1) Let $L\{\tau\}$ be the twisted polynomial ring in which $\tau \ell = \ell^p \tau$ for each $\ell \in L$.
 (a) Prove that $L\{\tau\}$ has a right division algorithm: given $f, g \in L\{\tau\}$ with $g \neq 0$, prove
 that there exists a unique pair of elements $q, r \in L\{\tau\}$ such that $f = qg + r$ and such
 that $\deg r < \deg g$.
 (b) Does $L\{\tau\}$ also have a left division algorithm?

2) Let $A = \mathbb{F}_p[T]$, and let L be an A-field. A rank 2 Drinfeld A-module ϕ over L is uniquely
 determined by the $a, b \in L$ (with $b \neq 0$) such that $\phi_T = T + a\tau + b\tau^2$.
 (a) In terms of (a, b), describe $\text{Aut} \phi$.
 (b) Define $j(\phi) = a^{p+1}/b$. Prove that for an algebraically closed A-field L, two rank 2
 Drinfeld A-modules over L are isomorphic if and only if they have the same j-invariant.

3) Let X be any smooth projective geometrically integral curve, let ∞ be a closed point of
 X, and let $A = \mathcal{O}(X - \{\infty\})$. Let R be an A-discrete valuation ring, and let $L = \text{Frac} R$.
 Let ϕ be a rank 1 Drinfeld A-module over L such that there exists a nonconstant $a \in A$
 such that the leading coefficient of ϕ_a is in R^\times. Prove that ϕ has good reduction.