ∈ Qp[[t]] (usually

no longer in Zp[[t]]) whose derivative is w(t).

See Section 8.3 for an example of a parameterization and a computation of I(t).

5.3. Counting zeros of integrals. The following lemma, which is purely about p-adic
power series, will be applied to an I(t) as above.

Lemma 5.1. Suppose that f(t) ∈ Qp[[t]] is such that f ′(t) ∈ Zp[[t]]. Let m = ordt=0(f
′(t) mod

p). If m < p− 2, then f has at most m+ 1 zeros in pZp.

Proof. Let v : Qp � Z ∪ {∞} be the p-adic valuation. Write f(t) =
∑
ait

i. The conditions
on f ′(t) and m imply that v(am+1) = 0 and v(ai) ≥ −vp(i) > m + 1 − i for i > m + 1. So
the Newton polygon of f has no slopes less than or equal to −1 to the right of (m + 1, 0).
By the theory of Newton polygons [Kob84, IV.4], f has at most m+ 1 zeros in pZp. �

Remark 5.2. Using the full theory of Newton polygons, one can obtain other statements.
Coleman gives an estimate without conditions on p and with Qp replaced by an arbitrary
p-adic field. Alternatively, one can impose further conditions on f : for example, if the
coefficient of tp−1 in f ′(t) is in pZp, then one need assume only m < 2p − 2 to obtain the
same conclusion. The point is to get the Newton polygon under control.

5.4. A function on J(Qp) vanishing on J(Q). The proof of Lemma 4.2 shows that

log J(Q) is a Zp-module of rank r′ contained in T ' Q⊕gp . Suppose that r′ < g. Then

there is a nonzero Qp-linear functional λ : T � Qp that vanishes on log J(Q). By the
duality between T and H0(JQp ,Ω

1), the functional λ corresponds to a particular nonzero
6



ωJ ∈ H0(JQp ,Ω
1), which in turn gives rise to ηJ , ω, η as above. By definition of log, the map

ηJ equals the composition

J(Qp)
log−→ T

λ
� Qp.

Hence ηJ vanishes on J(Q). It follows that our particular ω satisfies

(iii) If Qi, Q
′
i ∈ X(Qp) are such that [

∑
(Q′i −Qi)] ∈ J(Q), then

∑∫ Q′
i

Qi
ω = 0.

in addition to properties (i) and (ii) of Section 5.1, and that our η vanishes on X(Qp)∩J(Q).
It remains to bound the zeros of η.

5.5. Coleman’s theorem. Coleman proved the following quantitative version of Theo-
rem 4.4:

Theorem 5.3 ([Col85b]). Let X, J, p, r′ be as in Theorem 4.4. Suppose also that p is a prime
of good reduction for X.

(a) Let ω be a nonzero 1-form in H0(XQp ,Ω
1) satisfying conditions (i)–(iii) of Sections 5.1

and 5.4. Scale ω by an element of Q×p so that it reduces to a nonzero 1-form ω̃ ∈
H0(XFp ,Ω

1). Suppose Q̃ ∈ X(Fp). Let m = ordQ̃ ω̃. If m < p − 2, then the number of

points in X(Q) reducing to Q̃ is at most m+ 1.
(b) If p > 2g, then

#X(Q) ≤ #X(Fp) + (2g − 2).

Proof.

(a) If there are no points in X(Q) reducing to Q̃, we are done. Otherwise, fix Q ∈ X(Q)

reducing to Q̃. Then by (iii),
∫ Q′

Q
ω = 0 for any Q′ ∈ X(Q) reducing to Q̃. By Section 5.2,∫ Q′

Q
ω as a function of Q′ can be expressed as a power series I(t). Lemma 5.1 applied to

I(t) shows that I(t) has at most m+ 1 zeros, so there are at most m+ 1 rational points
Q′ in the residue class.

(b) For Q̃ ∈ X(Fp), let mQ̃ = ordQ̃ ω̃. By the Riemann-Roch theorem, the total number of

zeros of ω̃ in X(Fp) is 2g−2. Thus
∑

Q̃∈X(Fp)
mQ̃ ≤ 2g−2. In particular, mQ̃ ≤ 2g−2 <

p− 2 for each Q̃. Applying (a) to each Q̃ and summing yields

#X(Q) ≤
∑

Q̃∈X(Fp)

(mQ̃ + 1) = #X(Fp) +
∑

Q̃∈X(Fp)

mQ̃ ≤ #X(Fp) + (2g − 2). �

Remark 5.4. One can give an explicit bound even if p ≤ 2g, but it is slightly worse in this
case. One can also give a version for number fields other than Q. See [Col85b, Theorem 4].

Remark 5.5. Theorem 5.3 requires r′ < g, but if r′ < g−1, then one can improve the bound.
For instance, if p > 2g, one can prove

#X(Q) ≤ #X(Fp) + 2r′.

This is a special case of [Sto06, Corollary 6.7].

Remark 5.6. See Appendix A for a version of Theorem 5.3 in which X is not required to
have good reduction at p.
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6. Flynn’s method for genus 2

Any curve X of genus 2 over Q is birational to an affine curve y2 = f(x) where f(x) ∈ Q[x]
is squarefree and deg f ∈ {5, 6}. There is a birational morphism Sym2X � J , and an
embedding J ↪→ P15 (given by the linear system |4Θ|, where Θ is a theta divisor on J).
Cassels and Flynn describe the embedding J ↪→ P15 implicitly by giving explicit equations
for the composition

X2 � Sym2X � J ↪→ P15

in terms of the functions x1, y1, x2, y2 on X2: see [CF96] for an exposition. Using this
embedding, Flynn calculates explicit formal parameters for J and an explicit formal group
law [Fly90]. Furthermore, there is an explicit rational function θ on J that vanishes on X.
Thus, given points a ∈ J(Qp) and b ∈ J1(Qp) (the kernel of reduction), Flynn can find the

power series expansion in t for θ(a+ tb), t ∈ Zp. Now, assuming that J(Q) has dimension 1,

J(Q) ∩ J1(Qp) ' Zp. Letting b be a generator for J(Q) ∩ J1(Qp) and letting a range over a
set of coset representatives for J(Q)/(J1(Qp) ∩ J(Q)), he can estimate the number of zeros

of θ on J(Q). Thus, granted that one can obtain this set of coset representatives explicitly,
everything here is explicit. For details, see [Fly97].

Remark 6.1. For this method we do not need full knowledge of J(Q). It would suffice to
have explicit generators of a finite-index subgroup G ⊆ J(Q) having the same closure in
J(Qp). Any G of index prime to p ·#J(Fp) has this property.

If we have a subgroup G ⊆ J(Q) known to be of finite index, we can usually verify that
its index is not divisible by a given prime ` (if true) by finding a homomorphism J(Q)→ B
to a finite abelian group B killed by ` such that the induced map G/pG → B is injective.
In practice, taking B as a product of J(Fq)/`J(Fq) over a few primes q of good reduction
will usually work.

Remark 6.2. Even in the genus-2 case, experience suggests that usually Coleman’s method
is easier to carry out than Flynn’s. But see (3) in the next section.

7. Effectiveness

The method of Chabauty and Coleman may fail to determine the rational points. There
are several problems:

(1) It may be difficult to bound r′ because it may be computationally difficult to bound
r via a Selmer group calculation.

(2) If r′ = g (which is likely if r ≥ g), then J(Q) is open in J(Qp), so the existence of one

point in X(Qp) ∩ J(Q) yields infinitely many, so we get no finite bound on #X(Q).
Let us suppose r′ < g from now on.

(3) In Coleman’s method, the zero set of the integral of ω may be strictly larger than

J(Q). Even if one uses integrals of several independent ω, equal in number to the

codimension g − r′ of J(Q) in J(Qp), so that the common zero set of the integrals is

an analytic subgroup G of the correct dimension r′, it could happen that J(Q) has
index > 1 in G. This problem is not an issue in Flynn’s method.
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(4) It is not clear that #
(
X(Qp) ∩ J(Q)

)
can be computed exactly, even in principle.

For instance, if the p-adic submanifolds X(Qp) and J(Q) in J(Qp) are tangent, it
may be impossible with finite-precision calculations to prove that they intersect.

(5) Even if #
(
X(Qp) ∩ J(Q)

)
is computed exactly, the true value of #X(Q) could be

smaller; in other words, some of the intersection points could be irrational points
in X(Qp). One can give a heuristic predicting that there exist such points in most
situations when r = g − 1 and p is large.

In this case, the upper bound on #X(Q) obtained is not sharp, so X(Q) cannot
be determined without further work. On the other hand, the method can restrict the
possible integer combinations of generators of J(Q) that could lie on X, and hence
provide enormous lower bounds on the height of any unknown points in X(Q), giving
strong evidence that no further points exist.

Remark 7.1. If r is ≤ g−2 instead of just < g, then dimension counting suggests that X(Qp)

and J(Q) should not intersect at all. Maybe in this case the problems disappear for most
choices of p, and the method becomes effective, though it seems hard to prove anything along
these lines.

Remark 7.2. It is sometimes possible to show r′ < g directly, and to construct a logarithm
vanishing on the rational points, without bounding r. See [McC94].

Remark 7.3. If r′ < g is violated, one can try combining the method of Chabauty and
Coleman with one of the following two methods:

(1) Descent, which reduces the problem for the original curve to the problem of finding
rational points on finite étale covers of higher genus. Special cases of this method go
back to Fermat, and in this generality it appears first in [CW30].

(2) The “Mordell-Weil sieve” introduced in [Sch04] and studied further in [Fly04,Poo06].
The information given by this practical method is equivalent to the Brauer-Manin
obstruction, at least if the Shafarevich-Tate group X(J) is finite.

See [Sto07] for recent speculations, as well as theorems relating descent information to the
method of Chabauty and Coleman, the Mordell-Weil sieve, the Brauer-Manin obstruction,
and Grothendieck’s section conjecture.

8. Examples

8.1. Example 1. Let X be (the smooth projective model of) the genus-2 curve

y2 = x(x− 1)(x− 2)(x− 5)(x− 6).

This curve has good reduction at p = 7, and

X(F7) = {(0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3, 6), (3,−6),∞}.

A descent calculation (first carried out in [GG93]) shows that J(Q) has rank 1. Theo-
rem 5.3(b) says #X(Q) ≤ 10. In fact, equality holds:

X(Q) = {(0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6), (10,±120),∞}.
9



8.2. Example 2. We will use Coleman’s method to recompute the rational points on a
genus-2 curve first treated by Flynn’s method in [FPS97]. Once we know the Mordell-Weil
group of the Jacobian, the computations will be easy enough to do by hand.

Let X be (the smooth projective model of) the genus-2 curve y2 = f(x) where

f(x) := x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x+ 1.

(This curve is a moduli space parameterizing “quadratic polynomials equipped with a 5-
cycle”: see [FPS97].) Since deg f is even, and the leading coefficient is a square, there are two
rational points ∞+, ∞− at infinity (i.e., not in the given affine patch). At these two points,
the rational function y/x3 takes the values +1 and −1, respectively. By [FPS97, Theorem 3],
we have rank J(Q) = 1.

Remark 8.1. Though we do not need this, height estimates show that [∞+−∞−] generates
J(Q). For the relevant techniques, see [Sto02] and the references listed there.

Proposition 8.2. There are exactly six rational points on X:

X(Q) = {∞+,∞−, (0,±1), (−3,±1)}.

Proof. Applying Theorem 5.3(b) directly would require p > 2g = 4. The smallest such p is
5, which gives a bound of 9 for #X(Q), not good enough.

Consider p = 3, however. The curve has good reduction at 3, and

X(F3) = {∞+,∞−, (0,±1)},

where we use ∞+ and so on to denote also the corresponding points on the reduction.
Let ω be as in Theorem 5.3(a), scaled to have nonzero reduction ω̃. Because X is a genus-2

curve given by an equation y2 = f(x), ω̃ is an F3-linear combination of dx
y

and x dx
y

. Since X

has at least two rational points in the residue class of (0, 1), Theorem 5.3(a) implies that ω̃
vanishes at (0, 1) ∈ X(F3). Therefore (up to an irrelevant scalar multiple) ω̃ = x dx

y
.

Theorem 5.3(a) now gives the correct bound (namely, 1) on the number of rational points
in each residue class except for (0,±1) ∈ X(F3), where the hypothesis m < p− 2 is violated
(since m = 1). At Q̃ := (0, 1), the parameter t := x satisfies the requirements of Section 5.2.
Expressing y as a power series in Zp[[x]] gives

y =
√
x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x+ 1

≡ 1 + x2 + · · · (mod 3),

so

ω̃ =
x dx

y
= (x− x3 + · · · )dx.

Since the coefficient of x2 in ω̃ is 0, we are in the situation of Remark 5.2, where only
m < 2p − 2 is required! Thus the conclusions of Lemma 5.1 and Theorem 5.3(a) hold even
though their hypotheses are violated. The same argument works for Q̃ = (0,−1), so when
we sum over residue classes we get the same bound as in Theorem 5.3(b), namely

#X(Q) ≤ #X(F3) + (2g − 2) = 4 + (2 · 2− 2) = 6.

�
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This example may appear very special, and it is. For instance, every point of X(F3) was
the reduction of a point in X(Q). Also we were fortunate to be able to apply Remark 5.2.
Finally, we needed to know ω only mod 3 instead of to higher 3-adic precision.

8.3. Example 3. We continue with the curve in Section 8.2, to illustrate how to determine
ω to higher precision and calculate some integrals. This was not necessary in this example
to determine X(Q), but similar calculations may be necessary in other examples.

Since (0, 1) and (−3, 1) are in the same residue class on X, we may compute integrals
between them by expanding in power series in the uniformizing parameter x there:∫ (−3,1)

(0,1)

dx

y
=

∫ −3
0

(1 + 6x+ 5x2 + 22x3 + 22x4 + 8x5 + x6)−1/2 dx

=

∫ −3
0

(1− 3x+ 11x2 − 56x3 + · · · ) dx (note: all coefficients are in Z3)

=

(
x− 3

x2

2
+ 11

x3

3
− 56

x4

4
+ · · ·

)∣∣∣∣−3
0

= (−3)− 3

2
(−3)2 +

11

3
(−3)3 − 56

4
(−3)4 + · · ·

≡ 2 · 3 + 34 (mod 35)

and similarly∫ (−3,1)

(0,1)

x dx

y
=

(
x2

2
− 3

x3

3
+ 11

x4

4
− 56

x5

5
+ · · ·

)∣∣∣∣−3
0

≡ 2 · 32 + 2 · 33 (mod 35).

By (iii),
∫ (−3,1)
(0,1)

ω = 0. Thus, up to a scalar multiple,

ω = ε
dx

y
+
x dx

y
,

where ε ∈ Q3 satisfies

(2 · 3 + 34 + · · · )ε+ (2 · 32 + 2 · 33 + · · · ) = 0,

where each · · · represents terms divisible by 35. Solving for ε yields

(4) ε ≡ 2 · 3 + 32 + 2 · 33 (mod 34),

The points of X(Q3) reducing to (0, 1) ∈ X(F3) are

Qt := (t, (1 + 6t+ 5t2 + 22t3 + 22t4 + 8t5 + t6)1/2)

for t ∈ 3Z3, where we take the square root whose power series begins with +1. By (iii),∫ (0,1)

O
ω = 0 no matter which O ∈ X(Q) we use as basepoint, so the integral I(t) defined in

11



Section 5.2 is

I(t) :=

∫ Qt

(0,1)

ω

=

∫ Qt

(0,1)

(
ε
dx

y
+
x dx

y

)
=

∫ t

0

(ε+ x)(1 + 6x+ 5x2 + 22x3 + 22x4 + 8x5 + x6)−1/2 dx

= εt+ (−3ε+ 1)
t2

2
+ (11ε− 3)

t3

3
+ · · · .

Using (4), we can compute the Newton polygon of I(t) and approximate the zeros in 3Z3.
In fact, from Section 8.2 we know already that there are two such zeros, and that they are
0 and −3 (corresponding to the rational points (0, 1) and (−3, 1)).

Remark 8.3. The existence of two rational points in the residue class made it unnecessary to
compute integrals between points in different residue classes. If we had not had sufficiently
many rational points, we could have proceeded in one of the following ways:

(1) Recall that the integral on X is really the restriction of an integral on J . Inside
each residue class of J corresponding to a point in J(Fp) of order prime to p there is
a Qp-rational torsion point T , which can be used to set the constant of integration

since
∫ T
0
ωJ = 0. In residue classes of order divisible by p, a Qp-rational T might not

exist, but if we work in J(Qp) instead, we will find a torsion point that can be used.
(2) Coleman’s theory of p-adic integration [Col85a] gives a method for setting the con-

stant of integration directly in terms of calculations on X, through the notion of a
Teichmüller point.

(3) Ultimately we care only about the residue classes in J(Qp) containing a point of
J(Q). For each of these residue classes, we compute an explicit divisor representing a
point in J(Q) in the residue class, and use it to set the constant of integration. This
idea is due to J. Wetherell.

8.4. Example 4. Let X be the genus-2 curve y2 = x6 + x2 + 1, motivated by problem 17
from book 6 of the Arithmetica of Diophantus. Since X admits a dominant morphism to
the elliptic curve y2 = x3 + x + 1, the Jacobian J of X is isogenous over Q to the product
of this elliptic curve and another elliptic curve (namely, y2 = x3 + x2 + 1, as one can see by
dividing both sides of the equation of X by x6). It turns out that each of these two elliptic
curves is of rank 1, so r′ = r = 2. Thus the method of Chabauty and Coleman does not
apply directly.

Nevertheless, Wetherell [Wet97] used descent to replace the problem with the problem for
finite étale covers of higher genus to which the method could be applied. He succeeded in
proving that

X(Q) = {(±1/2,±9/8), (0,±1),∞+,∞−}.

9. Elliptic Chabauty

The embedding X ↪→ J can be replaced by a morphism X → A to some other abelian
variety A. By the Albanese property of the Jacobian, if such a morphism is normalized to

12



map O to 0, it will factor as X ↪→ J → A for some homomorphism J → A. We may assume
that J → A is surjective (otherwise replace A by its image); then Chabauty’s argument will
apply if rankA(Q) < dimA.

An important special case, noted in [FW99, Bru03], arises when there exists a dominant
morphism Xk � E for an elliptic curve E over some finite extension k of Q; then we get
a map from X to the restriction of scalars A := Resk/QE, which is an abelian variety of
dimension [k : Q] such that A(Q) ' E(k). Typically the induced map J → A will be
surjective; in this case one needs rankE(k) < [k : Q] to apply Chabauty’s argument.

This special case is useful in practice, since computations with elliptic curves tend to be
simpler than computations with Jacobians, even if the elliptic curve is over a larger field.

Appendix A. The case of bad reduction

In this appendix we prove Theorem A.5, a generalization of Theorem 5.3 in which it is
not required that X have good reduction.

All schemes will be assumed to be locally noetherian. For any quasi-projective l.c.i. (local
complete intersection) morphism X → Y , [Liu02, Definition 6.4.7] gives a definition of the
canonical sheaf ωX/Y , an invertible sheaf on X satisfying the following:

Proposition A.1. (a) If X → Y is smooth of relative dimension r, there is a canonical
isomorphism ωX/Y '

∧r Ω1
X/Y , where Ω1

X/Y is the sheaf of Kähler differentials.

(b) (Base change) Let Y ′ → Y be a morphism, let X ′ := X ×Y Y ′, and let p : X ′ → X be
the first projection. If either Y ′ → Y or X → Y is flat, then X ′ → Y ′ is an l.c.i. and
there is a canonical isomorphism ωX′/Y ′ ' p∗ωX/Y .

Proof. Part (i) is immediate from the definitions: see [Liu02, Definitions 6.3.7 and 6.4.7].
For (ii), see [Liu02, Theorem 6.4.9]. �

Remark A.2. If in addition X → Y is flat of relative dimension r, the sheaf ωX/Y agrees
with the relative r-dualizing sheaf [Liu02, Theorem 6.4.32]. We will not need this.

Let K be a field of characteristic 0 with a discrete valuation v. Let R be the valuation
ring, and let F be the residue field. Let π be a generator of the maximal ideal of R. Let
X be a smooth, projective, geometrically integral curve of genus g ≥ 2 over K with a K-
point O. Construct the minimal proper regular model X over R of X. (We occasionally
write R for SpecR if there is no chance of confusion.) Let Xs be the special fiber X ×R F.
By a component of Xs we mean an irreducible component D with the reduced subscheme
structure; we let mD be its multiplicity in Xs. Let X smooth be the smooth locus of X → R,
and let X smooth

s be the smooth locus of Xs → F. The set X smooth
s (F) will play the role that

X(Fp) played earlier: we define the residue classes on X to be the fibers of the reduction
map

X(K) = X (R) = X smooth(R)→ X smooth
s (F).

Suppose 0 6= w ∈ H0(X,Ω1
X/K). By parts (a) and (b) of Proposition A.1, we have

Ω1
X/K ' ωX/K ' ωX/R ⊗R K,

so we may view w as a meromorphic section of ωX/R. The associated Cartier divisor K on
X is called a canonical divisor: see [Liu02, Definition 9.1.34].

13



Let C be a multiplicity-1 component of Xs. Let Csmooth := C ∩ X smooth. Let XC be the
open subscheme of X smooth obtained by deleting all components of its special fiber except for
Csmooth. The divisor of π on X contains C with multiplicity mC = 1, so multiplying w by
an appropriate power of π yields a 1-form wC such that C does not occur in the associated
canonical divisor KC . Then KC |XC is effective, so we may view wC as a global section of
the sheaf ωXC/R, which by Proposition A.1(a) is isomorphic to Ω1

XC/R. Since Csmooth does

not appear in this effective divisor, the restriction wC |Csmooth may be viewed as a nonzero
1-form w̃C on Csmooth. Let nC be the number of zeros (counted with multiplicity) of w̃C in
Csmooth(F).

We now use intersection theory on X . A divisor on X is said to be horizontal if it
is the closure in X of a divisor on X, and vertical if it is supported on Xs: see [Liu02,
Proposition 8.3.4 and Definition 8.3.5]. Every divisor can be expressed uniquely as the sum
of a horizontal and a vertical divisor. Thus we can write K = H + V and KC = H + V C ,
where H is a horizontal divisor and V and V C are vertical divisors. (The horizontal part H
is independent of C, since the forms wC differ only by multiples of Xs, the divisor of π.)

Lemma A.3. For every multiplicity-1 component C of Xs, we have nC ≤ H.C .

Proof. Since C does not occur in V C , we have

(H.C)P = (KC .C)P = ordP (w̃C)

for all P ∈ Csmooth(F). Therefore

nC =
∑

P∈Csmooth(F)

ordP (w̃C) =
∑

P∈Csmooth(F)

(H.C)P .

Furthermore, since wC restricts to a holomorphic differential on X, the divisor H is effective,
so (H.C)P ≥ 0 for all closed points P ∈ C. Thus∑

P∈Csmooth(F)

(H.C)P ≤
∑
P∈C

(H.C)P [F(P ) : F] = H.C,

where F(P ) is the residue field of P , by the relation between local and global intersection
numbers [Liu02, Theorem 9.1.2(a)]. �

Lemma A.4. Let w, wC, w̃C, nC be as above, for each multiplicity-1 component C of Xs.
Then ∑

C of multiplicity 1

nC ≤ 2g − 2.

Proof. Since H is an effective horizontal divisor, H.D ≥ 0 for every component D of Xs.
Now ∑
C of multiplicity 1

nC ≤
∑

C of multiplicity 1

H.C (by Lemma A.3)

≤
∑

all components D

mD(H.D) (since H.D ≥ 0 for all D)

= H.Xs (since Xs =
∑
mDD)

= K.Xs (since V.Xs = 0 by [Liu02, Proposition 9.1.21(a)])

= 2g − 2 (by [Liu02, Proposition 9.1.35]).
14
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We now take K = Qp to prove the analogue of Theorem 5.3:

Theorem A.5. Let X, p, r′ be as in Theorem 4.4, let X over Zp be a minimal regular model
for XQp, and let Xs over Fp be its special fiber.

(1) Let ω be a nonzero 1-form in H0(XQp ,Ω
1) satisfying conditions (i)–(iii) of Sections

5.1 and 5.4. Let C be a component of multiplicity 1 in Xs, and define Csmooth :=
C ∩ X smooth. Scale ω by a power of p so that it reduces to a nonzero 1-form ω̃ ∈
H0(Csmooth,Ω1). Let Q̃ ∈ Csmooth(Fp). Let m = ordQ̃ ω̃. If m < p − 2, then the

number of points in X(Q) reducing to Q̃ is at most m+ 1.
(2) If p > 2g, then

#X(Q) ≤ #X smooth
s (Fp) + (2g − 2).

Proof.

(1) Since Q̃ is a smooth point of Xs, the discussion in Section 5.2 about expanding
functions on residue classes applies equally to the residue class of Q̃, and then the
proof of Theorem 5.3 goes through as before.

(2) Every point in X(Q) reduces to some smooth point Q̃ in Xs(Fp), and in particular
to a point on some component of multiplicity 1. For such a component C, let nC be
as in Lemma A.4. Summing over all C of multiplicity 1, we get

#X(Q) ≤ #X smooth
s (Fp) +

∑
C

nC ≤ #X smooth
s (Fp) + (2g − 2),

by Lemma A.4.

�

Remark A.6. For another approach to Theorem A.5, see [LT02].

Question A.7. As mentioned in Remark 5.5, the 2g− 2 can be improved to 2r′ in the good
reduction case. M. Stoll asks: Can one combine the methods of [Sto06] with the methods
in this appendix to prove the same statement in the bad reduction case? According to
[Sto06, Remark 6.5], such a statement is true at least in the case where X is hyperelliptic.
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