The Combinatorial Definition of the Schur, Zonal, and Jack Polynomials

Plamen Koev

Massachusetts Institute of Technology

SAMSI, October 19, 2006

Start with the Schur functions. Part One: Partitions

• Definition: Partition λ of the integer n; denoted $\lambda \vdash n$

... is the *m*-tuple $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ where $n = \lambda_1 + \lambda_2 + \dots + \lambda_m$ and $\lambda_1 \geq \dots \geq \lambda_m \geq 0$.

• Example: Partition

$$(1) \vdash 1$$

$$(1,1) \vdash 2$$

$$(2) \vdash 2$$

$$(1,1,1) \vdash 3$$

$$(2,1) \vdash 3$$

$$(3) \vdash 3$$

. . .

$$(4,2,1) \vdash 7$$

Schur functions. Part Two: Young Diagrams

• Definition: The Young diagram of the partition $(4,2,1) \vdash 7$ is

• Coordinates of the boxes

ullet The expression "for all $(i,j) \in \lambda$ " means:

"for all pairs (i,j) such that (i,j) are coordinates of boxes in the Young diagram of λ "

Schur functions. Part Three: Transposed Partitions

ullet Definition: If $\lambda=(4,2,1),\,\lambda'=(3,2,1,1)$

Schur functions. Part Four: Young tableaux

• Definition: (Semistandard) Young tableaux (SSYT)

A Young diagram filled with numbers, strictly increasing by columns, nonstrictly by rows

• Example: Young tableaux: Two that are and one that is not!

$oxed{1}$	1	2	4
2	2		
3			

1	3	6	7
2	4		
5			

1	2	3	4
6	5		
7		'	

• Definition: x^T , where T is a SSYT

$$x_1^2x_2^3x_3x_4$$

$$x_1^2x_2^3x_3x_4 \qquad \quad x_1x_2x_3x_4x_5x_6x_7$$

Schur functions. Part Five: Definition

$$s_{\lambda}(x_1,\ldots,x_m) \equiv \sum_T x^T$$

where the summation is over all Young tableaux of shape λ filled with the numbers $1, 2, \ldots, m$

Default case: For $\lambda = (0), s_{\lambda} \equiv 1$.

• Example 1: $\lambda = (1)$

$$oxed{1} oxed{2} oxed{3} \dots oxed{m}$$

$$s_{(1)}(x_1,\ldots,x_m)=x_1+\cdots+x_m$$

• Example 2: $\lambda = (2)$

$$s_{(2)}(x_1,\ldots,x_m)=\sum_{i\leq j}x_ix_j$$

Schur functions. Part Five: Definition

• Example 3: $\lambda = (1,1)$

$$egin{bmatrix} oldsymbol{i} \ oldsymbol{j} \end{bmatrix}$$

$$s_{(1,1)}(x_1,\ldots,x_m) = \sum_{i < j} x_i x_j$$

• Example 4: Schur function, $m=3, \lambda=(2,1)$

$oxed{1}$	$1 \mid 3$	$oxed{1}$	$oxed{1}$	$oxed{1}$	$oxed{1}$	$oxed{2}$	$2 \mid 3$
3	2	2	2	3	3	3	3

$$s_{(2,1)}(x_1,x_2,x_3) = 2x_1x_2x_3 + x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_3^2 + x_2^2x_3 + x_2x_3^2$$

Schur functions. Part Six: Recursive formula

- Key in computing the Schur/Zonal polynomials!
- Observe that m can only occur in a "rightmost square."

The rightmost squares form a "horizontal strip."

• Therefore

$$s_\lambda(x_1,\ldots,x_m) = \sum_\mu s_\mu(x_1,\ldots,x_{m-1}) x_m^{|\lambda|-|\mu|}$$

where the summation is over all partitions μ which "fit inside" λ and such that $\lambda - \mu$ is a horizontal strip.

• Example:

$$s_{(2)}(x_1,x_2) = s_{(2)}(x_1) + s_{(1)}(x_1)x_2 + s_{(0)}(x_1)x_2^2 = x_1^2 + x_1x_2 + x_2^2$$

Zonal and Jack polynomials

- That β parameter again!
- ullet In combinatorics people use $\alpha=2/eta$ instead
- Schur $\beta = 2, \alpha = 1$
- Zonal $\beta = 1, \alpha = 2$
- ullet Jack—general eta, lpha

Hook lengths

• Definition: For $(i,j) \in \lambda$

$$h_{\lambda}(i,j) \equiv \lambda_j' - i + \lambda_i - j + 1$$

• Example: For $\lambda = (4, 2, 1), h_{\lambda}(1, 2) = 4$

\mathbf{X}	\mathbf{X}	X
\mathbf{X}		

• In general the hook lengths are

6	4	2	1
3	1		
1			

 \bullet α -modifications: Upper and lower hook lengths

$$h_\lambda^*(i,j) \equiv \lambda_j' - i + lpha(\lambda_i - j + 1) \ h_st^\lambda(i,j) \equiv \lambda_j' - i + 1 + lpha(\lambda_i - j)$$

Jack function

• Definition: Jack function (for any α ; plug in $\alpha = 2$ for the Zonals)

$$J_{\kappa}(x_1,x_2,\dots,x_m) = \sum_{\mu} J_{\mu}(x_1,x_2,\dots,x_{m-1}) x_m^{|\kappa/\mu|} \xi_{\kappa\mu},$$

where the summation is over all $\mu \leq \kappa$ such that κ/μ is a horizontal strip, and

$$\xi_{\kappa\mu} \equiv rac{\prod_{(i,j)\in\kappa} B^{\kappa}_{\kappa\mu}(i,j)}{\prod_{(i,j)\in\mu} B^{\mu}_{\kappa\mu}(i,j)}, \;\; ext{where} \;\; B^{
u}_{\kappa\mu}(i,j) \equiv \left\{ egin{array}{l} h^*_
u(i,j), \; ext{if} \; \kappa'_j = \mu'_j; \ h^{
u}_
u(i,j), \; ext{otherwise}, \end{array}
ight.$$

 $(h_{\kappa}^* \text{ and } h_*^{\kappa} \text{ are the upper and lower hook lengths})$

- $\xi_{\kappa\mu}$ = messy-to-describe, yet easy-to-compute rational function of α
- Caveat: Need to be careful about normalization—see our paper with Edelman

References

- R. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), no. 1, 76–115.
- I. G. Macdonald, Symmetric functions and Hall polynomials, Second ed., Oxford University Press, New York, 1995.
- P. Koev, A. Edelman, The Efficient Evaluation of the Hypergeometric Function of a Matrix Argument, Math. Comp. 75 (2006), 833-846.
- Ioana Dumitriu's MOPS package
- My website: Software for computing (symbolically) Schur, Jack, Zonals, Hypergeometric functions of matrix argument

http://math.mit.edu/~plamen