Accurate and Efficient Matrix Computations
with Totally Positive Generalized Vandermonde Matrices
Using Schur Functions

Plamen Koev

Department of Mathematics
UC Berkeley

Joint work with Prof. James Demmel

Supported by NSF and DOE

Bay Area Scientific Computing Day, March 2, 2002



GOALS

e Accurate (Small relative error) and
Efficient (O(n?) or perhaps O(n?), independent of condition number)
Linear Algebra

_ A—l

— Az =0

— LDU from GENP, GEPP, GECP
— SVD

e Can’t be done for general matrices, must be “structured”

— Certain sparsity patterns
— Cauchy

— Vandermonde

e (Goal of this talk: Accurate and Efficient Linear Algebra for
Generalized Vandermonde Matrices
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Totally Positive = Matrix with all minors > 0




OUTLINE

e Model of arithmetic

e Classical method for achieving the goals for simple examples —
The Bjorck-Pereyra Method for Vandermonde Matrices

e How and why it works?

e Application to TP Generalized Vandermonde matrices



How can we lose accuracy in computing in floating point?

e flla®b) =(a®b)(1+ ) model of arithmetic with no over/underflow

e OK to multiply, divide, add positive numbers
Proof: 1+ 6 factors can be factored out

® 1; £ x;, where z; and x; are initial data (so exact)
® (z; +y;) (@ — yj—1)wir1/ (i1 —y;) - OK
e Cancellation when subtracting approximate results dangerous:

12345xxx
- .12345yyy
.00000zzz

e We will compute everything using only allowable expressions



Classical Example: A Vandermonde Linear System

e Solve Vy = b, where V is Vandermonde:

1z ... I?_l_ _yl_ L+ ]
1 x5 ... xé’_l Yo —
1z, ... xﬁ‘l_  Yn | =]

and 0 < 21 < ... < x,.
e Equivalent to interpolation
e The Bjorck-Pereyra method solves Vy =10
— In O(n?) time
— With small forward error: |y; — y;| < O(e)|y;|
— With small backward error: If Vj = b then |V;; — Vi;| < O(e)|Vj,].

e How does it work?



The Bjorck-Pereyra Method

o If (21,79, 23) = (1,2,3) and b = (2, —1,14)! then using BP to solve

11 1 2
1222 .y=1]-1 means
13 3 14
1 —1 1 1 1 2 23
y=V"1b= 1 -1 1 -2 1 -1 1 —1|=1-30
1 1 -3 3 -1 1] |14 9

e Notice:

— Bidiagonal Decomposition of V! (accurate)

— Checkerboard sign pattern

= NNo subtractive cancellation
= High relative accuracy

o Questions:

— Which matrices have bidiagonal decomposition of their inverses?
— Checkerboard signs?

— Accurate?



The Bjorck-Pereyra Method Dissected

e Questions:

— Which matrices have bidiagonal decomposition of their inverses?
— Checkerboard signs?

— Accurate?
e Answers:

— All nonsingular matrices do
This is Newille elimination in matrix form:

1 111 111 1 111 11
-1 1 124|=[013]; 1 013|=|01
~11]|1309 015 —122]l015 00
1 -1 1 1 1 111 1
1 —1]-] 1 -2]- 1 -1 1 124]=] 1
1 1 -3 3 -1 1] |139

— Checkerboard sign pattern <= Total positivity
(A is TP <= all minors > 0)

— Accurate? Yes.



ACCURACY OF THE BJORCK-PEREYRA METHOD

1 oz 2] (1 —x 1
1 29 x% a:;’ 1 —x 1 —x9 1
1 x3 a3 3 1 —x I —x 1 —x3
1 x4 22 a3 1 1 1
I 4 Ly ]
1 1 1
1 1
1 1 T9—T1 T2—X]
| —1 1 —1 1
r3—r] T3—I] r3—1r9 T3—X
1 1 3 1 3 2 3_1 2 1
T4—I1 T4—T1 | L Ty—I9 T4—x9 1 L T4—23 Tp—x3
Other TP matrices? ... Yes
TP Cauchy matrices x1 > ... >x, >y > ... > 1y,
—1
1 1 1 —(x1—y1) 10 0
T1=Y1 T1—Y2 T1—Y3 Y1—Y2 L1 — Y
1 1 1 _ vi—yy  —(wi=w) | | g 1 —(@2mw)
To—Y1 T2—Y2 T2—Y3 Y1—Y2 Y2—Y3 Y1793
1 1 1 0 0 T1—y3 Ta—y3
T3—Yr T3—Y2 T3—Y3 Y2—Y3 y1—Y3
[ 1 0 0 1 0 0
O 1 O —(xl—yl) T2—Y1 O
T9—x T9—x
0 —(x1—y2) 23—yo 0 —(ro—y1) 23—y
r3—r1 r3—aT1 r3—x9 r3—I9

Unifying Characteristic?

o — Yo

I3 — Y3



The Connection with Minors

® Which TP matrices permit accurate bidiagonal decomposition?

e Each entry is product of quotients of minors

h  det(A(G—k+2:i+1,1:k)) det(A(i —k+1:i—1,1:k—1))

S
LT det(A(i—k+2:4,1:k—1)) det(A(i —k+1:4,1:k))
e Specifically: Initial minors

— Contiguous

— Include first row and column

e Initial minors of Cauchy:

det(C) _ Hi<j(xj - xl)(yj - y@)
i (@i + ;)

e Initial minors of Vandermonde:

detV = H (QZ'Z — CL’j)

1>
e How did we think of minors?

e Gaussian Elimination and Neville Elimination
Each entry of V = LDU is a quotient of minors, so not surprising



New results: Generalized Vandermonde Matrices

e TP Matrices with initial minors that are easy to compute accurately
Vandermonde and Generalized Vandermonde

i o
I xp ... xf
1 xo h1
. « o e 2
V _ )
1z, ... o}

A 1+ —14+N, ]
.flfll 371+ 2 “ e I'Tll tAn
A 1+ —1+A
G o CC21 l'2+ 2 ... xg tAn
A — . )
Al 14+ X9 n—1+A

where r1 > 10> > 2, >0, \y > X122 >0, | A=A +...+ )\,

e Initial Minors for G,?

det(G)) = det(V) - sa(z1, 22, ..., xp)

e s, - called Schur function

— Polynomial with positive integer coefficients

— Widely studied in combinatorics [MacDonald],

group representation theory

e Example:

1 2% af 1z 22
det || 1 23 a5 || =det || 1 xo 23
1 23 ) 1 z3 23

2 2, .2 2, .2 2
(221932 o+ X1 X5+ XX+ X1 X5+ X503+ T2Xs)



Accuracy and Efficiency for Generalized Vandermonde Matrices

e Example:

1 2% i 1z 2%
det || 1 23 o3 || =det|| 1 2o 23 ||-Quimors+aimytava+aivs+o05+ 2503+ 2073)
1 23 1 3 23

e Accuracy?

—det(V) = ;> j(x; — z;) - YES.

— 5) - polynomials with > 0 coefficients - YES.
e Efficiency?

—det(V) == j(x; — ;) - OK.

— sa(r1, Ty ...y p)?

* Traditional algorithm - exponential — nA

* Now exponential speedup: Linear complexity in n. Idea:

s (1, .., 1) = 2wy = (T Az (2o Ary) Tt A (1T T T T,

1<Jj

cost: 3n, although n’ terms.



Type of Any | GENP Ar=b | Ax=0b
Matrix det(A) Al minor | GEPP | GECP | SVD | NENP | Frwrd* | Bckwrd*
Cauchy n? n? n? n? n’ n’ n? n?
TP Cauchy n? n? n? n? n’ n’ n? n? n?
Vandermonde n? n? n? n?
TP n? EXP n? EXP n? n? n? n?
Vandermonde
Polynomial
Vandermonde n? n? n?
Orth. Poly.
Poly. Vand.
Orth. poly.! n? n® EXP n® EXP | »°
o< <...<z,
Generalized
Vandermonde
TP Generalized | An +n? | An? +n’ | EXP An? EXP |EXP| An? An? An?
Vandermonde
Big-O sense
*FORWARD BOUND: |z — 2| < O(¢)|A7Y|b|, implying |z — 2| < O(e)|z| for x checkerboard

BACKWARD BOUND: |A — A| < O(¢)|A|, where Az = 0.

) 4+ Other conditions on the signs of the three-term recurrence

A<M+ DA+ 1% (N +1)%p, where A = (Aq,...,\).




Conclusions

e TP Structured linear systems can be solved very accurately, if
initial minors factor

e Implies accurate A™!
e New application: (Generalized Vandermonde Matrices
® Accurate SVD of some Polynomial Vandermonde Matrices

e Sometimes the SVD is easier than the inverse

Open Problems

e Totally Positive Matrices in general appear impossible. Proof?

e Characterize which structured matrices permit accurate and efficient lin-
ear algebra
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