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Outline

e What constitutes a random matrix?

e Why are the eigenvalues so important?

— Genomics
— 3D Target recognition

e Computing the eigenvalue distributions



What is a Random Matrix?

B € R™*", b;; ~ N(0,1) MATLAB notation: B=randn(m,n)

A=B".B
“n X n central Wishart matrix with m DOF”
e With covariance matrix X (positive semi-definite)
A=x12.BT.B.xY?

e Note: W,,,(1,1) ~ x2,

e (Generalized) eigenvalues critical in multivariate statistical analysis

e What if the entries are not normal?



(Distributions of) Eigenvalues of Random Matrices

e Critical in multivariate statistical analysis

— Extracting meaningful information from high-dimensional data
— Clustering, classification
— Inverse problems / parameter estimation

— PCA, Canonical correlation analysis, MANQOVA
— Discriminant analysis
— Multivariate hypothesis testing

e Theory mature since the 1960s

e New result: Fast algorithm for hypergeometric function of matrix argument
(Solved 40-year-old computational problem)

e New applications:

— Wireless communications

— Biostatistics (high dimensional clustering/classification)
— Genomics (population classification)

— Automatic 3D Target classification/recognition
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Question of interest: Population classification
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Question of interest: Population classification
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Separate the fans using only DNA information



Genomics 101
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DNA = word in a 4-letter alphabet {A,C,G, T}



Single Nucleotide Polymorphism (SNP)

Happens during replication, once in 10,000,000 bases



Single Nucleotide Polymorphism (SNP)

o
OO0 0000~ 000000
N

Happens during replication, once in 10,000,000 bases



Where random matrices come in ...

=[00010030...230]
~500,000

(00010010...200
03200000...310

110302012...301

e Recenter to make the mean in each row 0

e If no population structure

— all rows of A have the same multivariate distribution
— Amax(AAT) has the same distribution as \,,,(Wishart)

e Otherwise—PCA to reveal structure

e Critical: We need the distribution of \,,..(Wishart)!
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3D Target Recognition (with Mike Jeffris, MITRE Corp.)

Leopard T62




Old: 2D Target Recognition

Views:

Sizes:

Types:

Inefficient



Enter 3D

ARL/SLAD/BYLD

Synthetic Aperture Radar

ARL/SLAD/BVLD

e Works in fog, smoke, cloud cover; returns 3D images

e Tank = n X 3 matrix



3D Target Recognition: The Math Problem

e Database: X, X5,...,X,, (n X 3)

e Observe: Tank ¢ (X;) + errors (E ~ N(0,0°I3 ® I,,)), rotated
X=Q - (X;+FE)

e The covariance matrix S = X7 X becomes the tank’s signature

e S is a non-central 3 X 3 Wishart

e Inverse problem: 7z =7

e Hypothesis testing—based joint eigenvalue density of S:

| 1,1 1 1,
log L(z| X) = tr _52 5—59 + log | o F} Em;ZQE S

e Requires the computation of (F|—
the Hypergeometric Function of a Matrix Argument



Eigenvalue distributions = ,Fg(a1,...,ap;b1,...,bq; X)

e Good news: (Joint) Eigenvalue densities/distributions are known explicitly

¢ Joint density of the eigenvalues of S ~ Wm(n 3., Q) is proportional to
etr(—3=7's- Q) (2 QE 1S>

e Similarly for Ay .x (Wi, (1, X)) (James, 1964):

P(Amax < m) ~ wm/Q . 1F (m n—I—?;H—l’ %mz—l)

o E.g., \nax(Wr(4,1))
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e Bad news: It’'s the hypergeometric function of a matrix argument



The Hypergeometric Function of a Matrix Argument

e Univariate:

B 00 (al)k"'(ap)k ke
G T) = kz:% kU (b1)g - - (be)k ’

qu(al’ooo’ap;b]_’ooo’b

where (a)y = a(a+1):---(a+ k —1).

e of a Matrix Argument X (with eigenvalues x4, ..., x,):

(al)m °° p)m
F,(aj,...,a, by,.. b,X_EjE: . CY(X),
g q( ' P> ! ) fo— ()Rkkjc'(bl)m (bQ)m ( )

where

—(a)s = |] (@—(i—1)/a+j—1) — Pochhammer symbol

IS
- C¥(X) =C%x1,...,x,) — Schur/zonal/Jack polynomial
e Scalar-valued symmetric function in z1,...,x,

e Multivariate degrees indexed by partitions

&1)13 &2)7£}9 1)} £3)9 (2,1), (1,1, 1)/;

k1 K2 éﬁé

e Notoriously difficult to compute and/or approximate!



Computing ,Fy(ay,...,ap; b1,...,bq; X) is really hard!

¢ Reported for example in about 50% of papers in the IEEE Journals on wireless
communication, signal processing, etc.

(search for “hypergeometric function” and “matrix argument” at ieeexplore.ieee.org)
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Computing ,Fy(ay,...,ap; b1,...,bq; X) is really hard!
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Previous best algorithm for ,Fy(ai,...,ap;b1,...,bq; X)
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more time would be needed. (We spent about 8 days to obtain the 627 zonal polynomials of
degree 20 with a 350 MHz Pentium IT processor.




Previous best algorithm for ,Fy(ai,...,ap;b1,...,bq; X)
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more time would be needed. (We spent about 8 days to obtain the 627 zonal polynomials of
degree 20 with a 350 MHz Pentium IT processor.

e New result (2.33 GHz Pentium):

>> tic; mhg(20,2,[],[],[1:20]1/210), toc
ans =

2.71828182845905
elapsed_time =

0.03100000000000




Outline for today’s talk

e The computation of accurate eigenvalues of structured matrices

— An application in Electrical Impedance Tomography
— New result: accurate eigenvalue algorithm for totally positive matrices

e Computing eigenvalues of random matrices

— Application in Automatic Target Recognition
— New fast algorithm for ,F,(a,...,ap;b1,...,b4; X)



The Hypergeometric Function of a Matrix Argument

pFy(ar,...yap;byy... by X) = ,;) 2,_; k(!czll))ll;,i . .(((L;z;,@ - C2(X)

e C%(X)=C%x1,...,x,) symmetric polynomial in x;
e Number of terms in each C¥(X): O(nl)
e New result: Computing C¢(X) in O(n) time

e Will demonstrate the complex case a = 1

e Then C} = s,, the Schur function



Examples of Schur/Jack functions

Partition Sy Number of terms
(1) 1+ -+ x, O(n)

(2) Y wiw; O(n?)
1<J

(1,1,1) Z T T Tk, O(n?)
i<j<k

K Z i @ (n"")
T

e New result: O(n)

e Trick: Connection with group representations



Computing the Schur/Jack Function

e Idea: s, characters of irreducible representations of GL,,(C)
e Combinatorial formula for s,
Sk(T1yee.yy) = Z !
where summation is over all semistandard Young x-tableaux T'.

e SSYT (def): Fill Young diagram of k, with 1,2,...,n
strictly T by columns, nonstrictly by rows.

e Example: Kk = (3,3,2,1), n =6

1/1]2
3|44 — Tixox3TITTL
5|6
6
e Observation: “n” can only be in a “bottom” box =
314:(3317 L2g ey €Bn) — Z S)\(iBl, L9 s ooy a:n_l) . mlfl_|>‘|

ALK
(the characters of GL,,_;(C) induce those of GL,,(C))



This is the first step

3,4-,(331, L29 ey iBn) — Z S)\(iBl, L2g e oo mn—l) . wlf|_|>\|

A<ZK

Summation over k such that A/u is a horizontal strip

o Example: s(1 1)(1,...,%p)

— Zmimj ( ~n® operations )

1<j
= XL T2 + (W)wiﬁ + (581-|-£2-|-£13§):134 a iU o (5131—|-' .;—I_wn_l’)wn
S1 S2 s3 Sn—1

e New cost: 3n — 2 instead of n?
e In general: O(nN)y) where Ny = #{u| A/u is a horizontal strip}
e Next: getting rid of IV,



Analogy with the FFT

e ldea: (DFT);;—characters of Z/nZ +—

syx—characters of GL,,(C)
e Write our main identity

Sﬂ(mla L2y ey wn) — Z S)\(wl, L2g e ooy wn—l) . wlf|_|>\|
ALK

in matrix form: C,, = C,,_ - Y,,(x,), where

1 x 2 23
Vi(a) — 1 z z2? z x2* 3 2*

2(x) = 1 x r x2 23| x? 3 x* x°

1 T a2 r x2 23| x3 x* x® 2

- 2 371 - 7
1 x ¢ x 1 —x
1 = 22 B 1 —x
1 =x o 1 —=x
1 1

e Matrix-vector multiplication by Y,, costs O(n) per s, instead of O(nN))



Our New Fast Algorithm

e Let A be the lower shift matrix a;.;;, = 1; B = AT
e Structure of Y, :

Un(n) = Inyiyn-t + 20(AQ Bpq) + -+, (AN @ B, |
(I(N+1)n—1 — wn(A ® Bn—1)>_1 9

Crn(zn) = Up(xn)Kpn_1(n),
Kn(zn) = INy1 ® Cu(zy),

B, = B,-1Q® Iny1 = B® Iiniqyn-2,
Qn(x,) = (I(N+1)n—1 | ¢, By | - .. | :cflvBiV)

e New algorithm:

for i=n:-1:1
for all A such that |A| < M in reverse lexicographic order

Sx = S\ T $,()Tn

(where )\(z) = ()\1, c ey A — 1,..., )"fl))

e Final cost: A\\n per each s), optimal



Impact of New Algorithm

0.5

e A, ~W,(n,I); n/p=25
(Amax(Ap) — pp)/op — TW;

0.45F
0.4
0.35f
e Finite eigenvalue distributions, 03l
(with arbitrary covariances X!) 0.25
0.2f

0.15f

0.1

0.05r

e Enabled automatic 3D target classification

e Enabled population classification in genomics

e New theoretical results in random matrix theory
e Potential applications to wireless communications
¢ Included in MOCAPY biostatistics package

e Efficient C implementation at http://math.mit.edu/ plamen



Conclusions

e New algorithms for ,F},
e Papers and software at: http://math.mit.edu/ plamen

e Impact on important applications

Future work

e R, SAS implementations
e New algorithms based on saddle point approximations
e Automatic convergence detection

e FFT generalization to zonal polynomials

(1 x 2?2(a+1) 2(a+1)(2a+1)
1 x r’(a + 1)
1 T
L 1 -

e Tracy—Widom finite inference



