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Main result'

e The most common way to compute eigenvalues of the

weighted Laplacian is via finite element discretization.

e This yields a symmetric generalized eigenvalue

problem of the form Ax = AMx.

e \We argue that this system has special structure
allowing high relative precision calculation of all

eigenvalues including the smallest ones.
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Membrane motion I

e Consider a moving two-dimensional membrane
defined by bounded set {2 C R? whose boundaries

are clamped.

e Assume the stiffness varies over the membrane and
IS given by a coefficient field c. Assume the

displacement is small and all motion is elastic.

e The governing equation is a two-dimensional wave
equation: uy = V - (¢Vu) on Q2 and u = 0 on 0.
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Standing wave I

e A standing wave solution to this problem has the form

u(z,t) = eMug(x).

e Substituting this formula into the PDE yields the

continuum eigenvalue problem

V- (CVUQ) + )\2U() = 0.
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Finite element discretization (piecewise linear) I

e Assume 7 is a finite element mesh for the domain €2,

that is, a simplicial subdivision into 7 triangles.
® Letw;,...,w, bethe mesh nodes not on Of).

e Let 1/}, denote the set of piecewise linear continuous

functions u on this triangulation satisfying u|go = 0.
Note: dim(V}) = n.
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Discrete linear equations I

e Obtain weak form of PDE: multiply PDE by a test

function ¢ satisfying ¢|so = 0; integrate by parts:

/Vq-cVu:/)\qu
0 0

e Discrete FE equations: find eigenpairs
u € Vi, A € R such that the weak form holds for all
qg € Vy,.
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Representation with vectors I

e Functions ¢ € V/}, are in 1-1 correspondence with

vectors q € R" according to ¢; = q(w; ) for

1 = 1 : n (homeomorphism of vector spaces).

e Let u € R" be the vector corresponding to FE

solution u. Then u satisfies: for allq € R",

q' Ku = g’ A\Mu for matrix K called the stiffness

matrix, and matrix M , called the mass matrix.
Equivalent to Au = AMu.
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Stiffness matrix I

e Closed-form expressions for entries of /< are

obtained by considering u of the form

0;0;---;0;1;0; - - - 0] and similarly for q and

evaluating the weak form for the corresponding u and

g. Expressions also available for )/ .

e Matrix /X so determined is 7 X n symmetric positive
definite. Matrix M is n X n is symmetric and strongly

positive definite.




Accurate eigenvalues of the Laplacian

A test case I

e Consider the unit square domain with a border of

width 77 that surrounds an inner square of width
1 —2n.

e Assign a very high stiffness s to the border and a

constant stiffness of 1 to the inner square.

e |t can be proved using classical minimax arguments
that as s — 00, the smaller eigenpairs of this domain

tend to eigenpairs of the geometry of the subsquare.
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Experiments with this test case I

® In exact arithmetic, one expects that as s gets larger,

the smallest eigenvalue of this border problem
converges to the smallest eigenvalue of the inner

domain.

e |In the presence of roundoff, convergence is noted up

to a certain threshhold value s™; after this point, the

solution diverges because roundoff error prevents

accurate computation of the small eigenvalue.
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Why is roundoff error a problem I

e Roundoff error corrupts the solution to the problem

described above because as s — o0, we have that

| /|| — oo proportionally.

e Thus, the largest entries of /< as well as the larger
eigenvalues increase without bound. Under this
circumstance, conventional eigenvalue algorithms

cannot recover the smaller eigenvalues accurately.




