Accurate and Efficient Matrix Computations with Generalized Vandermonde Matrices using Schur Functions

Plamen Koev
Department of Mathematics
UC Berkeley

Joint work with James Demmel

Supported by NSF and DOE

Vandermonde Matrices

• TP Vandermonde Matrix:

$$V = \begin{bmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ & & \ddots & \\ 1 & x_n & \dots & x_n^{n-1} \end{bmatrix},$$

where $x_1 > x_2 > \cdots > x_n > 0$.

• TP Generalized Vandermonde Matrix:

$$G_{\lambda} = \begin{bmatrix} x_1^{\lambda_1} & x_1^{1+\lambda_2} & \dots & x_1^{n-1+\lambda_n} \\ x_2^{\lambda_1} & x_2^{1+\lambda_2} & \dots & x_2^{n-1+\lambda_n} \\ & & \ddots & \\ x_n^{\lambda_1} & x_n^{1+\lambda_2} & \dots & x_n^{n-1+\lambda_n} \end{bmatrix},$$

where

$$-x_1 > x_2 > \dots > x_n > 0$$

$$-\lambda_n \ge \lambda_{n-1} \ge \dots \ge \lambda_0$$

• Notoriously illconditioned

GOALS

Given a matrix A, compute to high relative accuracy in poly time:

- $\bullet \det(A)$
 - not trivial even for tridiagonals
- \bullet A^{-1}
- Solve Ax = b
- LU from GENP, GEPP, GECP
- \bullet SVD

Model of Arithmetic: $1 + \delta$

- $fl(a \otimes b) = (a \otimes b)(1 + \delta)$
- Unbounded Exponents
- Expressions we can compute without losing relative accuracy:
 - Products and quotients
 - Sums of positive quantities
 - $-x_i \pm x_j$, where x_i and x_j are initial data
- Proof: $1 + \delta$ factors can be factored out
- We will compute everything using allowable expressions

Statement of Results

- \bullet Can compute G^{-1} accurately for certain generalized Vandermondes in $O(n^3)$ time
- det(G) in $O(n^2)$ time
- ullet LU of G from GENP, GEPP in $O(n^3)$ time, but who cares...
- \bullet Can solve Gx=b with "Björck-Pereyra accuracy", but speed $O(n^3),$ not $O(n^2)$

Type of			Any	GENP /		
Matrix	$\det(A)$	A^{-1}	minor	GENP	GECP	SVD
Cauchy	$O(n^2)$	$O(n^2)$	$O(n^2)$	$O(n^3)$	$O(n^3)$	$O(n^3)$
Vandermonde	$O(n^2)$	NONE	NONE	NONE	NONE	$O(n^3)$
Totally Positive (TP) Vandermonde	$O(n^2)$	$O(n^3)$	EXP	$O(n^3)$	EXP	$O(n^3)$
TP Generalized Vandermonde, $ \lambda = \lambda_1 + O(1)$	$O(\lambda_1 n^2)$	$O(\lambda_1 n^3)$	EXP	$O(\lambda_1 n^3)$	EXP	EXP
TP Generalized Vandermonde, any λ	$f(n,\lambda)$	EXP	EXP	EXP	EXP	EXP

$$f(n,\lambda) = O(n^{1 + \log \lambda_1 + \log \lambda_2 + \dots + \log \lambda_n}) \text{ vs. } O(n^{|\lambda|}) = O(n^{\lambda_1 + \lambda_2 + \dots + \lambda_n})$$
(Symmetrica)

Known Resuts - Björck-Pereyra Methods

$$V^{-1} = \begin{bmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ & \ddots & \\ 1 & x_n & \dots & x_n^{n-1} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -x_1 \\ & 1 & -x_1 \\ & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ & 1 & -x_2 \\ & & 1 \end{bmatrix} \cdot \cdot \begin{bmatrix} 1 \\ & 1 \\ & & 1 \end{bmatrix} \cdot \cdot \begin{bmatrix} 1 \\ & 1 \\ & & 1 \end{bmatrix}$$
$$\cdot \begin{bmatrix} 1 \\ & 1 \\ & -\frac{1}{x_1 - x_1} & \frac{1}{x_2 - x_1} & \frac{1}{x_2 - x_1} \\ & & -\frac{1}{x_3 - x_2} & \frac{1}{x_3 - x_{2-1}} & \frac{1}{x_1 - x_{n-1}} \end{bmatrix}$$

- Solving Vz = b extremely accurate if b has "checkerboard pattern"
- Sign pattern result of Total Positivity, so only question is accuracy
- For SOLVING we could assemble V^{-1} and then form $V^{-1}b$ and the accuracy will be the same, but not speed
- Sign pattern of V^{-1} also alternating
- We will use Cramer's rule to compute inverses of generalized Vandermondes G, to which BP does not apply

- ullet Then we can solve with BP accuracy by forming $G^{-1}b$
- Interesting: Even for V: Cramer's rule for V^{-1} : $5/12n^3$, BP: $2n^3$

TP Vandermonde and Generalized Vandermonde Matrices

$$V = \begin{bmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ & & \ddots & \\ 1 & x_n & \dots & x_n^{n-1} \end{bmatrix}, \qquad G_{\lambda} = \begin{bmatrix} x_1^{\lambda_1} & x_1^{1+\lambda_2} & \dots & x_1^{n-1+\lambda_n} \\ x_2^{\lambda_1} & x_2^{1+\lambda_2} & \dots & x_2^{n-1+\lambda_n} \\ & & \ddots & \\ x_n^{\lambda_1} & x_n^{1+\lambda_2} & \dots & x_n^{n-1+\lambda_n} \end{bmatrix},$$

where $x_1 > x_2 > \cdots > x_n > 0$, $\lambda_n \ge \lambda_{n-1} \ge \cdots \ge \lambda_0$

- Def: $\lambda = (\lambda_n, \lambda_{n-1}, ..., \lambda_0)$ is partition of $|\lambda| = \lambda_n + \cdots + \lambda_0$
- Def: Young Diagrams \equiv partitions:

$$\lambda = (4, 2, 1) = \square$$

- Def: Schur Function $s_{\lambda}(x_1,\ldots,x_n) = \det(G_{\lambda})/\det(V)$.
- Thm: s_{λ} is a polynomial with positive integer coefficients depending only on λ (MacDonald)

Facts about TP Generalized Vandermonde Matrices

• Recall: $det(G) = det(V) \cdot s_{\lambda}(x_1, ..., x_n)$

• Example:

$$\det \left(\begin{bmatrix} 1 & x_1^2 & x_1^4 \\ 1 & x_2^2 & x_2^4 \\ 1 & x_3^2 & x_3^4 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix} \right) \cdot (2x_1x_2x_3 + x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_3^2 + x_2^2x_3 + x_2x_3^2)$$

- \bullet det $(V) = \prod_{i>j} (x_i x_j)$ is computable accurately and efficiently
- s_{λ} computable accurately $(x_i > 0)$, question is cost.
- Theorem:

$$s_{\lambda}(x_1,...,x_n,y_1,...,y_m) = \sum_{\mu < \lambda} s_{\mu}(x_1,...,x_n) s_{\lambda/\mu}(y_1,...,y_m)$$

Allows recursive computation and Divide-and-Conquer approach.

• Example:

$$s_{(1,1)}(x_1,...,x_n) = \sum_{i< j} x_i x_j = (x_1 + ... + x_n)x_2 + (x_2 + ... + x_n)x_3 + ... + x_{n-1}x_n$$

cost: O(n), although $s_{(1,1)}$ has $O(n^2)$ terms.

• Some s_{λ} 's are computable accurately and efficiently:

$$\lambda = (1,1,1,...,1) = \boxed{ }$$
 and
$$\lambda = (m,1,1,...,1) = \boxed{ }$$

• For Cramer's rule on a Vandermonde Matrix we need $(n-1) \times (n-1)$ minors:

$$W_{ij} = \begin{bmatrix} 1 & x_1 & \dots & x_1^{j-2} & x_1^j & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{j-2} & x_2^j & \dots & x_2^{n-1} \\ & & \dots & & & \dots \\ 1 & x_{i-1} & \dots & x_{i-1}^{j-2} & x_{i-1}^j & \dots & x_{i-1}^{n-1} \\ 1 & x_{i+1} & \dots & x_{i+1}^{j-2} & x_{i+1}^j & \dots & x_{i+1}^{n-1} \\ & & \dots & & & \dots \\ 1 & x_n & \dots & x_n^{j-2} & x_n^j & \dots & x_n^{n-1} \end{bmatrix}$$

• The partition that corresponds to W_{ij} is

$$\lambda = (n-1-(n-2), n-2-(n-3), \dots, j-(j-1), j-2-(j-2), \dots, 1-1, 0) = (1, 1, \dots, 1) = (1^{n-j}).$$

• The same trick applies to some generalized Vandermondes, e.g.

$$G = \begin{bmatrix} 1 & x_1 & x_1^2 & & x_1^{n-2} & x_1^{n-1+m} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-2} & x_2^{n-1+m} \\ & & \ddots & & \\ 1 & x_n & x_n^2 & & x_n^{n-2} & x_n^{n-1+m} \end{bmatrix}$$

- Partition of G is $\lambda = (m)$
- Partitions of $(n-1) \times (n-1)$ minors $\lambda = (m,1,1,1,...,1)$
- Cost of inversion: $O(mn^3)$
- Extends to $\lambda = (\lambda_1, \lambda_2, ...)$ as long as $\lambda_2 + \lambda_3 + ...$ is small (O(1)).
- \bullet G^{-1} will have "checkerboard" sign pattern
- Finally, with accurate inverses we can solve accurately

Conclusions

- ullet Can compute accurate determinants and inverses of some Generalized Vandermonde Matrices in $O(n^3)$ time
- Can solve linear systems with these systems to high accuracy

Open Problems

- Inverting Any Generalized Vandermonde
- Accurate bidiagonal decomposition of G^{-1} like BP?
- Totally Positive Matrices in General
- Subtraction-free complexity of evaluating the Schur Function