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Vandermonde Matrices

• TP Vandermonde Matrix:

V =



1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

. . .

1 xn . . . xn−1
n


,

where x1 > x2 > · · · > xn > 0.

• TP Generalized Vandermonde Matrix:

Gλ =



xλ1
1 x1+λ2

1 . . . xn−1+λn
1

xλ1
2 x1+λ2

2 . . . xn−1+λn
2

. . .

xλ1
n x1+λ2

n . . . xn−1+λn
n


,

where

– x1 > x2 > · · · > xn > 0

– λn ≥ λn−1 ≥ · · · ≥ λ0

• Notoriously illconditioned



GOALS

Given a matrix A, compute to high relative accuracy in poly time:

• det(A)

– not trivial even for tridiagonals

• A−1

• Solve Ax = b

• LU from GENP, GEPP, GECP

• SVD



Model of Arithmetic: 1 + δ

• fl(a⊗ b) = (a⊗ b)(1 + δ)

• Unbounded Exponents

• Expressions we can compute without losing relative accuracy:

– Products and quotients

– Sums of positive quantities

– xi ± xj, where xi and xj are initial data

• Proof: 1 + δ factors can be factored out

• We will compute everything using allowable expressions



Statement of Results

• Can compute G−1 accurately for certain generalized Vandermondes in

O(n3) time

• det(G) in O(n2) time

• LU of G from GENP, GEPP in O(n3) time, but who cares...

• Can solve Gx = b with “Björck-Pereyra accuracy”, but speed O(n3), not

O(n2)



Type of Any GENP /
Matrix det(A) A−1 minor GENP GECP SVD

Cauchy O(n2) O(n2) O(n2) O(n3) O(n3) O(n3)

Vandermonde O(n2) NONE NONE NONE NONE O(n3)

Totally
Positive (TP) O(n2) O(n3) EXP O(n3) EXP O(n3)
Vandermonde

TP Generalized
Vandermonde, O(λ1n

2) O(λ1n
3) EXP O(λ1n

3) EXP EXP
|λ| = λ1 + O(1)

TP Generalized
Vandermonde, f (n, λ) EXP EXP EXP EXP EXP

any λ



f (n, λ) = O(n1+log λ1+log λ2+···+log λn) vs. O(n|λ|) = O(nλ1+λ2+···+λn)
(Symmetrica)



Known Resuts - Björck-Pereyra Methods

V −1 =



1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

. . .

1 xn . . . xn−1
n
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1 −x1

1 −x1
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·



1

1 −x2

1 −x2

1


· · ·



1

1

1 −xn−1

1



·



1

1

1

− 1
xn−x1

1
xn−x1
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1

− 1
x2−x1

1
x2−x1

− 1
x3−x2

1
x3−x2

− 1
xn−xn−1

1
xn−xn−1


• Solving V z = b extremely accurate if b has “checkerboard pattern”

• Sign pattern result of Total Positivity, so only question is accuracy

• For SOLVING we could assemble V −1 and then form V −1b and the accuracy

will be the same, but not speed

• Sign pattern of V −1 also alternating

• We will use Cramer’s rule to compute inverses of generalized Vandermon-

des G, to which BP does not apply



• Then we can solve with BP accuracy by forming G−1b

• Interesting: Even for V : Cramer’s rule for V −1: 5/12n3, BP: 2n3



TP Vandermonde and Generalized Vandermonde Matrices

V =



1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

. . .

1 xn . . . xn−1
n


, Gλ =



xλ1
1 x1+λ2

1 . . . xn−1+λn
1

xλ1
2 x1+λ2

2 . . . xn−1+λn
2

. . .

xλ1
n x1+λ2

n . . . xn−1+λn
n


,

where x1 > x2 > · · · > xn > 0, λn ≥ λn−1 ≥ · · · ≥ λ0

• Def: λ = (λn, λn−1, ..., λ0) is partition of |λ| = λn + · · · + λ0

• Def: Young Diagrams ≡ partitions:

λ = (4, 2, 1) =

• Def: Schur Function sλ(x1, . . . , xn) = det(Gλ)/ det(V ).

• Thm: sλ is a polynomial with positive integer

coefficients depending only on λ (MacDonald)



Facts about TP Generalized Vandermonde Matrices

• Recall: det(G) = det(V ) · sλ(x1, ..., xn)

• Example:

det




1 x2

1 x4
1

1 x2
2 x4

2

1 x2
3 x4

3



 = det




1 x1 x2

1

1 x2 x2
2

1 x3 x2
3



·(2x1x2x3+x2
1x2+x1x

2
2+x2

1x3+x1x
2
3+x2

2x3+x2x
2
3)

• det(V ) =
∏

i>j(xi − xj) is computable accurately and efficiently

• sλ computable accurately (xi > 0), question is cost.

• Theorem:

sλ(x1, ..., xn, y1, ..., ym) =
∑

µ<λ
sµ(x1, ..., xn)sλ/µ(y1, ..., ym)

Allows recursive computation and Divide-and-Conquer approach.



• Example:

s(1,1)(x1, ..., xn) =
∑
i<j

xixj = (x1 + ... + xn)x2 + (x2 + ... + xn)x3 + ... + xn−1xn

cost: O(n), although s(1,1) has O(n2) terms.

• Some sλ’s are computable accurately and efficiently:

λ = (1, 1, 1, ..., 1) = and λ = (m, 1, 1, ..., 1) =

• For Cramer’s rule on a Vandermonde Matrix we need (n − 1) × (n − 1)

minors:

Wij =



1 x1 . . . xj−2
1 xj

1 . . . xn−1
1

1 x2 . . . xj−2
2 xj

2 . . . xn−1
2

. . . . . .

1 xi−1 . . . xj−2
i−1 xj

i−1 . . . xn−1
i−1

1 xi+1 . . . xj−2
i+1 xj

i+1 . . . xn−1
i+1

. . . . . .

1 xn . . . xj−2
n xj

n . . . xn−1
n





• The partition that corresponds to Wij is

λ = (n−1−(n−2), n−2−(n−3), . . . , j−(j−1), j−2−(j−2), . . . , 1−1, 0) = (1, 1, ..., 1) = (1n−j).

• The same trick applies to some generalized Vandermondes, e.g.

G =



1 x1 x2
1 xn−2

1 xn−1+m
1

1 x2 x2
2 . . . xn−2

2 xn−1+m
2

. . .

1 xn x2
n xn−2

n xn−1+m
n



• Partition of G is λ = (m)

• Partitions of (n− 1)× (n− 1) minors λ = (m, 1, 1, 1, ..., 1)

• Cost of inversion: O(mn3)

• Extends to λ = (λ1, λ2, ...) as long as λ2 + λ3 + ... is small (O(1)).

• G−1 will have “checkerboard” sign pattern

• Finally, with accurate inverses we can solve accurately



Conclusions

• Can compute accurate determinants and inverses of some Generalized

Vandermonde Matrices in O(n3) time

• Can solve linear systems with these systems to high accuracy

Open Problems

• Inverting Any Generalized Vandermonde

• Accurate bidiagonal decomposition of G−1 like BP?

• Totally Positive Matrices in General

• Subtraction-free complexity of evaluating the Schur Function


