A BRIEF SUMMARY OF THE STATEMENTS OF CLASS FIELD THEORY

BJORN POONEN

0. PROFINITE COMPLETIONS OF TOPOLOGICAL GROUPS

Let G be a topological group. The profinite completion of G is

$$\hat{G} := \lim_{\leftarrow} \frac{G}{U},$$

where U ranges over the finite-index open normal subgroups of G. There is a natural continuous homomorphism $G \to \hat{G}$ through which every other continuous homomorphism from G to a profinite group factors uniquely. If G is profinite already, then $G \to \hat{G}$ is an isomorphism.

In general, $G \to \hat{G}$ need not be injective or surjective. Nevertheless, we think of G as being almost isomorphic to \hat{G}: The finite-index open subgroups of G are in bijection with those of \hat{G}. And finite-index open subgroups of certain Galois groups are what we are interested in.

1. LOCAL CLASS FIELD THEORY

1.1. Notation associated to a discrete valuation ring.

\mathcal{O}: a complete discrete valuation ring
$K := \text{Frac}(\mathcal{O})$
v: the valuation $K^\times \to \mathbb{Z}$
p: the maximal ideal of \mathcal{O}
k: the residue field \mathcal{O}/p
K^s: a fixed separable closure of K
K^{ab}: the maximal abelian extension of K in K^s
K^{unr}: the maximal unramified extension of K in K^s

k^s: the residue field of K^{unr}, so k^s is a separable closure of k.

Equip K and its subsets with the topology coming from the absolute value $|x| := \exp(-v(x))$.

Date: December 7, 2022.
I thank David Zywina for comments. The writing of this article was supported in part by National Science Foundation grants DMS-0301280 and DMS-2101040 and Simons Foundation grants #402472 and #550033.
1.2. Local fields.

Definition 1.1. A nonarchimedean local field is a complete discrete-valued field K as in Section 1.1 such that the residue field k is finite. An archimedean local field is \mathbb{R} or \mathbb{C}.

Facts:
- A nonarchimedean local field of characteristic 0 is isomorphic to a finite extension of \mathbb{Q}_p.
- A (nonarchimedean) local field of characteristic $p > 0$ is isomorphic to $\mathbb{F}_q((t))$ for some power q of p.

1.3. The local Artin homomorphism. Let K be a local field. Local class field theory says that there is a homomorphism $\theta : K^\times \to \text{Gal}(K_{ab}/K)$ that is almost an isomorphism. The homomorphism θ is called the local Artin homomorphism. It cannot be literally an isomorphism, because $\text{Gal}(K_{ab}/K)$ is a profinite group, hence compact, while K^\times is not. What is true is that θ induces an isomorphism of topological groups $\hat{K}^\times \to \text{Gal}(K_{ab}/K)$.

If K is archimedean, then $\theta : K^\times \to \text{Gal}(K_{ab}/K)$ is surjective and its kernel is the connected component of the identity in K^\times.

For the rest of Section 1.3 we assume that K is nonarchimedean. Then θ is injective: The choice of a uniformizer $\pi \in \mathcal{O}$ lets us write $K^\times = \mathcal{O}^\times \pi \mathbb{Z} \simeq \mathcal{O}^\times \times \mathbb{Z}$, and \mathcal{O}^\times is already profinite, so $\hat{K}^\times \simeq \mathcal{O}^\times \times \hat{\mathbb{Z}}$. Thus local class field theory says that there is an isomorphism $\mathcal{O}^\times \times \hat{\mathbb{Z}} \to \text{Gal}(K_{ab}/K)$.

More canonically, without choosing π, the two horizontal exact sequences below are almost isomorphic:

\[
\begin{array}{ccccccccc}
0 & \to & \mathcal{O}^\times & \to & K^\times & \to & \mathbb{Z} & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \text{Gal}(K_{ab}/K_{unr}) & \to & \text{Gal}(K_{ab}/K) & \to & \text{Gal}(K_{unr}/K) & \to & 0
\end{array}
\]

With the identification of the group at lower right $\text{Gal}(K_{unr}/K) \simeq \text{Gal}(k^s/k) \simeq \hat{\mathbb{Z}}$, mapping the Frobenius automorphism to $1 \in \hat{\mathbb{Z}}$, the right vertical map in (1) becomes the natural inclusion $\mathbb{Z} \hookrightarrow \hat{\mathbb{Z}}$. In other words, θ maps K^\times isomorphically to the set of $\sigma \in \text{Gal}(K_{ab}/K)$ inducing an integer power of Frobenius on the residue field (as opposed to a $\hat{\mathbb{Z}}$-power). The bottom row of (1) is simply the profinite completion of the top row.

Also from (1), one sees that $\theta(\mathcal{O}^\times)$ is the inertia subgroup $\text{Gal}(K_{ab}/K_{unr})$ of $\text{Gal}(K_{ab}/K)$, and that θ maps any uniformizer to a Frobenius automorphism in $\text{Gal}(K_{ab}/K)$. Moreover, the descending chain $\mathcal{O}^\times \supset 1 + p \supset 1 + p^2 \supset \cdots$ is mapped isomorphically by θ to the descending chain of ramification subgroups of $\text{Gal}(K_{ab}/K)$ in the upper numbering.
1.4. **Functoriality.** Let L be a finite extension of K. Let $N_{L/K}: L^\times \to K^\times$ be the norm map. Let θ_L, θ_K be the local Artin homomorphisms associated to L, K, respectively. Let $\text{res}: \text{Gal}(L^{ab}/L) \to \text{Gal}(K^{ab}/K)$ be the homomorphism mapping an automorphism σ of L^{ab} to its restriction $\sigma|_{K^{ab}}$. Then the square

\[
\begin{array}{ccc}
L^\times & \xrightarrow{\theta_L} & \text{Gal}(L^{ab}/L) \\
\downarrow{N_{L/K}} & & \downarrow{\text{res}} \\
K^\times & \xrightarrow{\theta_K} & \text{Gal}(K^{ab}/K)
\end{array}
\]

commutes.

1.5. **Finite abelian extensions.** Because θ is almost an isomorphism, and because of Galois theory, the following sets are in bijection:

- The finite-index open subgroups of K^\times.
- The (finite-index) open subgroups of $\text{Gal}(K^{ab}/K)$.
- The finite abelian extensions of K contained in K^s.

Going backwards, if L is a finite abelian extension of K in K^s, the corresponding subgroup of K^\times is $N_{L/K}L^\times$. (This could be viewed as a consequence of the functoriality above.)

The composition

\[
K^\times \to \text{Gal}(K^{ab}/K) \xrightarrow{\text{res}} \text{Gal}(L/K)
\]

is surjective with kernel $N_{L/K}L^\times$, and \mathcal{O}^\times maps to the inertia subgroup $I_{L/K} \leq \text{Gal}(L/K)$, and any uniformizer π maps to a Frobenius element of $\text{Gal}(L/K)$.

2. Global class field theory (via ideles)

2.1. Global fields.

Definition 2.1. A **number field** is a finite extension of \mathbb{Q}. A **global function field** is a finite extension of $\mathbb{F}_p(t)$ for some prime p, or equivalently is the function field of a geometrically integral curve over a finite field \mathbb{F}_q (called the **constant field**), where q is a power of some prime p. A **global field** is a number field or a global function field.

Throughout Sections 2 and 3, K is a global field. If v is a nontrivial place of K (given by an absolute value on K), then the completion K_v is a local field. If v is nonarchimedean, let \mathcal{O}_v be the valuation subring of K_v; if v is archimedean, let $\mathcal{O}_v = K_v$.

2.2. The adele ring.** The **adele ring** of K is the restricted direct product

\[
A = A_K := \prod'_v (K_v, \mathcal{O}_v) := \left\{ (a_v) \in \prod_v K_v : a_v \in \mathcal{O}_v \text{ for all but finitely many } v \right\}.
\]

It is a topological ring: the topology is uniquely characterized by the condition that $\prod_v \mathcal{O}_v$ is open in A and has the product topology. The diagonal map $K \to A$ is like $\mathbb{Z} \to \mathbb{R}$: it embeds K as a discrete co-compact subgroup of A.

3
2.3. **The idele group and idele class group.** The idele group of K is

$$\mathbb{A}^\times = \prod_v (K_v^\times, \mathcal{O}_v^\times) := \left\{(a_v) \in \prod_v K_v^\times : a_v \in \mathcal{O}_v^\times \text{ for all but finitely many } v \right\}.$$

It is a topological group: the topology is uniquely characterized by the condition that $\prod_v \mathcal{O}_v^\times$ is open in \mathbb{A}^\times and has the product topology\(^1\). The diagonal map $K^\times \to \mathbb{A}^\times$ is like $\mathbb{Z}^\times \to \mathbb{R}^\times$: it embeds K^\times as a discrete subgroup of \mathbb{A}^\times, but the quotient $C = C_K := \mathbb{A}^\times/K^\times$ is not compact. The topological group C is called the **idele class group**.

2.4. **The global Artin homomorphism.** Let K^s be a fixed separable closure of K. Let K^{ab} be the maximal abelian extension of K contained in K^s. The group C plays the role in global class field theory played by K^\times in local class field theory. Namely, if K is a global field, there is a global Artin homomorphism

$$\theta: C \to \text{Gal}(K^{ab}/K)$$

that induces an isomorphism $\hat{C} \cong \text{Gal}(K^{ab}/K)$.

If K is a number field, then θ is surjective and its kernel is the connected component of the identity in C.

If K is a global function field with constant field k, then θ is injective and $\theta(C)$ equals the set of $\sigma \in \text{Gal}(K^{ab}/K)$ whose restriction in $\text{Gal}(k^s/k)$ is an integer power of the Frobenius generator.

2.5. **Functoriality.** Let L be a finite extension of K of degree n. Then $A_L \simeq A_K \otimes K \to L$ is free of rank n over A_K, so there is a norm map $N_{L/K}: A_L \to A_K$. We write $N_{L/K}$ also for the induced homomorphism $N_{L/K}: C_L \to C_K$. Then

$$\begin{array}{ccc}
C_L & \xrightarrow{\theta_L} & \text{Gal}(L^{ab}/L) \\
N_{L/K} \downarrow & & \downarrow \text{res} \\
C_K & \xrightarrow{\theta_K} & \text{Gal}(K^{ab}/K)
\end{array}$$

commutes.

2.6. **Finite abelian extensions.** The following sets are in bijection:

- The finite-index open subgroups of C.
- The finite-index open subgroups of $\text{Gal}(K^{ab}/K)$.
- The finite abelian extensions of K contained in K^s.

Going backwards, if L is a finite abelian extension of K in K^s, the corresponding subgroup of C is $N_{L/K}C_L$. The composition

$$C \to \text{Gal}(K^{ab}/K) \xrightarrow{\text{res}} \text{Gal}(L/K)$$

is surjective with kernel $N_{L/K}C_L$.

\(^1\)Alternatively, one can use the general recipe for getting the topology on the units of a topological ring R: not the subspace topology on R^\times as a subset of R (this may fail to make the inverse map $R^\times \to R^\times$ continuous), but the subspace topology on the set of solutions to $xy = 1$ in $R \times R$ (this is what one gets if one expresses the multiplicative group scheme \mathbb{G}_m as an affine variety).
2.7. Connection between the global and local Artin homomorphisms. Let \(v \) be a place of \(K \). Identify \(K_v^\times \) with a subgroup of \(\mathbb{A}^\times \) by mapping \(\alpha \in K_v^\times \) to the idele with \(\alpha \) in the \(v \)-th position and 1 in every other position. The composition \(K_v^\times \to \mathbb{A}^\times \to C \) is injective. Let \(\theta_v \) be the local Artin homomorphism for \(K_v \). Then the diagram

\[
\begin{array}{ccc}
K_v^\times & \xrightarrow{\theta_v} & \text{Gal}(K_v^{ab}/K_v) \\
\downarrow & & \downarrow \text{res} \\
C & \xrightarrow{\theta} & \text{Gal}(K^{ab}/K)
\end{array}
\]

commutes. Thus \(\theta \) determines \(\theta_v \).

Conversely, if one knows \(\theta_v \) for all \(v \), one can construct \(\theta \) as follows. Let \(L \) be a finite abelian extension of \(K \) contained in \(K_s \). Define \(\mathbb{A}^\times \to \text{Gal}(L/K) \) \((a_v) \mapsto \prod_v \theta_v(a_v)\); if \(v \) is unramified in \(L/K \), and \(a_v \in \mathcal{O}_v^\times \), then \(\theta_v(a_v) = 1 \), so all but finitely many terms in the infinite product are 1, and the product makes sense. Take the inverse limit over all possible \(L \) to get

\[
\mathbb{A}^\times \to \text{Gal}(K^{ab}/K).
\]

The idelic version of the Artin reciprocity law says that \(K^\times \) is in the kernel, so we get a homomorphism

\[
C \to \text{Gal}(K^{ab}/K),
\]

which is \(\theta \).

2.8. Moduli.

Definition 2.2. A modulus is a formal product \(m = \prod_v v^{e_v} \) where \(e_v \in \mathbb{Z}_{\geq 0} \), all but finitely many \(e_v \) equal 0, and \(e_v \in \{0, 1\} \) for real \(v \), and \(e_v = 0 \) for complex \(v \). The support \(\text{supp} m \) is the (finite) set of nonarchimedean places \(v \) such that \(e_v \neq 0 \).

If \(K \) is a number field, then a modulus can be viewed as a pair consisting of

1. an integral ideal of the ring of integers \(\mathcal{O}_K \), and
2. a subset of the real places.

If \(K \) is the function field of a smooth projective curve \(X \) over a finite field, then a modulus is the same thing as an effective divisor on \(X \).

2.9. Ray class groups and ray class fields. In this section we assume that \(K \) is a number field. Fix a modulus \(m = \prod_v v^{e_v} \). We will define a finite-index open subgroup \(U_{m,v} \subseteq \mathcal{O}_v^\times \) for each \(v \). If \(e_v = 0 \), define \(U_{m,v} := \mathcal{O}_v^\times \). If \(e_v > 0 \) and \(v \) is nonarchimedean, define \(U_{m,v} := 1 + p_v^{e_v} \), where \(p_v \) is the maximal ideal of \(\mathcal{O}_v \). If \(e_v > 0 \) and \(v \) is real, define \(U_{m,v} \) as \(\mathbb{R}_{>0} \subseteq \mathbb{R}^\times \simeq K_v^\times \). Define \(U_m := \prod_v U_{m,v} \subseteq \mathbb{A}^\times \). The image of \(U_m \) under \(\mathbb{A}^\times \to C \) is a finite-index open subgroup \(U'_m \) of \(C \) (this is equivalent to finiteness of the class number of \(K \), as we will see in Section 3.4). The corresponding finite abelian extension \(R_m \) of \(K \) is called
the ray class field of modulus \(m \), and \(R_m \) over \(K \) is unramified at all \(v \) with \(e_v = 0 \). The ray class group of modulus \(m \) is

\[
\frac{C}{U_m^\prime} = \frac{\mathbb{A}^\times}{U_{mK}^\times},
\]

which is isomorphic to \(\text{Gal}(R_m/K) \) via the global Artin homomorphism.

Every finite-index open subgroup of \(\mathbb{A}^\times \) contains \(U_m \) for some \(m \), so every finite abelian extension of \(K \) is contained in \(R_m \) for some \(m \).

3. Global class field theory (via ideals)

In this section we assume that \(K \) is a number field.

3.1. Classical ray class groups. Let \(I \) be the group of fractional ideals of \(K \), or equivalently, the free abelian group on the nonarchimedean places of \(K \). Let \(P \) be the subgroup of principal ideals. The class group is \(\text{Cl} \mathcal{O}_K := I/P \).

We now generalize to an arbitrary modulus \(m = \prod_v v^{e_v} \). Let \(I_m \) be the subgroup of fractional ideals that do not involve the primes dividing \(m \); i.e., \(I_m \) is the free abelian group on the nonarchimedean places \(v \) satisfying \(e_v = 0 \). For \(a \in K^\times \), the notation \(a \equiv 1 \pmod{\times m} \) means that \(a \in U_{m,v} \) for every \(v \) satisfying \(e_v > 0 \). The group \(P_m \subseteq I_m \) is the group of principal ideals generated by some \(a \in K^\times \) with \(a \equiv 1 \pmod{\times m} \). The classical ray class group of modulus \(m \) is \(\text{Cl}_m \mathcal{O}_K := I_m/P_m \). Section 3.4 will prove that this is isomorphic to the ray class group \(C/U_m^\prime \) defined in Section 2.9.

3.2. The classical Artin homomorphism. Let \(L/K \) be a finite abelian extension of number fields. Let \(S \) be a finite set of finite primes of \(K \) such that \(S \) contains every prime that ramifies in \(L \). Let \(I_S \) be the group of fractional ideals that do not involve the primes in \(S \). The classical Artin homomorphism is the map

\[
\Theta: I_S \to \text{Gal}(L/K)
\]

sending each prime ideal \(p \notin S \) to the Frobenius element \(\text{Frob}_p \in \text{Gal}(L/K) \).

3.3. The main theorems. The Artin reciprocity law states that there exists a modulus \(m \) (depending on \(L/K \)) with \(\text{supp} \ m = S \) such that the subgroup \(P_m \subseteq I_m = I_S \) is contained in \(\ker \Theta \). The existence theorem states that given a modulus \(m \) and group \(H \) with \(P_m \subseteq H \subseteq I_m \) there exists an abelian extension \(L \) of \(K \) unramified outside \(\text{supp} \ m \) such that the kernel of \(\Theta \) for \(L/K \) equals \(H \).

3.4. Comparison of ideal groups and idele groups. Consider the trivial modulus \(m = 1 \) (with \(e_v = 0 \) for all \(v \)). Taking the restricted direct product of the valuation maps \(v: K_v^\times \to \mathbb{Z} \) gives a surjective homomorphism

\[
\mathbb{A}^\times \to I
\]

that discards the archimedean components of its input, and its kernel is \(U_1 = \prod_v \mathcal{O}_v^\times \). Thus \(\mathbb{A}^\times/U_1 \simeq I \). If we take the quotient by the image of \(K^\times \) on both sides, we find that the ray class group \(\frac{\mathbb{A}^\times}{U_{mK}^\times} \) of modulus 1 is isomorphic to the class group \(I/P = \text{Cl} \mathcal{O}_K \). The ray class field \(R_1 \) of modulus 1 is called the Hilbert class field, which can be characterized also as the
maximal abelian extension of K in K^* that is unramified at all places of K (including the archimedean ones). We get

$$\frac{C}{U_1} = \frac{A^\times}{U_1K^\times} \cong \frac{I}{P} = \text{Cl} \, \mathcal{O}_K \cong \text{Gal}(R_1/K).$$

This can be generalized to an arbitrary modulus $m = \prod v^{e_v}$ as follows. Let $A^m \subseteq A^\times$ be the subgroup consisting of (a_v) with (a_v) with $a_v \in U_{m,v}$ for every v with $e_v > 0$. Let $K^m = A^m \cap K^\times$. We have an isomorphism

$$\frac{A^m}{U_m} \cong I_m.$$

Dividing by the image of K^m on both sides gives

$$\frac{A^m}{U_mK^m} \cong \frac{I_m}{P_m}.$$

On the other hand, $A^\times = A^mK^\times$, so there is an isomorphism

$$\frac{A^m}{K^m} \cong \frac{A^\times}{K^\times} = C.$$

Dividing by the image of U_m on both sides, and combining with (2), we get isomorphisms

$$\frac{C}{U'_m} = \frac{A^\times}{U_mK^\times} \cong \frac{I_m}{P_m} = \text{Cl}_m \, \mathcal{O}_K \cong \text{Gal}(R_m/K).$$

4. AN INTRODUCTION TO AN INTRODUCTION TO THE LANGLANDS PROGRAM

Let K be a local or global field. Every 1-dimensional character (continuous homomorphism)

$$\text{Gal}(K^*/K) \to \mathbb{C}^\times$$

factors through $\text{Gal}(K^{ab}/K)$ and has finite image. These characters form a discrete abelian group, the Pontryagin dual of the profinite group $\text{Gal}(K^{ab}/K)$. It follows that the problem of classifying finite abelian extensions of K is more or less the same as the problem of describing all these characters.

The Langlands program is an attempt to understand $\text{Gal}(K^*/K)$ more completely by describing its higher-dimensional representations: the group $\mathbb{C}^\times = \text{GL}_1(\mathbb{C})$ is replaced by $\text{GL}_n(\mathbb{C})$, or even $G(\mathbb{C})$ for other linear algebraic groups G. The continuous homomorphisms

$$\text{Gal}(K^*/K) \to G(\mathbb{C})$$

are conjectured to correspond to certain “automorphic” objects defined intrinsically in terms of K, just as class field theory gives a description of the group $\text{Gal}(K^{ab}/K)$ (which is defined in terms of extrinsic objects such as finite abelian extensions, which are initially mysterious) in terms of intrinsic objects (K^\times or C) obtained directly from K.

Ultimately, the program would give information about nonabelian algebraic extensions of K.

7
5. Further reading

For basics on profinite groups, see [Ser02, I.§] and [Gru86]. The latter discusses infinite Galois theory as well.

For local class field theory, see [Ser86]. For the approach to global class field theory via cohomology of ideles, see [Tat86]. For a treatment of global class field theory via ideals, see [Jan96]. All these topics are covered also in [Neu99].

For an introduction to the Langlands program, see [BG03].

References

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Email address: poonen@math.mit.edu

URL: http://math.mit.edu/~poonen/