REAL REPRESENTATIONS

BJORN POONEN

The goal of these notes is to explain the classification of real representations of a finite group. Throughout, G is a finite group, W is a \mathbb{R}-vector space or $\mathbb{R} G$-module, and V is a \mathbb{C}-vector space or $\mathbb{C} G$-module (except in Section 2, where V is over any field). Vector spaces and representations are assumed to be finite-dimensional.

1. Vector spaces over \mathbb{R} and \mathbb{C}

1.1. Constructions. To get from \mathbb{R}^{n} to \mathbb{C}^{n}, we can tensor with \mathbb{C}. In a more coordinate-free manner, if W is an \mathbb{R}-vector space, then its complexification $W_{\mathbb{C}}:=W \otimes_{\mathbb{R}} \mathbb{C}$ is a \mathbb{C}-vector space. We can view W as an \mathbb{R}-subspace of $W_{\mathbb{C}}$ by identifying each $w \in W$ with $w \otimes 1 \in W_{\mathbb{C}}$. Then an \mathbb{R}-basis of W is also a \mathbb{C}-basis of $W_{\mathbb{C}}$. In particular, $W_{\mathbb{C}}$ has the same dimension as W (but is a vector space over a different field).

Conversely, we can view \mathbb{C}^{n} as $\mathbb{R}^{2 n}$ if we forget how to multiply by complex scalars that are not real. In a more coordinate-free manner, if V is a \mathbb{C}-vector space, then its restriction of scalars is the \mathbb{R}-vector space ${ }_{\mathbb{R}} V$ with the same underlying abelian group but with only scalar multiplication by real numbers. If v_{1}, \ldots, v_{n} is a \mathbb{C}-basis of V, then $v_{1}, i v_{1}, \ldots, v_{n}, i v_{n}$ is an \mathbb{R}-basis of $\mathbb{R} V$. In particular, $\operatorname{dim}\left({ }_{\mathbb{R}} V\right)=2 \operatorname{dim} V$.

Also, if V is a \mathbb{C}-vector space, then the complex conjugate vector space \bar{V} has the same underlying group but a new scalar multiplication \cdot defined by $\lambda \cdot v:=\bar{\lambda} v$, where $\bar{\lambda} v$ is defined using the original scalar multiplication.

Complexification and restriction of scalars are not inverse constructions. Instead:
Proposition 1.1 (Complexification and restriction of scalars).
(a) If V is a \mathbb{C}-vector space, then the map

$$
\begin{aligned}
&(\mathbb{R} V)_{\mathbb{C}} \longrightarrow V \oplus \bar{V} \\
& v \otimes c \longmapsto(c v, \bar{c} v)
\end{aligned}
$$

is an isomorphism of \mathbb{C}-vector spaces.
(b) If W is an \mathbb{R}-vector space, then

$$
\mathbb{R}^{(}\left(W_{\mathbb{C}}\right) \simeq W \oplus W
$$

Proof.
Date: October 21, 2016.
(a) The map is \mathbb{C}-linear, by definition of the scalar multiplication on \bar{V}. It sends $x \otimes 1+y \otimes i$ to $(x+i y, x-i y)$, and one can recover $x, y \in V$ uniquely from $(x+i y, x-i y)$, so the map is an isomorphism.
(b) We have $\mathbb{R}^{(}\left(W \otimes_{\mathbb{R}} \mathbb{C}\right)=W \otimes_{\mathbb{R}}(\mathbb{R} \oplus i \mathbb{R})=W \oplus i W \simeq W \oplus W$.
1.2. Linear maps between complexifications. Tensoring $\mathrm{M}_{m, n}(\mathbb{R})$ with \mathbb{C} yields $\mathrm{M}_{m, n}(\mathbb{C})$. The coordinate-free version of this is:

Proposition 1.2. If W and X are \mathbb{R}-vector spaces, then

$$
\operatorname{Hom}_{\mathbb{R}}(W, X) \otimes_{\mathbb{R}} \mathbb{C} \simeq \operatorname{Hom}_{\mathbb{C}}\left(W_{\mathbb{C}}, X_{\mathbb{C}}\right)
$$

Corollary 1.3. If W is an \mathbb{R}-vector space, then

$$
\operatorname{End}_{\mathbb{R}}(W) \otimes_{\mathbb{R}} \mathbb{C} \simeq \operatorname{End}_{\mathbb{C}}\left(W_{\mathbb{C}}\right)
$$

1.3. Descent theory. Let V and X be \mathbb{C}-vector spaces. A homomorphism $J: V \rightarrow X$ of abelian groups is called \mathbb{C}-antilinear if $J(\lambda v)=\bar{\lambda} J(v)$ for all $\lambda \in \mathbb{C}$ and $v \in V$; to give such a J is equivalent to giving a \mathbb{C}-linear map $V \rightarrow \bar{X}$.

To recover \mathbb{R}^{n} from its complexifcation \mathbb{C}^{n} one takes the vectors fixed by coordinate-wise complex conjugation. More generally, given a \mathbb{C}-vector space V, finding a \mathbb{R}-vector space W such that $W_{\mathbb{C}} \simeq V$ is equivalent to finding a "complex conjugation" on V; more precisely:

Proposition 1.4. There is an equivalence of categories
$\{\mathbb{R}$-vector spaces $\} \leftrightarrow\left\{\mathbb{C}\right.$-vector spaces equipped with \mathbb{C}-antilinear $J: V \rightarrow V$ such that $\left.J^{2}=1\right\}$ $W \mapsto\left(W_{\mathbb{C}}, 1_{W} \otimes(\right.$ complex conjugation $\left.)\right)$
$V^{J}:=\{v \in V: J v=v\} \hookleftarrow(V, J)$.
Sketch of proof. The only tricky part is to show that given (V, J), the map $V^{J} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow V$ sending $v \otimes c$ to $c v$ is an isomorphism. For this, one can write down the inverse: map $v \in V$ to $\frac{1}{2}(v+J v) \otimes 1+\frac{1}{2 i}(v-J v) \otimes i \in V^{J} \otimes_{\mathbb{R}} \mathbb{C}$.

Remark 1.5. More generally, given any Galois extension of fields L / k, an action of $\operatorname{Gal}(L / k)$ on an L-vector space V is called semilinear if scalar multiplication is compatible with the actions of $\operatorname{Gal}(L / k)$ on L and V, that is, if ${ }^{g}(\ell v)=\left({ }^{g} \ell\right)\left({ }^{g} v\right)$ for all $g \in \operatorname{Gal}(L / k), \ell \in L$ and $v \in V$. Then the category of k-vector spaces is equivalent to the category of L-vector spaces equipped with a semilinear $\operatorname{Gal}(L / k)$-action. This is called descent, since it specifies what extra structure is needed on an L-vector space to make it "descend" to a k-vector space.
1.4. Representations. All the constructions and propositions above are natural. In particular, if G acts on W, then it acts on any of the spaces constructed from W, and likewise for V. In particular,

- If W is an $\mathbb{R} G$-module, then $W_{\mathbb{C}}$ is a $\mathbb{C} G$-module, and the matrix of $g \in G$ acting on W with respect to a basis is the same as the matrix of g acting on $W_{\mathbb{C}}$, so $\chi_{W_{\mathbb{C}}}=\chi_{W}$.
- If V is a $\mathbb{C} G$-module, then \bar{V} is another $\mathbb{C} G$-module, and $\chi_{\bar{V}}=\bar{\chi}_{V}$.
- If V is a $\mathbb{C} G$-module, then ${ }_{\mathbb{R}} V$ is an $\mathbb{R} G$-module. Taking the characters of both sides in Proposition 1.1 shows that $\chi_{\mathbb{R}} V=\chi_{V}+\bar{\chi}_{V}$.

A \mathbb{C}-representation V of G is said to be realizable over \mathbb{R} if $V \simeq W_{\mathbb{C}}$ for some \mathbb{R}-representation W of G. This implies that χ_{V} is real-valued, but we will see that the converse can fail.

2. Pairings

2.1. Bilinear forms. Let V be a (finite-dimensional) vector space over any field k. A function $B: V \times V \rightarrow k$ is bi-additive if it is an additive homomorphism in each argument when the other is fixed; that is, $B\left(v_{1}+v_{2}, w\right)=B\left(v_{1}, w\right)+B\left(v_{2}, w\right)$ for all $v_{1}, v_{2}, w \in V$, and $B\left(v, w_{1}+w_{2}\right)=B\left(v, w_{1}\right)+B\left(v, w_{2}\right)$ for all $v, w_{1}, w_{2} \in V$. The left kernel of B is $\{v \in V: B(v, w)=0$ for all $w \in V\}$, and the right kernel is defined similarly.

A function $B: V \times V \rightarrow k$ is a bilinear form (or bilinear pairing) if it is k-linear in each argument; that is, B is bi-additive and $B(\lambda v, w)=\lambda B(v, w)$ and $B(v, \lambda w)=\lambda B(v, w)$ for all $\lambda \in k$ and $v, w \in V$. We have
$\{$ bilinear forms on $V\} \simeq \operatorname{Hom}(V \otimes V, k) \simeq(V \otimes V)^{*} \simeq V^{*} \otimes V^{*} \simeq \operatorname{Hom}\left(V, V^{*}\right)$.
(here Hom is Hom_{k}, and \otimes is \otimes_{k}).
Let B be a bilinear form.

- Call B symmetric if $B(v, w)=B(w, v)$ for all $v, w \in V$.
- Call B skew-symmetric if $B(v, w)=-B(w, v)$ for all $v, w \in V$.
- Call B alternating if $B(v, v)=0$ for all $v \in V$.

If char $k \neq 2$, then alternating and skew-symmetric are equivalent. (If char $k=2$, then alternating is the stronger and better-behaved condition.) The map sending B to the pairing $(x, y) \mapsto B(y, x)$ is a linear automorphism of order 2 of the space of bilinear forms, so if char $k \neq 2$, it decomposes the space into +1 and -1 eigenspaces:
$\{$ bilinear forms $\}=\{$ symmetric bilinear forms $\} \oplus\{$ skew-symmetric bilinear forms $\}$,
which is the same as the decomposition

$$
(V \otimes V)^{*} \simeq\left(\operatorname{Sym}^{2} V\right)^{*} \oplus\left(\bigwedge^{2} V\right)^{*}
$$

2.2. Sesquilinear and hermitian forms. Now let V be a \mathbb{C}-vector space.

- A sesquilinear form (or sesquilinear pairing) is a bi-additive pairing (,) that is \mathbb{C}-linear in the first variable and \mathbb{C}-antilinear in the second variable; that is $(\lambda v, w)=\lambda(v, w)$
and $(v, \lambda w)=\bar{\lambda}(v, w)$ for all $\lambda \in \mathbb{C}$ and $v, w \in V$. (The prefix "sesqui" means $1 \frac{1}{2}$: the form is only \mathbb{R}-linear in the second argument.)
- A hermitian form (or hermitian pairing) is a bi-additive pairing (,) such that $(\lambda v, w)=$ $\lambda(v, w)$ and $(w, v)=\overline{(v, w)}$ for all $\lambda \in \mathbb{C}$ and $v, w \in V$.

A hermitian pairing is sesquilinear. We have
$\{$ sesquilinear forms on $V\} \simeq \operatorname{Hom}(V \otimes \bar{V}, \mathbb{C}) \simeq(V \otimes \bar{V})^{*} \simeq V^{*} \otimes \bar{V}^{*} \simeq \operatorname{Hom}\left(\bar{V}, V^{*}\right)$.
2.3. Nondegenerate and positive definite forms. A bilinear form (or sesquilinear form) is called nondegenerate if its left kernel is 0 , or equivalently its right kernel is 0 , or equivalently the associated homomorphism $V \rightarrow V^{*}$ (respectively, $\bar{V} \rightarrow V^{*}$) is an isomorphism.

Suppose that (,) is either a bilinear form on an \mathbb{R}-vector space or a hermitian form on a \mathbb{C}-vector space. Then $(v, v) \in \mathbb{R}$ for all v. Call (,) positive definite if $(v, v)>0$ for all nonzero $v \in V$. Positive definite forms are automatically nondegenerate.

3. Characters of symmetric and alternating squares

Let V be an n-dimensional \mathbb{C}-representation of G. If $g \in G$ acts on V with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (listed with multiplicity), then the eigenvalues of g acting on associated vector spaces are as follows:

Representation	Dimension	Eigenvalues
V	n	$\lambda_{1}, \ldots, \lambda_{n}$
\bar{V}	n	$\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{n}$
V^{*}	n	$\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{n}$
$V \otimes V$	n^{2}	$\lambda_{i} \lambda_{j}$ for all (i, j)
$\operatorname{Sym}^{2} V$	$n(n+1) / 2$	$\lambda_{i} \lambda_{j}$ for $i \leq j$
$\bigwedge^{2} V$	$n(n-1) / 2$	$\lambda_{i} \lambda_{j}$ for $i<j$

These are obvious if V has a basis of eigenvectors (i.e., $\rho(g)$ is diagonalizable). In general, we have the Jordan decomposition $\rho(g)=d+n$, where d is diagonalizable and n is nilpotent, and $d n=n d$; then d and n induce commuting diagonalizable endomorphisms and nilpotent endomorphisms of each of the other representations, so the eigenvalues of g are the same as the eigenvalues of d on each of them.

4. Classification of division algebras over \mathbb{R}

Lemma 4.1. The only finite-dimensional field extensions of \mathbb{R} are \mathbb{R} and \mathbb{C}.
Proof. The fundamental theorem of algebra states that \mathbb{C} is algebraically closed, so every finite extension of \mathbb{R} embeds in \mathbb{C}. Since $[\mathbb{C}: \mathbb{R}]=2$, there is no room for other fields in between.

Theorem 4.2 (Frobenius 1877). The only finite-dimensional (associative) division algebras over \mathbb{R} are \mathbb{R}, \mathbb{C}, and \mathbb{H}.

Proof. Let D be a finite-dimensional (associative) division algebras over \mathbb{R} not equal to \mathbb{R} or \mathbb{C}. For any $d \in D-\mathbb{R}$, the \mathbb{R}-subalgebra $\mathbb{R}[d] \subseteq D$ generated by d is a commutative domain of finite dimension over a field, so it is a field extension of finite degree over \mathbb{R}, hence a copy of \mathbb{C}. Fix one such copy, and let i be a $\sqrt{-1}$ in it. View D as a left \mathbb{C}-vector space. Conjugation by i on D (the map $x \mapsto i x i^{-1}$) is a \mathbb{C}-linear automorphism of D, and it is of order 2 since conjugation by $i^{2}=-1$ is the identity, so it decomposes D into +1 and -1 eigenspaces D^{+}and D^{-}. Explicitly,

$$
\begin{aligned}
& D^{+}=\left\{x: i x i^{-1}=x\right\}=\{x \text { that commute with } i\} \supseteq \mathbb{C} \\
& D^{-}=\left\{x: i x i^{-1}=-x\right\} .
\end{aligned}
$$

If $x \in D^{+}$, then $\mathbb{C}[x]$ is commutative, hence a finite field extension of \mathbb{C}, but \mathbb{C} is algebraically closed, so $\mathbb{C}[x]=\mathbb{C}$, so $x \in \mathbb{C}$. Thus $D^{+}=\mathbb{C}$.

Since $D \neq \mathbb{C}$, we have $D^{-} \neq 0$. Choose $j \in D^{-}$such that $j \neq 0$. Right multiplication by j defines a \mathbb{C}-linear map $D^{+} \rightarrow D^{-}$(if $d \in D^{+}$, then $i(d j) i^{-1}=\left(i d i^{-1}\right)\left(i j i^{-1}\right)=d(-j)=-d j$, so $d j \in D^{-}$), and it is injective since D is a division algebra. Thus $\operatorname{dim}_{\mathbb{C}} D^{-} \leq \operatorname{dim}_{\mathbb{C}} D^{+}=1$. Hence $D^{-}=\mathbb{C} j$. Since $\mathbb{R}[j]$ is another copy of \mathbb{C}, we have $j^{2} \in \mathbb{R}+\mathbb{R} j$. On the other hand $j^{2} \in D^{+}=\mathbb{C}$. Thus $j^{2} \in(\mathbb{R}+\mathbb{R} j) \cap \mathbb{C}$, which is \mathbb{R}, since $\mathbb{R}+\mathbb{R} j$ and \mathbb{C} are different 2-dimensional subspaces in D. Also, $j^{2} \neq 0$.

If $j^{2}>0$, then $j^{2}=r^{2}$ for some $r \in \mathbb{R}$, so $(j+r)(j-r)=0$, so $j= \pm r \in \mathbb{R}$, a contradiction since $D^{-} \cap \mathbb{R}=0$.

Thus $j^{2}<0$. Scale j to assume that $j^{2}=-1$. Then $D=\mathbb{C}+\mathbb{C} j=\mathbb{R}+\mathbb{R} i+\mathbb{R} j+\mathbb{R} i j$ with $i^{2}=-1, j^{2}=-1$, and $i j=-j i$, so $D \simeq \mathbb{H}$.

If D is an \mathbb{R}-algebra, then $D \otimes_{\mathbb{R}} \mathbb{C}$ is a \mathbb{C}-algebra.

Proposition 4.3. We have

$$
\begin{aligned}
& \mathbb{R} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C} \\
& \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathbb{C} \times \mathbb{C} \\
& \mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathrm{M}_{2}(\mathbb{C}) .
\end{aligned}
$$

Proof. The first isomorphism is a special case of the general isomorphism $A \otimes_{A} B \simeq B$.
The map $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow \mathbb{C} \times \mathbb{C}$ sending $a \otimes b$ to $(a b, a \bar{b})$ is an isomorphism by Proposition 1.1 , and it respects multiplication.

There is a \mathbb{C}-algebra homomorphism $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow \mathrm{M}_{2}(\mathbb{C})$. sending $h \otimes 1$ for each $h \in \mathbb{H}$ to the linear endomorphism $x \mapsto h x$ of the 2-dimensional right \mathbb{C}-vector space \mathbb{H} with basis $1, j$.

Explicitly, we have

$$
\begin{aligned}
& 1 \otimes 1 \longmapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
& i \otimes 1 \longmapsto\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
& j \otimes 1 \longmapsto\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& i j \otimes 1 \longmapsto\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) .
\end{aligned}
$$

For example, to get the image of $i \otimes 1$, observe that

$$
\begin{aligned}
i 1 & =1 \cdot i+j \cdot 0 \\
i j & =1 \cdot 0+j \cdot(-i) .
\end{aligned}
$$

The four matrices on the right are linearly independent over \mathbb{C}, so $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow M_{2}(\mathbb{C})$ is an isomorphism of 4 -dimensional \mathbb{C}-algebras.

5. REAL AND COMPLEX REPRESENTATIONS

Let G be a finite group. Let W be an irreducible \mathbb{R}-representation of G. Let V be one irreducible \mathbb{C}-subrepresentation of $W_{\mathbb{C}}$. The following table gives facts about this situation.

D	$\operatorname{End}_{G}\left(W_{\mathbb{C}}\right)$	$W_{\mathbb{C}}$	$\mathbb{R} V$	$\operatorname{dim}_{\mathbb{R}} W$	$\operatorname{dim}_{\mathbb{C}} V$	V realiz. over $\mathbb{R} ?$	$V \simeq \bar{V} ?$ χ_{V} real-valued?	$V \simeq V^{* ?}$ $\exists G$-inv. $B ?$	$\mathrm{FS}(V)$
\mathbb{R}	\mathbb{C}	V	$W \oplus W$	n	n	YES	YES	YES $($ symmetric $)$	1
\mathbb{C}	$\mathbb{C} \times \mathbb{C}$	$V \oplus \bar{V}$	W	$2 n$	n	NO	NO	NO	0
\mathbb{H}	$\mathrm{M}_{2}(\mathbb{C})$	$V \oplus V$	W	$4 n$	$2 n$	NO	YES	YES $($ skew-sym. $)$	-1

The columns are as follows:

- First, $D:=\operatorname{End}_{G} W$. By Schur's lemma, D is a division algebra over \mathbb{R}, so D is \mathbb{R}, \mathbb{C}, or \mathbb{H}. Accordingly, V is said to be of real type, complex type, or quaternionic type. Let n be the dimension of W as a right D-vector space.
- We have $\operatorname{End}_{G}\left(W_{\mathbb{C}}\right) \simeq\left(\operatorname{End}_{G} W\right) \otimes_{\mathbb{R}} \mathbb{C}=D \otimes_{\mathbb{R}} \mathbb{C}$ by taking G-invariants in Corollary 1.3 .
- The $W_{\mathbb{C}}$ column gives the decomposition of $W_{\mathbb{C}}$ into irreducible \mathbb{C}-representations.
- The ${ }_{\mathbb{R}} V$ column gives the decomposition of ${ }_{\mathbb{R}} V$ into irreducible \mathbb{R}-representations.
- The $\operatorname{dim}_{\mathbb{R}} W$ column gives $\operatorname{dim}_{\mathbb{R}} W=[D: \mathbb{R}] \operatorname{dim}_{D} W=[D: \mathbb{R}] n$.
- The $\operatorname{dim}_{\mathbb{C}} V$ column entries follow from the $W_{\mathbb{C}}$ column and the column giving $\operatorname{dim}_{\mathbb{R}} W=\operatorname{dim}_{\mathbb{C}}\left(W_{\mathbb{C}}\right)$.
- Is V realizable over \mathbb{R} ? That is, is $V \simeq X_{\mathbb{C}}$ for some \mathbb{R}-representation X of G ?
- Is $V \simeq \bar{V}$ as a \mathbb{C}-representation of G ? Equivalently, is $\chi_{V}=\bar{\chi}_{V}$? That is, is it true that $\chi_{V}(g) \in \mathbb{R}$ for all $g \in G$?
- Is $V \simeq V^{*}$ as a \mathbb{C}-representation of G ? Since

$$
\operatorname{Hom}\left(V, V^{*}\right) \simeq\{\text { bilinear forms on } V\}
$$

as a \mathbb{C}-representation of G, and since isomorphisms correspond to nondegenerate bilinear forms, taking G-invariants shows that this question is the same as asking whether there exists a nondegenerate G-invariant bilinear form $B: V \times V \rightarrow \mathbb{C}$. We will show that in the cases where B exists, B is either symmetric or skew-symmetric.

- The Frobenius-Schur indicator of a \mathbb{C}-representation V of G is defined by

$$
\operatorname{FS}(V):=\frac{1}{\# G} \sum_{g \in G} \chi_{V}\left(g^{2}\right)
$$

Proof that the table is correct. Some columns have already been checked above. Let us now verify the rest.
$W_{\mathbb{C}}$ column: In general, if V_{1}, \ldots, V_{r} are the irreducible \mathbb{C}-representations of G, and $X=\bigoplus_{i=1}^{r} n_{i} V_{i}$, then $\operatorname{End}_{G} X=\prod_{i=1}^{r} \mathrm{M}_{n_{i}}(\mathbb{C})$. Thus the $\operatorname{End}_{G}\left(W_{\mathbb{C}}\right)$ column implies the $W_{\mathbb{C}}$ column, except that in the \mathbb{C} case, we deduce only that $W_{\mathbb{C}} \simeq V \oplus V^{\prime}$ for some distinct \mathbb{C}-representations V and V^{\prime}. In that case, W has an action of $D=\mathbb{C}$, and hence $W={ }_{\mathbb{R}} \mathbb{W}$ for some \mathbb{C}-vector space \mathbb{W}; then $W_{\mathbb{C}}=(\mathbb{R} \mathbb{W})_{\mathbb{C}} \simeq \mathbb{W}+\overline{\mathbb{W}}$, but then the Jordan-Hölder theorem implies that V, V^{\prime} must be $\mathbb{W}, \overline{\mathbb{W}}$ in some order, so $V^{\prime} \simeq \bar{V}$.
χ_{V} real-valued column: In the \mathbb{R} case, $\chi_{V}=\chi_{W_{\mathbb{C}}}=\chi_{W}$, which is real-valued. In the \mathbb{C} case, $V \nsucceq \bar{V}$, so χ_{V} is not real-valued. In the \mathbb{H} case, $2 \chi_{V}=\chi_{V \oplus V}=\chi_{W_{\mathbb{C}}}=\chi_{W}$, so χ_{V} is real-valued.
${ }_{\mathbb{R}} V$ column: Since V is a subrepresentation of $W_{\mathbb{C}}$, the restriction of scalars ${ }_{\mathbb{R}} V$ is a subrepresentation of ${ }_{\mathbb{R}}\left(W_{\mathbb{C}}\right)$, which is isomorphic to $W \oplus W$ by Proposition 1.1 bb). Thus ${ }_{\mathbb{R}} V$ is a direct sum of copies of W. If $D=\mathbb{R}$, then $V=W_{\mathbb{C}}$, so $\mathbb{R} V \simeq W \oplus W$. If D is \mathbb{C} or \mathbb{H}, then V is half the dimension of $W_{\mathbb{C}}$, so $V \simeq W$.

Realizability over \mathbb{R} : In the \mathbb{R} case, $V \simeq W_{\mathbb{C}}$, so V is realizable by definition. In the \mathbb{C} and \mathbb{H} cases, if $V \simeq X_{\mathbb{C}}$ for some \mathbb{R}-representation X, then $W \simeq_{\mathbb{R}} V \simeq_{\mathbb{R}}\left(X_{\mathbb{C}}\right) \simeq X \oplus X$ by Proposition 1.1 b), contradicting the irreducibility of W.

Nondegenerate G-invariant bilinear form: The averaging argument shows that there exists a positive definite G-invariant hermitian form (,) on V. Fix one; it defines an isomorphism $\bar{V} \rightarrow V^{*}$. Thus $V \simeq \bar{V}$ if and only if $V \simeq V^{*}$, so these two columns have the same YES/NO
answers. By Section 2.1, we have isomorphisms

$$
\operatorname{Hom}\left(V, V^{*}\right) \simeq\{\text { symmetric bilinear forms }\} \oplus\{\text { skew-symmetric bilinear forms }\}
$$

Taking G-invariants yields
$\operatorname{Hom}_{G}\left(V, V^{*}\right) \simeq\{G$-invariant symm. bilinear forms $\} \oplus\{G$-invariant skew-symm. bilinear forms $\}$. Suppose that $V \simeq V^{*}$. Then $\operatorname{Hom}_{G}\left(V, V^{*}\right) \simeq \operatorname{End}_{G} V \simeq \mathbb{C}$ by Schur's lemma, so there exists a unique nondegenerate G-invariant bilinear form B up to a scalar in \mathbb{C}^{\times}, and it is either symmetric or skew-symmetric. Since B is nondegenerate, the \mathbb{C}-linear functional $(-, w)$ equals $B(-, J w)$ for a unique $J w \in V$. Then $J:=V \rightarrow V$ is \mathbb{C}-antilinear, and it is an isomorphism since (,) too is nondegenerate. Now J^{2} is a \mathbb{C}-linear automorphism of the representation V, so by Schur's lemma, J^{2} is multiplication-by- r for some $r \in \mathbb{C}^{\times}$. Also by Schur's lemma, every other \mathbb{C}-antilinear G-equivariant isomorphism is $c J$ for some $c \in \mathbb{C}$, and replacing J by $c J$ changes r to $c \bar{c} r$ (Proof: For $v \in V$, if $J J v=r v$, then $c J(c J(v))=c \bar{c} J(J(v))=c \bar{c} r v$).

- If B is symmetric, then for any choice of nonzero $v \in V$,

$$
(J v, J v)=B\left(J v, J^{2} v\right)=B(J v, r v)=r B(J v, v)=r B(v, J v)=r(v, v)
$$

but (,) is positive definite, so r is a positive real number.

- If B is skew-symmetric, the same calculation shows that r is a negative real number.

Finally, the following are equivalent:

- V is realizable over \mathbb{R}
- We can choose $c \in \mathbb{C}^{\times}$so that $(c J)^{2}=1$.
- We can choose $c \in \mathbb{C}^{\times}$so that $c \bar{c} r=1$.
- r is positive.
- B is symmetric.

Frobenius-Schur indicator: We have

$$
\begin{aligned}
\overline{\operatorname{FS}(V)} & =\frac{1}{\# G} \sum_{g} \chi_{V^{*}}\left(g^{2}\right) \\
& =\frac{1}{\# G} \sum_{g}\left(\chi_{\left(\operatorname{Sym}^{2} V\right)^{*}}(g)-\chi_{\left(\wedge^{2} V\right)^{*}}(g)\right) \quad \text { (by the formulas in Section 3) } \\
& =\left(\mathbb{C},\left(\operatorname{Sym}^{2} V\right)^{*}\right)-\left(\mathbb{C},\left(\bigwedge^{2} V\right)^{*}\right) \\
& =\operatorname{dim}\{G \text {-invariant symm. bilinear forms }\}-\operatorname{dim}\{G \text {-invariant skew-symm. bilinear forms }\} \\
& =\left\{\begin{array}{ll}
1-0 \\
0-0 \\
0-1
\end{array}= \begin{cases}1, & \text { if } D=\mathbb{R} ; \\
0, & \text { if } D=\mathbb{C} ; \\
-1, & \text { if } D=\mathbb{H} .\end{cases} \right.
\end{aligned}
$$

Proposition 5.1. Every irreducible \mathbb{C}-representation V of G occurs in $W_{\mathbb{C}}$ for a unique irreducible \mathbb{R}-representation W of G.

Proof. By Proposition 1.1 a), V occurs in $\left({ }_{\mathbb{R}} V\right)_{\mathbb{C}}$, so V occurs in $W_{\mathbb{C}}$ for some irreducible \mathbb{R}-subrepresentation W of ${ }_{\mathbb{R}} V$. If W is any irreducible \mathbb{R}-representation such that V occurs in $W_{\mathbb{C}}$, then the ${ }_{\mathbb{R}} V$ column of the table shows that W equals the unique irreducible \mathbb{R} subrepresentation of ${ }_{\mathbb{R}} V$, so W is uniquely determined by V.

Theorem 5.2 (Frobenius-Schur). We have

$$
\#\left\{g \in G: g^{2}=1\right\}=\sum_{V}(\operatorname{dim} V) \operatorname{FS}(V),
$$

where V ranges over the irreducible \mathbb{C}-representations of G up to isomorphism.
Proof. The character of the regular representation $\mathbb{C} G$ is given by

$$
\chi(g)= \begin{cases}\# G, & \text { if } g=1 \\ 0, & \text { if } g \neq 1\end{cases}
$$

Thus

$$
\begin{aligned}
\#\left\{g \in G: g^{2}=1\right\} & =\frac{1}{\# G} \sum_{g} \chi\left(g^{2}\right) \\
& =\mathrm{FS}(\mathbb{C} G) \\
& =\sum_{V}(\operatorname{dim} V) \operatorname{FS}(V)
\end{aligned}
$$

since $\mathbb{C} G \simeq \bigoplus_{V}(\operatorname{dim} V) V$.
Remark 5.3. Everything above for finite groups G holds also for compact groups G. The only changes required are:

- All representations should be given by continuous homomorphisms.
- Averages over G (such as in the definition of the Frobenius-Schur indicator) should be defined as integrals with respect to normalized Haar measure.

Remark 5.4. Let k be a field such that char $k \nmid \# G$. Let X_{1}, \ldots, X_{r} be the irreducible k-representations of G. Let $D_{i}=\operatorname{End}_{G} X_{i}$. Let n_{i} be the dimension of X_{i} as a right D_{i}-vector space. Then

$$
\begin{aligned}
k G & \simeq \prod_{i=1}^{r} \operatorname{End}_{D_{i}} X_{i} \\
& \simeq \prod_{i=1}^{r} \mathrm{M}_{n_{i}}\left(D_{i}\right)
\end{aligned}
$$

In particular,

$$
\mathbb{R} G \simeq \prod \mathrm{M}_{d_{i}}(\mathbb{R}) \times \prod \mathrm{M}_{e_{j}}(\mathbb{C}) \times \prod \mathrm{M}_{f_{k}}(\mathbb{H})
$$

for some positive integers d_{i}, e_{j}, f_{k}, and tensoring with \mathbb{C} yields

$$
\mathbb{C} G \simeq \prod \mathrm{M}_{d_{i}}(\mathbb{C}) \times \prod\left(\mathrm{M}_{e_{j}}(\mathbb{C}) \times \mathrm{M}_{e_{j}}(\mathbb{C})\right) \times \prod \mathrm{M}_{2 f_{k}}(\mathbb{C})
$$

6. Some conclusions to remember

- Every irreducible \mathbb{C}-representation V of G occurs in $W_{\mathbb{C}}$ for a unique irreducible \mathbb{R}-representation of G.
- The representation V is said to be of real, complex, or quaternionic type according to whether $\operatorname{End}_{G} W$ is \mathbb{R}, \mathbb{C}, or \mathbb{H}.
- The type can be determined from the character χ_{V} by computing the Frobenius-Schur indicator.
- The representation V is realizable over \mathbb{R} if and only if V is of real type, which happens if and only if there exists a nondegenerate G-invariant symmetric bilinear form $B: V \times V \rightarrow \mathbb{C}$.
- The representation V is of complex type if and only if $V \npreceq V^{*}$; in this case, there does not exist any nondegenerate G-invariant bilinear form $B: V \times V \rightarrow \mathbb{C}$.
- The representation V is of quaternionic type if and only if there exists a nondegenerate G-invariant skew-symmetric bilinear form $B: V \times V \rightarrow \mathbb{C}$.
- If V is realizable over \mathbb{R}, then χ_{V} is real-valued. The converse is not true in general (it fails exactly in the quaternionic case).

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, ma 02139-4307, USA

E-mail address: poonen@math.mit.edu
URL: http://math.mit.edu/~poonen/

