REAL REPRESENTATIONS

BJORN POONEN

The goal of these notes is to explain the classification of real representations of a finite group. Throughout, G is a finite group, W is a \mathbb{R} -vector space or $\mathbb{R}G$ -module, and V is a \mathbb{C} -vector space or $\mathbb{C}G$ -module (except in Section 2, where V is over any field). Vector spaces and representations are assumed to be finite-dimensional.

1. Vector spaces over \mathbb{R} and \mathbb{C}

1.1. **Constructions.** To get from \mathbb{R}^n to \mathbb{C}^n , we can tensor with \mathbb{C} . In a more coordinate-free manner, if W is an \mathbb{R} -vector space, then its **complexification** $W_{\mathbb{C}} := W \otimes_{\mathbb{R}} \mathbb{C}$ is a \mathbb{C} -vector space. We can view W as an \mathbb{R} -subspace of $W_{\mathbb{C}}$ by identifying each $w \in W$ with $w \otimes 1 \in W_{\mathbb{C}}$. Then an \mathbb{R} -basis of W is also a \mathbb{C} -basis of $W_{\mathbb{C}}$. In particular, $W_{\mathbb{C}}$ has the same dimension as W (but is a vector space over a different field).

Conversely, we can view \mathbb{C}^n as \mathbb{R}^{2n} if we forget how to multiply by complex scalars that are not real. In a more coordinate-free manner, if V is a \mathbb{C} -vector space, then its restriction of scalars is the \mathbb{R} -vector space \mathbb{R}^V with the same underlying abelian group but with only scalar multiplication by real numbers. If v_1, \ldots, v_n is a \mathbb{C} -basis of V, then $v_1, iv_1, \ldots, v_n, iv_n$ is an \mathbb{R} -basis of \mathbb{R}^V . In particular, dim \mathbb{R}^V = 2 dim V.

Also, if V is a \mathbb{C} -vector space, then the complex conjugate vector space \overline{V} has the same underlying group but a new scalar multiplication \cdot defined by $\lambda \cdot v := \overline{\lambda}v$, where $\overline{\lambda}v$ is defined using the original scalar multiplication.

Complexification and restriction of scalars are not inverse constructions. Instead:

Proposition 1.1 (Complexification and restriction of scalars).

(a) If V is a \mathbb{C} -vector space, then the map

$$({}_{\mathbb{R}}V)_{\mathbb{C}} \longrightarrow V \oplus \overline{V}$$

 $v \otimes c \longmapsto (cv, \overline{c}v)$

is an isomorphism of \mathbb{C} -vector spaces.

(b) If W is an \mathbb{R} -vector space, then

$$_{\mathbb{R}}(W_{\mathbb{C}}) \simeq W \oplus W.$$

Proof.

Date: October 21, 2016.

(a) The map is \mathbb{C} -linear, by definition of the scalar multiplication on \overline{V} . It sends $x \otimes 1 + y \otimes i$ to (x+iy,x-iy), and one can recover $x,y \in V$ uniquely from (x+iy,x-iy), so the map is an isomorphism.

(b) We have
$$\mathbb{R}(W \otimes_{\mathbb{R}} \mathbb{C}) = W \otimes_{\mathbb{R}} (\mathbb{R} \oplus i\mathbb{R}) = W \oplus iW \simeq W \oplus W$$
.

1.2. Linear maps between complexifications. Tensoring $M_{m,n}(\mathbb{R})$ with \mathbb{C} yields $M_{m,n}(\mathbb{C})$. The coordinate-free version of this is:

Proposition 1.2. If W and X are \mathbb{R} -vector spaces, then

$$\operatorname{Hom}_{\mathbb{R}}(W,X) \otimes_{\mathbb{R}} \mathbb{C} \simeq \operatorname{Hom}_{\mathbb{C}}(W_{\mathbb{C}},X_{\mathbb{C}}).$$

Corollary 1.3. If W is an \mathbb{R} -vector space, then

$$\operatorname{End}_{\mathbb{R}}(W) \otimes_{\mathbb{R}} \mathbb{C} \simeq \operatorname{End}_{\mathbb{C}}(W_{\mathbb{C}}).$$

1.3. **Descent theory.** Let V and X be \mathbb{C} -vector spaces. A homomorphism $J: V \to X$ of abelian groups is called \mathbb{C} -antilinear if $J(\lambda v) = \overline{\lambda} J(v)$ for all $\lambda \in \mathbb{C}$ and $v \in V$; to give such a J is equivalent to giving a \mathbb{C} -linear map $V \to \overline{X}$.

To recover \mathbb{R}^n from its complexification \mathbb{C}^n one takes the vectors fixed by coordinate-wise complex conjugation. More generally, given a \mathbb{C} -vector space V, finding a \mathbb{R} -vector space W such that $W_{\mathbb{C}} \simeq V$ is equivalent to finding a "complex conjugation" on V; more precisely:

Proposition 1.4. There is an equivalence of categories

 $\{\mathbb{R}\text{-vector spaces}\} \leftrightarrow \{\mathbb{C}\text{-vector spaces equipped with }\mathbb{C}\text{-antilinear }J\colon V\to V\text{ such that }J^2=1\}$ $W\mapsto (W_{\mathbb{C}},1_W\otimes (\text{complex conjugation}))$

$$V^J := \{ v \in V : Jv = v \} \longleftrightarrow (V, J).$$

Sketch of proof. The only tricky part is to show that given (V,J), the map $V^J \otimes_{\mathbb{R}} \mathbb{C} \to V$ sending $v \otimes c$ to cv is an isomorphism. For this, one can write down the inverse: map $v \in V$ to $\frac{1}{2}(v+Jv) \otimes 1 + \frac{1}{2i}(v-Jv) \otimes i \in V^J \otimes_{\mathbb{R}} \mathbb{C}$.

Remark 1.5. More generally, given any Galois extension of fields L/k, an action of $\operatorname{Gal}(L/k)$ on an L-vector space V is called semilinear if scalar multiplication is compatible with the actions of $\operatorname{Gal}(L/k)$ on L and V, that is, if $g(\ell v) = (g\ell)(gv)$ for all $g \in \operatorname{Gal}(L/k)$, $\ell \in L$ and $v \in V$. Then the category of k-vector spaces is equivalent to the category of k-vector spaces equipped with a semilinear $\operatorname{Gal}(L/k)$ -action. This is called descent, since it specifies what extra structure is needed on an k-vector space to make it "descend" to a k-vector space.

1.4. **Representations.** All the constructions and propositions above are natural. In particular, if G acts on W, then it acts on any of the spaces constructed from W, and likewise for V. In particular,

- If W is an $\mathbb{R}G$ -module, then $W_{\mathbb{C}}$ is a $\mathbb{C}G$ -module, and the matrix of $g \in G$ acting on W with respect to a basis is the same as the matrix of g acting on $W_{\mathbb{C}}$, so $\chi_{W_{\mathbb{C}}} = \chi_{W}$.
- If V is a $\mathbb{C}G$ -module, then \overline{V} is another $\mathbb{C}G$ -module, and $\chi_{\overline{V}} = \overline{\chi}_V$.
- If V is a $\mathbb{C}G$ -module, then $\mathbb{R}V$ is an $\mathbb{R}G$ -module. Taking the characters of both sides in Proposition 1.1 shows that $\chi_{\mathbb{R}V} = \chi_V + \overline{\chi}_V$.

A \mathbb{C} -representation V of G is said to be realizable over \mathbb{R} if $V \simeq W_{\mathbb{C}}$ for some \mathbb{R} -representation W of G. This implies that χ_V is real-valued, but we will see that the converse can fail.

2. Pairings

2.1. **Bilinear forms.** Let V be a (finite-dimensional) vector space over any field k. A function $B: V \times V \to k$ is bi-additive if it is an additive homomorphism in each argument when the other is fixed; that is, $B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)$ for all $v_1, v_2, w \in V$, and $B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2)$ for all $v, w_1, w_2 \in V$. The left kernel of B is $\{v \in V : B(v, w) = 0 \text{ for all } w \in V\}$, and the right kernel is defined similarly.

A function $B: V \times V \to k$ is a bilinear form (or bilinear pairing) if it is k-linear in each argument; that is, B is bi-additive and $B(\lambda v, w) = \lambda B(v, w)$ and $B(v, \lambda w) = \lambda B(v, w)$ for all $\lambda \in k$ and $v, w \in V$. We have

 $\{\text{bilinear forms on }V\} \simeq \operatorname{Hom}(V \otimes V, k) \simeq (V \otimes V)^* \simeq V^* \otimes V^* \simeq \operatorname{Hom}(V, V^*).$

(here Hom is Hom_k , and \otimes is \otimes_k).

Let B be a bilinear form.

- Call B symmetric if B(v, w) = B(w, v) for all $v, w \in V$.
- Call B skew-symmetric if B(v, w) = -B(w, v) for all $v, w \in V$.
- Call B alternating if B(v,v)=0 for all $v\in V$.

If char $k \neq 2$, then alternating and skew-symmetric are equivalent. (If char k = 2, then alternating is the stronger and better-behaved condition.) The map sending B to the pairing $(x,y) \mapsto B(y,x)$ is a linear automorphism of order 2 of the space of bilinear forms, so if char $k \neq 2$, it decomposes the space into +1 and -1 eigenspaces:

 $\{\text{bilinear forms}\} = \{\text{symmetric bilinear forms}\} \oplus \{\text{skew-symmetric bilinear forms}\},$

which is the same as the decomposition

$$(V \otimes V)^* \simeq (\operatorname{Sym}^2 V)^* \oplus (\bigwedge^2 V)^*.$$

- 2.2. Sesquilinear and hermitian forms. Now let V be a \mathbb{C} -vector space.
 - A sesquilinear form (or sesquilinear pairing) is a bi-additive pairing (,) that is \mathbb{C} -linear in the first variable and \mathbb{C} -antilinear in the second variable; that is $(\lambda v, w) = \lambda(v, w)$

and $(v, \lambda w) = \bar{\lambda}(v, w)$ for all $\lambda \in \mathbb{C}$ and $v, w \in V$. (The prefix "sesqui" means $1\frac{1}{2}$: the form is only \mathbb{R} -linear in the second argument.)

• A hermitian form (or hermitian pairing) is a bi-additive pairing (,) such that $(\lambda v, w) = \lambda(v, w)$ and $(w, v) = \overline{(v, w)}$ for all $\lambda \in \mathbb{C}$ and $v, w \in V$.

A hermitian pairing is sesquilinear. We have

$$\{\text{sesquilinear forms on }V\} \simeq \operatorname{Hom}(V \otimes \overline{V}, \mathbb{C}) \simeq (V \otimes \overline{V})^* \simeq V^* \otimes \overline{V}^* \simeq \operatorname{Hom}(\overline{V}, V^*).$$

2.3. Nondegenerate and positive definite forms. A bilinear form (or sesquilinear form) is called nondegenerate if its left kernel is 0, or equivalently its right kernel is 0, or equivalently the associated homomorphism $V \to V^*$ (respectively, $\overline{V} \to V^*$) is an isomorphism.

Suppose that (,) is either a bilinear form on an \mathbb{R} -vector space or a hermitian form on a \mathbb{C} -vector space. Then $(v,v) \in \mathbb{R}$ for all v. Call (,) positive definite if (v,v) > 0 for all nonzero $v \in V$. Positive definite forms are automatically nondegenerate.

3. Characters of symmetric and alternating squares

Let V be an n-dimensional \mathbb{C} -representation of G. If $g \in G$ acts on V with eigenvalues $\lambda_1, \ldots, \lambda_n$ (listed with multiplicity), then the eigenvalues of g acting on associated vector spaces are as follows:

Representation	Dimension	Eigenvalues		
\overline{V}	n	$\lambda_1,\ldots,\lambda_n$		
\overline{V}	n	$ar{\lambda}_1,\ldots,ar{\lambda}_n$		
V^*	n	$ar{\lambda}_1,\ldots,ar{\lambda}_n$		
$V \otimes V$	n^2	$\lambda_i \lambda_j$ for all (i, j)		
$\operatorname{Sym}^2 V$	n(n+1)/2	$\lambda_i \lambda_j$ for $i \leq j$		
$\bigwedge^2 V$	n(n-1)/2	$\lambda_i \lambda_j$ for $i < j$		

These are obvious if V has a basis of eigenvectors (i.e., $\rho(g)$ is diagonalizable). In general, we have the Jordan decomposition $\rho(g) = d + n$, where d is diagonalizable and n is nilpotent, and dn = nd; then d and n induce commuting diagonalizable endomorphisms and nilpotent endomorphisms of each of the other representations, so the eigenvalues of g are the same as the eigenvalues of g on each of them.

4. Classification of division algebras over \mathbb{R}

Lemma 4.1. The only finite-dimensional field extensions of \mathbb{R} are \mathbb{R} and \mathbb{C} .

Proof. The fundamental theorem of algebra states that \mathbb{C} is algebraically closed, so every finite extension of \mathbb{R} embeds in \mathbb{C} . Since $[\mathbb{C} : \mathbb{R}] = 2$, there is no room for other fields in between.

Theorem 4.2 (Frobenius 1877). The only finite-dimensional (associative) division algebras over \mathbb{R} are \mathbb{R} , \mathbb{C} , and \mathbb{H} .

Proof. Let D be a finite-dimensional (associative) division algebras over \mathbb{R} not equal to \mathbb{R} or \mathbb{C} . For any $d \in D - \mathbb{R}$, the \mathbb{R} -subalgebra $\mathbb{R}[d] \subseteq D$ generated by d is a commutative domain of finite dimension over a field, so it is a field extension of finite degree over \mathbb{R} , hence a copy of \mathbb{C} . Fix one such copy, and let i be a $\sqrt{-1}$ in it. View D as a left \mathbb{C} -vector space. Conjugation by i on D (the map $x \mapsto ixi^{-1}$) is a \mathbb{C} -linear automorphism of D, and it is of order 2 since conjugation by $i^2 = -1$ is the identity, so it decomposes D into +1 and -1 eigenspaces D^+ and D^- . Explicitly,

$$D^+ = \{x : ixi^{-1} = x\} = \{x \text{ that commute with } i\} \supseteq \mathbb{C}$$

 $D^- = \{x : ixi^{-1} = -x\}.$

If $x \in D^+$, then $\mathbb{C}[x]$ is commutative, hence a finite field extension of \mathbb{C} , but \mathbb{C} is algebraically closed, so $\mathbb{C}[x] = \mathbb{C}$, so $x \in \mathbb{C}$. Thus $D^+ = \mathbb{C}$.

Since $D \neq \mathbb{C}$, we have $D^- \neq 0$. Choose $j \in D^-$ such that $j \neq 0$. Right multiplication by j defines a \mathbb{C} -linear map $D^+ \to D^-$ (if $d \in D^+$, then $i(dj)i^{-1} = (idi^{-1})(iji^{-1}) = d(-j) = -dj$, so $dj \in D^-$), and it is injective since D is a division algebra. Thus $\dim_{\mathbb{C}} D^- \leq \dim_{\mathbb{C}} D^+ = 1$. Hence $D^- = \mathbb{C}j$. Since $\mathbb{R}[j]$ is another copy of \mathbb{C} , we have $j^2 \in \mathbb{R} + \mathbb{R}j$. On the other hand $j^2 \in D^+ = \mathbb{C}$. Thus $j^2 \in (\mathbb{R} + \mathbb{R}j) \cap \mathbb{C}$, which is \mathbb{R} , since $\mathbb{R} + \mathbb{R}j$ and \mathbb{C} are different 2-dimensional subspaces in D. Also, $j^2 \neq 0$.

If $j^2 > 0$, then $j^2 = r^2$ for some $r \in \mathbb{R}$, so (j+r)(j-r) = 0, so $j = \pm r \in \mathbb{R}$, a contradiction since $D^- \cap \mathbb{R} = 0$.

Thus
$$j^2 < 0$$
. Scale j to assume that $j^2 = -1$. Then $D = \mathbb{C} + \mathbb{C}j = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}ij$ with $i^2 = -1$, $j^2 = -1$, and $ij = -ji$, so $D \simeq \mathbb{H}$.

If D is an \mathbb{R} -algebra, then $D \otimes_{\mathbb{R}} \mathbb{C}$ is a \mathbb{C} -algebra.

Proposition 4.3. We have

$$\mathbb{R} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C}$$

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C} \times \mathbb{C}$$

$$\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \simeq M_2(\mathbb{C}).$$

Proof. The first isomorphism is a special case of the general isomorphism $A \otimes_A B \simeq B$.

The map $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ sending $a \otimes b$ to $(ab, a\bar{b})$ is an isomorphism by Proposition 1.1, and it respects multiplication.

There is a \mathbb{C} -algebra homomorphism $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \to \mathrm{M}_2(\mathbb{C})$. sending $h \otimes 1$ for each $h \in \mathbb{H}$ to the linear endomorphism $x \mapsto hx$ of the 2-dimensional right \mathbb{C} -vector space \mathbb{H} with basis 1, j.

Explicitly, we have

$$1 \otimes 1 \longmapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$i \otimes 1 \longmapsto \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
$$j \otimes 1 \longmapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$ij \otimes 1 \longmapsto \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.$$

For example, to get the image of $i \otimes 1$, observe that

$$i1 = 1 \cdot i + j \cdot 0$$

$$ij = 1 \cdot 0 + j \cdot (-i).$$

The four matrices on the right are linearly independent over \mathbb{C} , so $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \to M_2(\mathbb{C})$ is an isomorphism of 4-dimensional \mathbb{C} -algebras.

5. Real and complex representations

Let G be a finite group. Let W be an irreducible \mathbb{R} -representation of G. Let V be one irreducible \mathbb{C} -subrepresentation of $W_{\mathbb{C}}$. The following table gives facts about this situation.

D	$\operatorname{End}_G(W_{\mathbb{C}})$	$W_{\mathbb{C}}$	$_{\mathbb{R}}V$	$\dim_{\mathbb{R}} W$	$\operatorname{dim}_{\mathbb{C}} V$	V realiz. over \mathbb{R} ?	$V \simeq \overline{V}$? χ_V real-valued?		FS(V)
\mathbb{R}	\mathbb{C}	V	$W \oplus W$	n	n	YES	YES	YES (symmetric)	1
\mathbb{C}	$\mathbb{C} imes \mathbb{C}$	$V \oplus \overline{V}$	W	2n	n	NO	NO	NO	0
H	$\mathrm{M}_2(\mathbb{C})$	$V \oplus V$	W	4n	2n	NO	YES	YES (skew-sym.)	-1

The columns are as follows:

- First, $D := \operatorname{End}_G W$. By Schur's lemma, D is a division algebra over \mathbb{R} , so D is \mathbb{R} , \mathbb{C} , or \mathbb{H} . Accordingly, V is said to be of real type, complex type, or quaternionic type. Let n be the dimension of W as a right D-vector space.
- We have $\operatorname{End}_G(W_{\mathbb{C}}) \simeq (\operatorname{End}_G W) \otimes_{\mathbb{R}} \mathbb{C} = D \otimes_{\mathbb{R}} \mathbb{C}$ by taking G-invariants in Corollary 1.3.
- The $W_{\mathbb{C}}$ column gives the decomposition of $W_{\mathbb{C}}$ into irreducible \mathbb{C} -representations.
- The $\mathbb{R}V$ column gives the decomposition of $\mathbb{R}V$ into irreducible \mathbb{R} -representations.
- The $\dim_{\mathbb{R}} W$ column gives $\dim_{\mathbb{R}} W = [D : \mathbb{R}] \dim_{D} W = [D : \mathbb{R}]n$.

- The $\dim_{\mathbb{C}} V$ column entries follow from the $W_{\mathbb{C}}$ column and the column giving $\dim_{\mathbb{R}} W = \dim_{\mathbb{C}}(W_{\mathbb{C}})$.
- Is V realizable over \mathbb{R} ? That is, is $V \simeq X_{\mathbb{C}}$ for some \mathbb{R} -representation X of G?
- Is $V \simeq \overline{V}$ as a \mathbb{C} -representation of G? Equivalently, is $\chi_V = \overline{\chi}_V$? That is, is it true that $\chi_V(g) \in \mathbb{R}$ for all $g \in G$?
- Is $V \simeq V^*$ as a \mathbb{C} -representation of G? Since

$$\operatorname{Hom}(V, V^*) \simeq \{ \text{bilinear forms on } V \}$$

as a \mathbb{C} -representation of G, and since isomorphisms correspond to nondegenerate bilinear forms, taking G-invariants shows that this question is the same as asking whether there exists a nondegenerate G-invariant bilinear form $B: V \times V \to \mathbb{C}$. We will show that in the cases where B exists, B is either symmetric or skew-symmetric.

• The Frobenius-Schur indicator of a \mathbb{C} -representation V of G is defined by

$$FS(V) := \frac{1}{\#G} \sum_{g \in G} \chi_V(g^2).$$

Proof that the table is correct. Some columns have already been checked above. Let us now verify the rest.

 $W_{\mathbb{C}}$ column: In general, if V_1, \ldots, V_r are the irreducible \mathbb{C} -representations of G, and $X = \bigoplus_{i=1}^r n_i V_i$, then $\operatorname{End}_G X = \prod_{i=1}^r \operatorname{M}_{n_i}(\mathbb{C})$. Thus the $\operatorname{End}_G(W_{\mathbb{C}})$ column implies the $W_{\mathbb{C}}$ column, except that in the \mathbb{C} case, we deduce only that $W_{\mathbb{C}} \simeq V \oplus V'$ for some distinct \mathbb{C} -representations V and V'. In that case, W has an action of $D = \mathbb{C}$, and hence $W = \mathbb{R}W$ for some \mathbb{C} -vector space \mathbb{W} ; then $W_{\mathbb{C}} = (\mathbb{R}W)_{\mathbb{C}} \simeq \mathbb{W} + \overline{\mathbb{W}}$, but then the Jordan-Hölder theorem implies that V, V' must be $\mathbb{W}, \overline{\mathbb{W}}$ in some order, so $V' \simeq \overline{V}$.

 χ_V real-valued column: In the \mathbb{R} case, $\chi_V = \chi_{W_{\mathbb{C}}} = \chi_W$, which is real-valued. In the \mathbb{C} case, $V \not\simeq \overline{V}$, so χ_V is not real-valued. In the \mathbb{H} case, $2\chi_V = \chi_{V \oplus V} = \chi_{W_{\mathbb{C}}} = \chi_W$, so χ_V is real-valued.

 $_{\mathbb{R}}V$ column: Since V is a subrepresentation of $W_{\mathbb{C}}$, the restriction of scalars $_{\mathbb{R}}V$ is a subrepresentation of $_{\mathbb{R}}(W_{\mathbb{C}})$, which is isomorphic to $W \oplus W$ by Proposition 1.1(b). Thus $_{\mathbb{R}}V$ is a direct sum of copies of W. If $D = \mathbb{R}$, then $V = W_{\mathbb{C}}$, so $_{\mathbb{R}}V \simeq W \oplus W$. If D is \mathbb{C} or \mathbb{H} , then V is half the dimension of $W_{\mathbb{C}}$, so $V \simeq W$.

Realizability over \mathbb{R} : In the \mathbb{R} case, $V \simeq W_{\mathbb{C}}$, so V is realizable by definition. In the \mathbb{C} and \mathbb{H} cases, if $V \simeq X_{\mathbb{C}}$ for some \mathbb{R} -representation X, then $W \simeq_{\mathbb{R}} V \simeq_{\mathbb{R}} (X_{\mathbb{C}}) \simeq X \oplus X$ by Proposition 1.1(b), contradicting the irreducibility of W.

Nondegenerate G-invariant bilinear form: The averaging argument shows that there exists a positive definite G-invariant hermitian form (,) on V. Fix one; it defines an isomorphism $\overline{V} \to V^*$. Thus $V \simeq \overline{V}$ if and only if $V \simeq V^*$, so these two columns have the same YES/NO

answers. By Section 2.1, we have isomorphisms

 $\operatorname{Hom}(V, V^*) \simeq \{\text{symmetric bilinear forms}\} \oplus \{\text{skew-symmetric bilinear forms}\}.$

Taking G-invariants yields

 $\operatorname{Hom}_G(V, V^*) \simeq \{G\text{-invariant symm. bilinear forms}\} \oplus \{G\text{-invariant skew-symm. bilinear forms}\}.$

Suppose that $V \simeq V^*$. Then $\operatorname{Hom}_G(V,V^*) \simeq \operatorname{End}_G V \simeq \mathbb{C}$ by Schur's lemma, so there exists a unique nondegenerate G-invariant bilinear form B up to a scalar in \mathbb{C}^{\times} , and it is either symmetric or skew-symmetric. Since B is nondegenerate, the \mathbb{C} -linear functional (-,w) equals B(-,Jw) for a unique $Jw \in V$. Then $J:=V \to V$ is \mathbb{C} -antilinear, and it is an isomorphism since $(\ ,\)$ too is nondegenerate. Now J^2 is a \mathbb{C} -linear automorphism of the representation V, so by Schur's lemma, J^2 is multiplication-by-r for some $r \in \mathbb{C}^{\times}$. Also by Schur's lemma, every other \mathbb{C} -antilinear G-equivariant isomorphism is cJ for some $c \in \mathbb{C}$, and replacing J by cJ changes r to $c\bar{c}r$ (Proof: For $v \in V$, if JJv = rv, then $cJ(cJ(v)) = c\bar{c}rJ(J(v)) = c\bar{c}rv$).

• If B is symmetric, then for any choice of nonzero $v \in V$,

$$(Jv, Jv) = B(Jv, J^2v) = B(Jv, rv) = rB(Jv, v) = rB(v, Jv) = r(v, v)$$

but (,) is positive definite, so r is a positive real number.

• If B is skew-symmetric, the same calculation shows that r is a negative real number.

Finally, the following are equivalent:

- V is realizable over \mathbb{R}
- We can choose $c \in \mathbb{C}^{\times}$ so that $(cJ)^2 = 1$.
- We can choose $c \in \mathbb{C}^{\times}$ so that $c\bar{c}r = 1$.
- \bullet r is positive.
- B is symmetric.

Frobenius-Schur indicator: We have

$$\overline{\mathrm{FS}(V)} = \frac{1}{\#G} \sum_{g} \chi_{V^*}(g^2)$$

$$= \frac{1}{\#G} \sum_{g} \left(\chi_{(\mathrm{Sym}^2 V)^*}(g) - \chi_{(\bigwedge^2 V)^*}(g) \right) \quad \text{(by the formulas in Section 3)}$$

$$= (\mathbb{C}, (\mathrm{Sym}^2 V)^*) - (\mathbb{C}, (\bigwedge^2 V)^*)$$

$$= \dim\{G\text{-invariant symm. bilinear forms}\} - \dim\{G\text{-invariant skew-symm. bilinear forms}\}$$

$$= \begin{cases} 1 - 0 \\ 0 - 0 \end{cases} = \begin{cases} 1, & \text{if } D = \mathbb{R}; \\ 0, & \text{if } D = \mathbb{C}; \\ -1, & \text{if } D = \mathbb{H}. \end{cases}$$

Proposition 5.1. Every irreducible \mathbb{C} -representation V of G occurs in $W_{\mathbb{C}}$ for a unique irreducible \mathbb{R} -representation W of G.

Proof. By Proposition 1.1(a), V occurs in $(\mathbb{R}^V)_{\mathbb{C}}$, so V occurs in $W_{\mathbb{C}}$ for some irreducible \mathbb{R} -subrepresentation W of \mathbb{R}^V . If W is any irreducible \mathbb{R} -representation such that V occurs in $W_{\mathbb{C}}$, then the \mathbb{R}^V column of the table shows that W equals the unique irreducible \mathbb{R} -subrepresentation of \mathbb{R}^V , so W is uniquely determined by V.

Theorem 5.2 (Frobenius–Schur). We have

$$\#\{g \in G : g^2 = 1\} = \sum_{V} (\dim V) FS(V),$$

where V ranges over the irreducible \mathbb{C} -representations of G up to isomorphism.

Proof. The character of the regular representation $\mathbb{C}G$ is given by

$$\chi(g) = \begin{cases} \#G, & \text{if } g = 1; \\ 0, & \text{if } g \neq 1. \end{cases}$$

Thus

$$\#\{g \in G : g^2 = 1\} = \frac{1}{\#G} \sum_g \chi(g^2)$$
$$= \operatorname{FS}(\mathbb{C}G)$$
$$= \sum_V (\dim V) \operatorname{FS}(V),$$

since $\mathbb{C}G \simeq \bigoplus_{V} (\dim V)V$.

Remark 5.3. Everything above for finite groups G holds also for compact groups G. The only changes required are:

- All representations should be given by *continuous* homomorphisms.
- Averages over G (such as in the definition of the Frobenius–Schur indicator) should be defined as integrals with respect to normalized Haar measure.

Remark 5.4. Let k be a field such that char $k \nmid \#G$. Let X_1, \ldots, X_r be the irreducible k-representations of G. Let $D_i = \operatorname{End}_G X_i$. Let n_i be the dimension of X_i as a right D_i -vector space. Then

$$kG \simeq \prod_{i=1}^r \operatorname{End}_{D_i} X_i$$

 $\simeq \prod_{i=1}^r \operatorname{M}_{n_i}(D_i).$

In particular,

$$\mathbb{R}G \simeq \prod M_{d_i}(\mathbb{R}) \times \prod M_{e_j}(\mathbb{C}) \times \prod M_{f_k}(\mathbb{H})$$

for some positive integers d_i, e_j, f_k , and tensoring with \mathbb{C} yields

$$\mathbb{C}G \simeq \prod M_{d_i}(\mathbb{C}) \times \prod (M_{e_j}(\mathbb{C}) \times M_{e_j}(\mathbb{C})) \times \prod M_{2f_k}(\mathbb{C}).$$

6. Some conclusions to remember

- Every irreducible \mathbb{C} -representation V of G occurs in $W_{\mathbb{C}}$ for a unique irreducible \mathbb{R} -representation of G.
- The representation V is said to be of real, complex, or quaternionic type according to whether $\operatorname{End}_G W$ is \mathbb{R} , \mathbb{C} , or \mathbb{H} .
- The type can be determined from the character χ_V by computing the Frobenius–Schur indicator.
- The representation V is realizable over \mathbb{R} if and only if V is of real type, which happens if and only if there exists a nondegenerate G-invariant symmetric bilinear form $B: V \times V \to \mathbb{C}$.
- The representation V is of complex type if and only if $V \not\simeq V^*$; in this case, there does not exist any nondegenerate G-invariant bilinear form $B: V \times V \to \mathbb{C}$.
- The representation V is of quaternionic type if and only if there exists a nondegenerate G-invariant skew-symmetric bilinear form $B: V \times V \to \mathbb{C}$.
- If V is realizable over \mathbb{R} , then χ_V is real-valued. The converse is not true in general (it fails exactly in the quaternionic case).

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA 02139-4307, USA

E-mail address: poonen@math.mit.edu URL: http://math.mit.edu/~poonen/