Accurate Eigenvalues of the Laplacian

Plamen Koev

Massachusetts Institute of Technology

Joint work with James Demmel (Berkeley) and Steve

Vavasis (Cornell & Waterloo)

Main result

- The most common way to compute eigenvalues of the weighted Laplacian is via finite element discretization.
- ullet This yields a symmetric generalized eigenvalue problem of the form $K{f x}=\lambda M{f x}.$
- We argue that this system has special structure allowing high relative precision calculation of all eigenvalues including the smallest ones.

3

Membrane motion

- \bullet Consider a moving two-dimensional membrane defined by bounded set $\Omega \subset {\bf R}^2$ whose boundaries are clamped.
- Assume the stiffness varies over the membrane and is given by a coefficient field c. Assume the displacement is small and all motion is elastic.
- The governing equation is a two-dimensional wave equation: $u_{tt} = \nabla \cdot (c\nabla u)$ on Ω and u = 0 on $\partial \Omega$.

Standing wave

- ullet A standing wave solution to this problem has the form $u(x,t)=e^{i\lambda t}u_0(x).$
- Substituting this formula into the PDE yields the continuum eigenvalue problem

$$\nabla \cdot (c\nabla u_0) + \lambda^2 u_0 = 0.$$

Finite element discretization (piecewise linear)

- Assume $\mathcal T$ is a *finite element mesh* for the domain Ω , that is, a simplicial subdivision into r triangles.
- Let w_1, \ldots, w_n be the mesh nodes not on $\partial \Omega$.
- Let V_h denote the set of piecewise linear continuous functions u on this triangulation satisfying $u|_{\partial\Omega}=0$. Note: $\dim(V_h)=n$.

Discrete linear equations

• Obtain weak form of PDE: multiply PDE by a test function q satisfying $q|_{\partial\Omega}=0$; integrate by parts:

$$\int_{\Omega} \nabla q \cdot c \nabla u = \int_{\Omega} \lambda q u$$

• Discrete FE equations: find eigenpairs $u \in V_h, \lambda \in \mathbf{R} \text{ such that the weak form holds for all } \\ q \in V_h.$

Representation with vectors

- Functions $q \in V_h$ are in 1-1 correspondence with vectors $\mathbf{q} \in \mathbf{R}^n$ according to $q_i = q(w_i)$ for i=1:n (homeomorphism of vector spaces).
- Let $\mathbf{u} \in \mathbf{R}^n$ be the vector corresponding to FE solution u. Then \mathbf{u} satisfies: for all $\mathbf{q} \in \mathbf{R}^n$, $\mathbf{q}^T K \mathbf{u} = \mathbf{q}^T \lambda M \mathbf{u}$ for matrix K called the *stiffness matrix*, and matrix M, called the *mass matrix*. Equivalent to $K \mathbf{u} = \lambda M \mathbf{u}$.

Stiffness matrix

- ullet Closed-form expressions for entries of K are obtained by considering ${\bf u}$ of the form $[0;0;\cdots;0;1;0;\cdots 0]$ and similarly for ${\bf q}$ and evaluating the weak form for the corresponding u and q. Expressions also available for M.
- ullet Matrix K so determined is $n \times n$ symmetric positive definite. Matrix M is $n \times n$ is symmetric and strongly positive definite.

A test case

- Consider the unit square domain with a border of width η that surrounds an inner square of width $1-2\eta$.
- ullet Assign a very high stiffness s to the border and a constant stiffness of 1 to the inner square.
- It can be proved using classical minimax arguments that as $s \to \infty$, the smaller eigenpairs of this domain tend to eigenpairs of the geometry of the subsquare.

Experiments with this test case

- In exact arithmetic, one expects that as s gets larger, the smallest eigenvalue of this border problem converges to the smallest eigenvalue of the inner domain.
- In the presence of roundoff, convergence is noted up to a certain threshhold value s^* ; after this point, the solution diverges because roundoff error prevents accurate computation of the small eigenvalue.

Why is roundoff error a problem

- Roundoff error corrupts the solution to the problem described above because as $s\to\infty$, we have that $\|K\|\to\infty$ proportionally.
- ullet Thus, the largest entries of K as well as the larger eigenvalues increase without bound. Under this circumstance, conventional eigenvalue algorithms cannot recover the smaller eigenvalues accurately.