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Definition

I Totally nonnegative means all minors are nonnegative
I Examples: Hilbert, Pascal, Vandermonde with increasing

nodes 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 1 1 1
1 2 3
1 3 6

 1 1 1
1 2 4
1 3 9


I Nonsymmertic in general
I Interested in the irreducible case



Goal

I Compute the Jordan structure of IrTN matrix in floating
point arithmetic to high relative accuracy:

I all eigenavlues will have correct sign and leading digits
(including tiniest ones)

I the Jordan blocks will be correctly computed



Background

I Spectral structure well understood
(Fallat/Johnson/Gekhtman):

I All eigenvalues are nonnegative
I Positive eigenvalues are distinct
I Zero eigenvalues can have Jordan blocks

I Computationally hard: TN matrices can be ill conditioned,
so accuracy in tiny eigenvalues lost in floating point
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cond(P) ≈ 1045; eigenvalues < λmax ∗ 10−16 lost



Reason accuracy is lost in floating point arithmetic

I Relative accuracy preserved in ×,+, /
Proof: (1 + δ) factors accumulate multiplicatively

I Subtractions of approximate quantities dangerous:

.123456789xxx
− .123456789yyy

.000000000zzz

I Thus, if we avoid subtractions, we get accuracy



Previous results

I All linear algebra with nonsingular TN matrices possible
accurately (K., ’05)

I Eigenvalues
I Singular Values
I Product
I LU
I submatrix
I R factor of QR (still TN)
I Converse, ...

I Only 3 operations needed and all 3 possible accurately
I Subtracting a multiple of one row from next to create a zero
I Add a multiple of one row to the previous
I Diagonal scaling (trivial)



Bidiagonal decompositions

I Trick: Work on the bidiagonal decomposition (BD), not on
the matrix!

I That representation reveals the TN structure
I Result of Neville elimination

1 2 4
1 3 9
1 4 16

 =

1
1
1 1

1
1 1

1 1

1
1

2

1 2
1 3

1

1
1 2

1



I Then operate on those entries, NOT on the matrix entries!
I TN-preserving operations require no subtractions⇒

accuracy



Basic Operations

I Subtracting a multiple of one row from next to create a 0 is
equivalent to setting an entry of the BD to 0

1 2 4
1 3 9
1 4 16

 =

1
1
1 1

1
1 1

1 1

1
1

2

1 2
1 3

1

1
1 2

1


↓ ↓

1 2 4
1 3 9
0 1 7

 =

1
1
0 1

1
1 1

1 1

1
1

2

1 2
1 3

1

1
1 2

1



I No subtractions⇒ accuracy
I New matrix still TN



Basic Operations

I Adding a multiple of one row/col to next/previous is done
by changing the entries of the BD only

1 2 4
1 3 9
0 1 7

 =

1
1
0 1

1
1 1

1 1

1
1

2

1 2
1 3

1

1
1 2

1


↓ ↓

1 6 4
1 12 9
0 8 7

 =

1
1
0 1

1
2 1

3
2 1

1
6

2

1 6
1 4

3
1

1
1 2

1



I New entries are rational functions with > 0 coefficients
I Again, no subtractions⇒ accuracy
I New matrix is still TN (Cauchy–Binet)



Eigenvalues of Nonsingular TN matrices

I Reduction to tridiagonal form using above similarities
I To create a 0 in position (3,1) of1 2 4

1 3 9
1 4 16


I We use similarity1

1
−1 1

1 2 4
1 3 9
1 4 16

1
1
1 1



=

1 2 4
1 3 9
0 1 7

1
1
1 1

 =

1 6 4
1 12 9
0 8 7





Eigenvalues of Nonsingular TN matrices

I Reduction to tridiagonal form possible using standard
approach (Cryer ’76)

+ + + +
+ + + +
+ + + +
+ + + +

 →


+ + + +
+ + + +
+ + + +
0 + + +

 →


+ + + +
+ + + +
0 + + +
0 + + +

 →


+ + + +
+ + + +
0 + + +
0 0 + +

 →


+ + + 0
+ + + +
0 + + +
0 0 + +

 →


+ + 0 0
+ + + +
0 + + +
0 0 + +

 →


+ + 0 0
+ + + 0
0 + + +
0 0 + +





Irreducible (singular) TN matrices

I At the end we have an (irreducible TN) tridiagonal in
factored form


+ + 0 0
+ + + 0
0 + + +
0 0 + +

 =


1
l1 1

l2 1
l3 1




d1
d2

d3
d4




1 l1
1 l2

1 l3
1



I Eigenvalues readily computable accurately as singular
values of bidiagonal factor (Demmel–Kahan, 1990)



Irreducible (singular) TN matrices
I Bidiagonal decompositions exist, but not unique:1 1 1

1 1 1
1 2 4





Irreducible (singular) TN matrices – 2
I Bidiagonal decompositions exist, but not unique:1 1 1

1 1 1
1 2 4


Subtract 2nd row from 3rd



Irreducible (singular) TN matrices – 3
I Bidiagonal decompositions exist, but not unique:1 1 1

1 1 1
0 1 3





Irreducible (singular) TN matrices – 4
I Bidiagonal decompositions exist, but not unique:1 1 1

1 1 1
0 1 3


Then 1st from 2nd



Irreducible (singular) TN matrices – 5
I Bidiagonal decompositions exist, but not unique:1 1 1

0 0 0
0 1 3





Irreducible (singular) TN matrices – 6
I Bidiagonal decompositions exist, but not unique:1 1 1

0 0 0
0 1 3


I We want to swap rows 2 and 3 using a TN transformation
I The obvious solution 1 0 0

0 0 1
0 1 0


is not TN!



Irreducible (singular) TN matrices – 7
I Bidiagonal decompositions exist, but not unique:1 1 1

0 0 0
0 1 3


I We want to swap rows 2 and 3 using a TN transformation
I The obvious solution 1 0 0

0 0 1
0 1 0


is not TN!

I Dealing with zeros cuts both ways:1 1 1
0 0 0
0 1 3

 =

1 0 0
0 0 0
0 1 1


︸ ︷︷ ︸

TN

1 1 1
0 1 3
0 0 0





Irreducible (singular) TN matrices – 8

I The bidiagonal decompositions may have zeros on the
diagonals:1 1 1

1 1 1
1 2 4



=

1
1
1 1

1 1 1
1 1 1
0 1 3


=

1
1
1 1

1
1 1

1

1 1 1
0 0 0
0 1 3


=

1
1
1 1

1
1 1

1

1
0
1 1

1 1 1
0 1 3
0 0 0


=

1
1
1 1

1
1 1

1

1
0
1 1

1
1

0

1 1
1

1

1
1 3

1

1
1 1

1





Tridiagonal reduction breaks

I All TN linear algebra still possible accurately (unaffected by
the new zeros)

I But tridiagonal reduction can no longer be done with EB
matrices only: 1 1 1

0 0 0
1 2 4


I To kill the (3,1) entry we need to form 1

1
−1 1

1 1 1
0 0 0
1 2 4

1
1

1 1


—the similarity is not NOT TN!!!



Preserve the nonzero eigenvalues

I We can erase zero rows and columns (TN preserving
operations) 1 1 1

0 0 0
1 2 4

→ [
1 1
1 4

]
which preserves the nonzero eigenvalues

I This yields accurate nonzero eigenvalues; how about the
zero ones (and those Jordan blocks)?



Jordan blocks corresponding to zero eigenvalues

I n − rank(A) =# Jordan blocks
I rank(A)− rank(A2) =# of Jordan blocks of size ≥ 2
I ...
I rank(A), rank(A2), . . . readily obtainable from its BD
I A2 is TN (as a product of TN) and its BD is a

TN-preserving op, thus BD accurate
I need to form BD of A2, . . . ,An, a potential O(n4) algorithm



Example
A =

3 3 2 1
2 2 3 2
1 1 2 3
1 1 2 3

>> eig(A)
ans =

7.828427124746188e+00
2.171572875253811e+00
5.247731480861326e-16

-1.110223024625157e-16

>> TNEigenValues(BD))
ans =

7.828427124746190e+00
2.171572875253810e+00

0
0

>> [TNRank(BD),TNRank(TNProduct(BD,BD))]
ans=

3 2


