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Vandermonde Matrices

e TP Vandermonde Matrix:
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e TP Generalized Vandermonde Matrix:
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e Notoriously illconditioned




GOALS

Given a matrix A, compute to high relative accuracy in poly time:

e det(A)

— not trivial even for tridiagonals
o A!
® Solve Az =10

e LU from GENP, GEPP, GECP
e SVD



Model of Arithmetic: 1 +9

e flla®b) =(a®b)(1+9)
e Unbounded Exponents

e Expressions we can compute without losing relative accuracy:

— Products and quotients

— Sums of positive quantities

— x; £ z;, where z; and z; are initial data
e Proof: 1+ ¢ factors can be factored out

e We will compute everything using allowable expressions



Statement of Results

e Can compute G~ ! accurately for certain generalized Vandermondes in
O(n?) time

e det(G) in O(n?) time
e LU of G from GENP, GEPP in O(n®) time, but who cares...

e Can solve Gr = b with “Bjorck-Pereyra accuracy”, but speed O(n’), not

O(n?)



Type of Any |GENP /
Matrix det(A) | A™!' | minor | GENP | GECP |SVD
Cauchy O(n?) | O(n*) | O(n?) O(n?) O(n?) | 0(n?)
Vandermonde | O(n*) | NONE NONE, NONE NONE O(n’)
Totally
Positive (TP) | O(n?) EXP O(n?) EXP O(n’)
Vandermonde
TP Generalized
Vandermonde, O\ n?) O(\n?)| EXP | O(\n’) | EXP |EXP
Al =X +0(1)
TP Generalized
Vandermonde, | f(n,\) | EXP | EXP EXP EXP |EXP

any A\




f(n, )\) _ O(nl—l—log)\1+log)\2+...—|—log)\n) VS. O(nw) _ O(n)‘1+)‘2+"'+>‘ )

(Symmetrica)



Known Resuts - Bjorck-Pereyra Methods
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e Solving Vz = b extremely accurate if b has “checkerboard pattern”

e Sign pattern result of Total Positivity, so only question is accuracy

e For SOLVING we could assemble V! and then form V~'b and the accuracy
will be the same, but not speed

e Sign pattern of V! also alternating

e We will use Cramer’s rule to compute inverses of generalized Vandermon-
des G, to which BP does not apply



e Then we can solve with BP accuracy by forming G~'b

e Interesting: Even for V: Cramer’s rule for V~': 5/12n3, BP: 2n®



TP Vandermonde and Generalized Vandermonde Matrices
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where x1 > 219> --->2, >0, A\, > A1 > - > X

e Def: A= (\,, \y_1,..., \g) is partition of |A\| =X, + -+ \g

e Def: Young Diagrams = partitions:

A= (4,2,1) =

e Def: Schur Function s)(z1,...,z,) = det(G))/ det(V).

e Thm: s) is a polynomial with positive integer
coefficients depending only on A (MacDonald)



Facts about TP Generalized Vandermonde Matrices

e Recall: det(G) = det(V) - sy(x1, ..., Tp)

e Example:

1 2% af 1z 2%
det || 1 23 o3 || =det|| 1 2o 2} ||-Qoimors+aimytava+aivs+o105+ 2503+ 2073)
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e det(V) =TI ;(z; — z;) is computable accurately and efficiently
e s, computable accurately (x; > 0), question is cost.

e Theorem:

S)\(xla ey Iy Y1y -oey ym) — Z}\ S/L(ajl; T xn)S)\/u(yla T ym)
<

Allows recursive computation and Divide-and-Conquer approach.



e Example:

S (T s ) = X Wiy = (T1 4 o+ ) To + (T2 + o+ X)) T3+ o+ X2

1<J
cost: O(n), although s, ;) has O(n?) terms.

e Some s)’s are computable accurately and efficiently:

A=(1,1,1,..,1) = and A=(m,1,1,..,1) =

e For Cramer’s rule on a Vandermonde Matrix we need (n — 1) x (n — 1)
minors:
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e The partition that corresponds to W;; is
A= (n—1-(n—2),n—2—(n—=3),...,7—(j—1),i—2—(j—2),...,1=1,0) = (1, 1,...,1) = (1"7).

e The same trick applies to some generalized Vandermondes, e.g.
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e Partition of G is A\ = (m)

e Partitions of (n — 1) x (n — 1) minors A = (m,1,1,1,...,1)

e Cost of inversion: O(mn?)

e Extends to A = (A, \y,...) as long as Ay + A3+ ... is small (O(1)).
e G ! will have “checkerboard” sign pattern

e Finally, with accurate inverses we can solve accurately



Conclusions

e Can compute accurate determinants and inverses of some Generalized
Vandermonde Matrices in O(n®) time

e Can solve linear systems with these systems to high accuracy

Open Problems

e Inverting Any Generalized Vandermonde
e Accurate bidiagonal decomposition of G~! like BP?
e Totally Positive Matrices in General

e Subtraction-free complexity of evaluating the Schur Function



