

Main result

- The most common way to compute eigenvalues of the weighted Laplacian is via finite element discretization.
- This yields a symmetric generalized eigenvalue problem of the form $K \mathbf{x}=\lambda M \mathbf{x}$.
- We argue that this system has special structure allowing high relative precision calculation of all eigenvalues including the smallest ones.

Membrane motion

- Consider a moving two-dimensional membrane defined by bounded set $\Omega \subset \mathbf{R}^{2}$ whose boundaries are clamped.
- Assume the stiffness varies over the membrane and is given by a coefficient field c. Assume the displacement is small and all motion is elastic.
- The governing equation is a two-dimensional wave equation: $u_{t t}=\nabla \cdot(c \nabla u)$ on Ω and $u=0$ on $\partial \Omega$.

Standing wave

- A standing wave solution to this problem has the form $u(x, t)=e^{i \lambda t} u_{0}(x)$.
- Substituting this formula into the PDE yields the continuum eigenvalue problem
$\nabla \cdot\left(c \nabla u_{0}\right)+\lambda^{2} u_{0}=0$.

Finite element discretization (piecewise linear)

- Assume \mathcal{T} is a finite element mesh for the domain Ω, that is, a simplicial subdivision into r triangles.
- Let w_{1}, \ldots, w_{n} be the mesh nodes not on $\partial \Omega$.
- Let V_{h} denote the set of piecewise linear continuous functions u on this triangulation satisfying $\left.u\right|_{\partial \Omega}=0$. Note: $\operatorname{dim}\left(V_{h}\right)=n$.

Discrete linear equations

- Obtain weak form of PDE: multiply PDE by a test function q satisfying $\left.q\right|_{\partial \Omega}=0$; integrate by parts:

$$
\int_{\Omega} \nabla q \cdot c \nabla u=\int_{\Omega} \lambda q u
$$

- Discrete FE equations: find eigenpairs $u \in V_{h}, \lambda \in \mathbf{R}$ such that the weak form holds for all $q \in V_{h}$.

Representation with vectors

- Functions $q \in V_{h}$ are in 1-1 correspondence with vectors $\mathbf{q} \in \mathbf{R}^{n}$ according to $q_{i}=q\left(w_{i}\right)$ for $i=1: n$ (homeomorphism of vector spaces).
- Let $\mathbf{u} \in \mathbf{R}^{n}$ be the vector corresponding to FE solution u. Then u satisfies: for all $\mathbf{q} \in \mathbf{R}^{n}$, $\mathbf{q}^{T} K \mathbf{u}=\mathbf{q}^{T} \lambda M \mathbf{u}$ for matrix K called the stiffness matrix, and matrix M, called the mass matrix. Equivalent to $K \mathbf{u}=\lambda M \mathbf{u}$.

Stiffness matrix

- Closed-form expressions for entries of K are obtained by considering \mathbf{u} of the form
$[0 ; 0 ; \cdots ; 0 ; 1 ; 0 ; \cdots 0]$ and similarly for q and evaluating the weak form for the corresponding u and q. Expressions also available for M.
- Matrix K so determined is $n \times n$ symmetric positive definite. Matrix M is $n \times n$ is symmetric and strongly positive definite.

A test case

- Consider the unit square domain with a border of width η that surrounds an inner square of width $1-2 \eta$.
- Assign a very high stiffness s to the border and a constant stiffness of 1 to the inner square.
- It can be proved using classical minimax arguments that as $s \rightarrow \infty$, the smaller eigenpairs of this domain tend to eigenpairs of the geometry of the subsquare.

Experiments with this test case

- In exact arithmetic, one expects that as s gets larger, the smallest eigenvalue of this border problem converges to the smallest eigenvalue of the inner domain.
- In the presence of roundoff, convergence is noted up to a certain threshhold value s^{*}; after this point, the solution diverges because roundoff error prevents accurate computation of the small eigenvalue.

Why is roundoff error a problem

- Roundoff error corrupts the solution to the problem described above because as $s \rightarrow \infty$, we have that $\|K\| \rightarrow \infty$ proportionally.
- Thus, the largest entries of K as well as the larger eigenvalues increase without bound. Under this circumstance, conventional eigenvalue algorithms cannot recover the smaller eigenvalues accurately.

